1. Professor: Haldun Hadimioglu

Office: 10.009 2MTC

haldun@nyu.edu
http://cse.poly.edu/haldun

Tel: (646) 997-3101
Fax: (646) 997-3609

NYU Tandon School of Engineering, Computer Science and Engineering
Six MetroTech Center, Brooklyn, New York 11201

Degrees: B.S. and M.S. in Electrical Engineering and Ph.D. degree in Computer Science
Involved in the undergraduate Computer Engineering program administration
Areas: Computer architecture, parallel (multi-core) processing, reconfigurable and nano systems

2. Prerequisites:
- CS 2214 = Undergraduate Computer Architecture

3. Textbook:
- Publisher’s web site, http://books.elsevier.com has a large amount of material, including Appendices D through L of the textbook. Students are strongly suggested that they study the web site material and print the appendices that will be used especially during the exams.
- Students are reminded about printing the appendices!

Finally, students will be provided with handouts and slides to supplement their reading.

4. What is asked from college graduates:
- Good technical and non-technical skills + competency + grit!
- Adaptable, flexible and team player!
- Problem solver + systems oriented in a global environment!

You may have also heard the following:
- You are creative and have learning as your target! You know how to learn fast!
- Good solid technical knowledge + learning fast + interpersonal skills
- You have analytical and synthesis skills
- You have team work skills: Interacting with people to solve problems!
- You have good documentation skills!
- You are a critical thinker! You discover and explore! You are lifelong learner!

5. How to be successful in your college years and after graduation:
- Knowledge is infinite and it consists of pieces of information that are dependent on each other in infinite ways.
- Learning is not instant! It requires physical changes in the brain = Plasticity! That is, neurons in your brain are rewired as you learn. Rewiring the brain is not easy. It requires constant effort.
- Applying/using what is learned is not instant! One needs time to apply/use the knowledge acquired, meaning additional rewiring in the brain is needed.

Otherwise, students try to recover by themselves. They just take exams. Professors cannot help them since these students are not around. It gets worse for students as the semester progresses and so no one can do anything = It becomes a vicious cycle = Those students who need help are not around to get help!
6. Why Computer Architecture I: Our course is about computer hardware!
 ➢ Students who know computer hardware are good at software (Operating Systems+Applications).
 ➢ Students who know computer hardware will not get caught by major computer hardware technology shifts.

7. Course Objectives: What will you learn? Computer architecture, unpipelined CPU design, memory hierarchies, pipelined CPU design and high-speed CPU design.

8. Course Outcomes: What will you be able to do once the course is completed? Design and analyze computer architectures, design and analyze CPUs, design and analyze memory hierarchies and design and analyze high-speed CPUs.

9. Course topics: CS6133 is the first course on computer hardware, with an emphasis on designing microprocessors
 ➢ A MIPS microprocessor is designed by using the finite-state state-machine (FSM) approach!

10. The course structure:

 A Computer Science and Engineering Department course

 Lecture Section:
 ➢ 16855, Wednesday, 6:00 - 8:30

11. Course web page:
 NYU Classes:
 ➢ Course handout and presentation files are at the course web site

12. Homework:
 There will be six homework assignments. An assignment submitted late will not be accepted. Students are reminded about studying the solutions provided by the textbook.
 ➢ Students will form 3- or 4-student teams by the third week of the semester. The homework will be submitted by teams.

 ➢ Students who do homework are faster at solving problems. Showing work (intermediate steps) is required to get full/partial credits on a question. The homework will be graded by the TAs. Although, the homework will not affect the term grade, it can help raise grades as explained below.

13. Exams: To test students for their technical knowledge and documentation
 There will be a 150-minute midterm exam and a 150-minute final exam.

 ➢ Showing work (showing intermediate steps) is required to get full credits on a question. That is, both the final answer and the steps to get it, the approach, are important.
 ✦ These steps are given in class. Therefore, students are expected to solve exam questions as such. Showing the approach also helps students acquire and improve their documentation skills, critical for the technical world.
 ■ In order to facilitate this, the exams are open book exams: students can use their own material, i.e. their books, notebooks and handouts during the exams. Note that once the exam starts there is no sharing.
 ✦ Students must prepare for the exams as if they are closed book exams!

 ➢ In addition, remembering the following is needed during the exams:
 ✦ No multiple answers to a question, precise answers to questions, no answers like “the rest is similar,” answering the question asked, and using the exam booklet space well: For example, start a new question on a new page.

Overall, students are tested for their technical knowledge and documentation
14. Term Grade:
The term grade is based on the weights of the exams:

 40% Midterm Exam **60% Final Exam**

⇒ The homework does not affect the term grade directly but it is taken into account when a student’s term grade is near a grade “border.” Also, taken into account is student’s attendance record. If they are good, the grade is raised. Finally, the professor may change the term grade computation. Thus, students are strongly suggested that they fulfill the requirements of the course, i.e. lectures and homework assignments.

15. Office Hours:
The professor has an open-door policy that if he is not busy, students can ask questions in his office. If the door is closed, he might be teaching or at a meeting. If a student wants to see the professor at a certain time, he/she makes an appointment with the professor.

⇒ Students are requested that they see the professor to ask questions. Broadcast messages will be sent to the class to make announcements. Please note that grades are not given out to students via email or telephone. Students need to see the professor to learn their grades.

⇒ There are TAs to help students. TA contact information will be given at the course web site and in class handouts later in the semester.

16. Material Coverage:
All chapters will be covered, some partially, some completely this semester. Students will be given additional material in class. The tentative schedule is as follows:

<table>
<thead>
<tr>
<th>Day(s)</th>
<th>Subject</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 5</td>
<td>Introduction. Computer systems overview. Layered computer design.</td>
<td>1, 2, A, B, C, K</td>
</tr>
<tr>
<td>Sep 5, 12, 19</td>
<td>Computer Architecture : ISA principles and the RISC-V architecture</td>
<td>1, A, K</td>
</tr>
<tr>
<td>Sep 19, 26</td>
<td>RISC-V organization : Unpipelined CPU design (Version 0)</td>
<td>2, 3, A, B, C, K</td>
</tr>
<tr>
<td>Sep 26, Oct 3</td>
<td>RISC-V organization : Pipelined CPU design (Version 1)</td>
<td>2, 3, A, B, C, K</td>
</tr>
<tr>
<td>Oct 24</td>
<td>Exam I</td>
<td>HW : 1 - 2</td>
</tr>
<tr>
<td>Oct 10</td>
<td>Adding FP instructions to the RISC-V pipeline (Version 2)</td>
<td>2, 3, A, B, C, K</td>
</tr>
<tr>
<td>Oct 17</td>
<td>Tomasulo RISC-V CPU (Version 3)</td>
<td>2, 3, A, B, C, K</td>
</tr>
<tr>
<td>Oct 31</td>
<td>Control dependencies, precise interrupts</td>
<td>2, 3, A, B, C, K</td>
</tr>
<tr>
<td>Nov 7</td>
<td>Speculative execution (Version 4) ; Superscalar execution (Version 5)</td>
<td>2, 3, A, B, C, K</td>
</tr>
<tr>
<td>Nov 14</td>
<td>VLIW execution, EPIC (Version 6) ;</td>
<td>2, 3, A, B, C, H, K</td>
</tr>
<tr>
<td>Nov 14, 28</td>
<td>Vector processing</td>
<td>2, 3, A, B, C, G, K</td>
</tr>
<tr>
<td>Dec 5</td>
<td>Advanced memory design</td>
<td>2, 3, A, B, C, D, K, L</td>
</tr>
<tr>
<td>Dec 12</td>
<td>Advanced systems ; Future of computing</td>
<td>5, 6, 7, I</td>
</tr>
<tr>
<td>Dec 19</td>
<td>Final Exam : Cumulative</td>
<td>All the above chapters</td>
</tr>
</tbody>
</table>
17. References:
Students are suggested that they study recent computer architecture books since the field advances rapidly. The following references are recommended with respect to their relevance to the course and the textbook:

- A book giving insight on microprocessor design from the concept phase to the production phase:

- A book describing how and why technical work involved in computer design and development is just a small part of a larger picture with emotions, ambitions and conflicting goals of many people involved:

18. ABET Core a-k Competencies:

a) Students apply mathematics, science and engineering knowledge to design and analyze advanced systems.

c) Students design a digital system that meets the desired speed, space and cost constraints.

e) Students identify, formulate and solve engineering problems.

19. Reminders about the course:
Students need to read and remember web pages whose links are also provided at the course web site:

1) **NYU Code of Conduct web page**: http://engineering.nyu.edu/files/SACCofC2-2-16.pdf, including academic misconduct, which is a part of the Student Code of Conduct document.

2) **NYU-SOE Life web page** with links to Student Affairs, Public Safety, Students Resources and other: http://engineering.nyu.edu/life.

In addition, students need to keep the following in mind:

a) *Keeping contact with the professor and discussing personal matters in professor’s office help you considerably*
b) **A successful course experience:** To enjoy the course as much as possible and be ready for the follow up courses, students need to be committed to the course.
 - **Attending classes and doing the work** are needed.

c) Students must realize that every action they take has consequences. Making assumptions and decisions on the course (the exams, lectures, the homework and attendance) without asking the professor often lead to problems for students.

d) A reason for a low grade is **missing classes.** Even if one gets the notes, it does **not** help. This is because:
 - The notes taken from the board may not be correct.
 - Someone taking the notes may not write down all the verbal comments and suggestions made by the professor.
 - Attending classes forms better memory because of visual (seeing the writing on the board), audio (listening to the professor) and tactile (writing down the notes) inputs.
 - During lectures the professor refers to earlier lectures (past topics, comments, suggestions, etc.) which refreshes students’ memory and further reinforces their knowledge.

Overall, students learn and remember more. Finally, since their memory is fresh, students save time when they study for exams.

e) Missing an exam is **not** a minor case. A careful assessment is made to excuse a student or to grant an incomplete to a student. The professor makes the decision. The decision is made also based on the information by the student’s academic department and the Student Affairs Office.
 - One of the requirements to excuse a student is that at the time the student is not able to take the exam, he/she **be in good standing in class,** i.e. has good attendance, a good homework performance, a good reciation performance and a good exam performance: The professor wants to see that the student has been committed to the course and learning the material has been his/her main objective.
 - A student who is excused from a midterm exam is **not** given a make-up exam. The weight of the midterm exam is distributed to the other exams at the discretion of the professor. The make-up exam for the final exam will be harder than the one given to the whole class.

f) If a student experiences problems, including health/personal problems, he/she immediately contact **Deanna Rayment** who is the Coordinator of Student Advocacy, Compliance and Student Affairs. Her contact information is:
 - deanna.rayment@nyu.edu
 - (646) 997-3046
 - LC 240C

g) For a course, the semester is over when the final exam is over. Students are **not** given extra work, a project, a make-up exam or any other kind of special treatment to raise their grade during or after the semester.

h) Some students do not know/follow NYU-SOE and CS2204 rules and regulations nor seek advice from
Tandon staff. Students are strongly suggested that **they speak with the professor**, the TAs, the major advisor, the personnel of the Student Affairs Office, and the Counseling Center for a better experience.

20. Moses Center Statement of Disability:
If you are a student with a disability who is requesting accommodations, please contact New York University’s Moses Center for Students with Disabilities at (212) 998-4980 or mosescsd@nyu.edu. You must be registered with CSD to receive accommodations.

Information about the Moses Center can be found at www.nyu.edu/csd. The Moses Center is located at RH 042 in Brooklyn ((646) 997-3451) and 726 Broadway on the 2nd floor in Manhattan ((212) 998-4980). *Please do this at the start of the semester.*