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Abstract

We show that under the Black Scholes assumption the price of an
arithmetic average Asian call option with fixed strike increases with
the level of volatility . This statement is not trivial to prove and for
other models in general wrong. In fact we demonstrate that in a simple
binomial model no such relationship holds. Under the Black-Scholes
assumption however, we give a proof based on the maximum principle
for parabolic partial differential equations. Furthermore we show that
an increase in the length of duration over which the average is sampled
also increases the price of an arithmetic average Asian call option, if
the discounting effect is taken out. To show this, we use the result
on volatility and the fact that a reparametrization in time corresponds
to a change in volatility in the Black-Scholes model. Both results are
extremely important for the risk management and risk assessment of
portfolios that include Asian options.
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1 Introduction

Asian options are options where the payoff depends on the average of the
underlying asset during at least some part of the life time of the option.
The average can be taken in several ways, each leading to a different type
of Asian option. According to the Handbook of Exotic Options [6] the
name Asian option was coined by employees of Bankers Trust, which sold
this type of options to Japanese firms that wanted to hedge their foreign
currency exposure. These firms used these options because their annual
reports were also based on average exchange rates over the year. Average
type options are particularly suited to hedge risk at foreign exchange markets
and by reason of the averaging effect, significantly cheaper than plain vanilla
options. Effectively such options are traded since the mid 1980’s and first
appeared in the form of commodity linked bonds. Specific examples are the
Mexican Petro Bond and the Delaware Gold Index Bond. Asian options are
OTC traded, however market and trading volume appear to grow very fast.
A recent study of CIBC world markets revealed that Asian style options
are the most commonly traded exotic options. Similar statements can be
found in the Handbook of Exotic Options [6]. In the Black-Scholes model,
the technically easiest case to consider is where the average is a geometric
average. Since the product of log-normal distributed random variables is
again log-normal distributed, explicit analytical expressions are available for
the price of such options and everything appears to be well understood. On
the other side, for the more natural version of an arithmetic average Asian
option, no explicit pricing formulas are available and it is hard to say, how
changes in parameters of the model are reflected in price changes. Our paper
focuses on the case of arithmetic Asian options and how changes in volatility
and duration effect its price. The average can be taken either continuously
or discretely. An option of continuous average type is represented by the

following example

1 (7 -
(T / Sidt — K > ”continuous average price call”.
0

The continuous average type is of particular importance, since the Black-
Scholes partial differential equation can be easily modified in order to obtain

a Black-Scholes like partial differential equation for the prices, see section



3. However, in contrast to the standard Black-Scholes partial differential
equation, it is not possible to find a closed form solution for this PDE. On
the other side it has to be said, that the continuous average type is neither
traded at any financial market nor between any two financial institutions
and in a way only represents an approximation of the discrete average type,

which is of the form

+
1 n
( g Sy, — K ) "discrete average price call”
n
i=1

where 0 = tg < t1 < ts < ... < t, = T. PDE’s for a discretely sampled
average Asian option are available, see for example Vecer [9], and the dis-
cussion presented in the following section can be adapted to this case. For
the reason of clarity however we restrict our investigations in this article to
the case of continuously sampled arithmetic Asian options, but we allow the
payoff structure to be slightly more general than in the classical examples,

that is of type
1 T

T, S (1)

g
with g(x) being a convex function. The objective of this article is to un-
derstand the qualitative behavior of the price of this option with regards to
changes in the Black-Scholes volatility parameter ¢ and the duration time
T of the averaging process. We show the price is increasing in both param-
eters, at least if the discounting effect is neglected. From an intuitive point
of view, the first result might be expected, but it is far from trivial. Carr [1]
and Jagannathan [5] clearly point out that the idea of options prices rising
with increasing volatility, even if these options have convex payoff profiles, is
a widely held fallacy. Jagannathan clearly brings it to the point: Quote "It
is commonly believed that the value of a call option is a non-decreasing func-
tion of the riskiness of its underlying security. Such a belief is not correct.”
Carr provides an example in which the price of a European call decreases
with an increase in volatility. We adapt Carr’s example to the case of an
arithmetic Asian call and show that the situation here is quite similar and
increases in volatility may result in a decrease in price. Whether the price
of an option is increasing in volatility or not, crucially depends on the dis-

tribution of the underlying. In the case of an arithmetic Asian option the



distribution of the underlying is only partly understood, see for example
Carr and Schroder [2], Geman and Yor [4] or Yor [10], and it appears to
be impossible from the knowledge of this distribution alone to directly infer
about the volatility and duration effect on prices. We also found that it
appears to be impossible to directly infer about the volatility effect from the
Fourier transform of an Asian option, see for example Carr and Schrdder [2].
As with regards to the effect of duration time 1" of the averaging process,
intuition may in fact suggest that since more samples for the average are
taken into account, volatility of the underlying decreases and therefore the
option price does so as well. In this case not only the argument is wrong,
but also its conclusion, as long as the Black-Scholes model is concerned. In
fact we show that if the discounting effect is taken out, the price of an arith-
metic Asian option with convex payoff profile is increasing in duration of
the averaging process and that the answers for volatility effect and duration
effect are strongly related by a rescaling property of Brownian motion. The
remainder of this article is a follows. In section 2 we adapt the example of
Carr [1] to the case of an arithmetic Asian call, while in section 3 we focus on
the Black-Schole theory of Asian options and derive certain Lemma’s which
address symmetry properties of the price function as well as some structural
relationships between the Greeks of an Asian option. In section 4 we derive
the result for the volatility effect, while in section 5 we address the duration

effect. The main conclusions are summarized in section 6.

2 Negative vega’s for Asian calls in a Binomial

model

In this section we adapt the example in Carr [1] to the case of an Asian call

and demonstrate in this way that the price of an arithmetic Asian call can in

general be decreasing in volatility. Let us consider a twice averaged Asian
+

2
option %.leti - K with maturity 2 years in a two-period binomial
=

model under zero interest rate. We assume that the initial price of the stock
is Sp = 1 and the strike price is K = 1, which means the option is at the
money. Denote the upstate and downstate parameter pair of the binomial
model by (u,d) with u > 1 > d > 0. Then the stock prices are provided by
the following tree.



d2

A no arbitrage assumptions enables us to calculate the risk neutral proba-

bility p = i;—iil for upwards and ¢ = Z—:Cll for downwards, which in turn yields

the option’s value

+ +

1 1 1
Co = p? §(u2+u)—1 +pq i(Ud"‘U)_l TPq §(Ud+d)_1

+

(2)
We will later refer to the volatility parameter o in the Black-Scholes model
and for this reason, we must identify its analogue in the binomial model
above. Under the Black-Scholes assumption In(S(t)) = (r — $02) t + oW (t)
and therefore 02 = var(In(S(t)))/t. The volatility parameter o in the Black-
Schole model therefore corresponds to the risk-neutral log-normal variance
of every single period of the binomial model, when length of each period is

normalized to one. For the risk-neutral log-normal variance we obtain

p(lnu — (pInu+ qInd))? + ¢(Ind — (pInu + ¢Ind))? :pqlng(g)

and therefore
pg1n? (%) = o2 /At = o2,

o= \/pqlnz(%)- (3)

Note that in the setup here At = 1 year and o is the annual volatility.

or alternatively

Equations (2) and (3) connect option price with the volatility of stock price
through the tree’s parameters u and d. This enables us to draw the following
graph showing a negative relationship between option price and volatility,

once the volatility passes a critical value, in this example %
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Figure 1: Non-positive Vega

To document the numerical result some pairs of volatility and option prices

in the picture are listed in the table below.

volatility price
0.4357 0.2261
0.4644 0.2389
0.5279 0.2525
0.5676 0.2424
0.5900 0.2311

3 Arithmetic Asian options in the Black-Scholes

framework

In this section we briefly review some classical facts on Arithmetic Asian op-
tions in the Black-Scholes framework and in addition derive some symmetry
properties of the price function. We work under the risk neutral measure

and assume that stock price and bond price follow the dynamics

dBt = Bﬂ“dt (4)
dSt St (Tdt + O'th).

The arbitrage free price of an option with payoff (1) at time ¢ is then given
by

t

1 T
Suydu | Sy =z, Sydu=vy . (5)

U(t, T, z,y, J) = e_r(T_t)E g T
0 0
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In difference to the standard notation, we include the parameters 1" and o
explicitly as arguments as we will later study the price function as a function
of these arguments. A similar argument as in Black-Scholes (1973) leads to
the following PDE

1
v — TV + TUy + 5029321)3” =0 (6)
with boundary conditions

o(t,T,0,y,0) =e T g(y), 0<t<T,yeRo>0 (7)
lim v(t,T,x,y,0) =0, 0<t<T,z>0,0>0

y——00

/U(T7T’$7y7o-) :g(y)’ x207y€R’0>0

As indicated before, in this article we are primarily interested in qualitative
aspects and in particular monotonicity of the option price v(0,7T,x,0,0) as
function of 7" and o. In the remainder we use the following notation for the

Greeks of an arithmetic average Asian option:

v = tau=rT1
vr = chronos = y

v, = delta=A

vy = lota=1
vy = vega=YV
Vppe = gamma =1T

The Greeks chronos and iota do not appear in the literature and have been
named here with chronos and the Greek letter y to indicate ”chronos” which
is Greek for time and iota for the Greek letter ¢, as the average process
Iy = f(f Sy du, which the variable y refers to is classically denoted with an I.
We will find it convenient in the following to work with the un-discounted
price function

o(t, T, z,y,0) = eT(T*t)v(t,T, z,y,0). (8)

It is then easy to see that v satisfies the following partial differential equation

1
By + Ty + §G2x2f1m =0 (9)



with boundary conditions

o(t, T,0,y,0) =g(y), 0<t<T,yeR,o0>0 (10)
lim o(t,T,x,y,0) =0, 0<t<T,z>0,0>0

Yy——00

lNI(T,T,l‘,y,O') :g(y)a .Z‘ZO,QGR,O‘>O.

The following relationships hold for the Greeks tau and chronos

vy = rvt+e Ty,

r(T—t) ~

v = —rv+e o,

while all other Greeks are simply the discounted partial derivatives of the
un-discounted value function. We will later need a symmetry property of
the un-discounted price function with regards to the variables ¢ and 1" which

is stated in the following Lemma.

Lemma 3.1. The un-discounted price function v(t,T,x,y,0) of an arith-

metic Asian call (1) satisfies
- - T—1
o(t,T,x2,0,0) =0 0,7 —t, TQ?,O,O‘ . (11)

Proof. For y > 0 we have that

1 T t
ot, T, z,y,0) = E g = Sudu ‘St—x, Sudu =y
T 0
17
t
T
Y 1 T—1
g T+T—t . Su u St T T

Now we take the limit for y — 0 and obtain from the Markov property of



the stock price dynamic that

1 T T—t
o(t,T,2,0,0) = E ¢ T3 Sydu | Sy = T T
-1 4
1 =t T—t
= E — S.d So =
g T_¢ o u U 0 T X
5 o0.T—t 1"t 0
= 9 —=
) ) T ) 70-

O]

The following Lemma relates the Greeks tau, chronos and delta of the un-

discounted value function.
Lemma 3.2. The following relationship for un-discounted Greeks holds at
timet = 0:

. Uy

vt—i-vT—i-?:O (12)
Proof. 1t follows from the previous Lemma that for all ¢ > 0

T+ €

v T
v €,1 +e€, T

z,0,0 =0(0,T7,2,0,0).

Differentiating with respect to € and evaluation at ¢ = 0 gives

T
te z,0,0

d
0 = —v ¢T+e —
T e=0

de

- ~ Vg
= Ut+’UT+?.

4 The volatility effect on arithmetic Asian calls

We have seen in section 2 that it is a priori not clear whether or not an
increase in the volatility parameter o leads to an increase in the price of
an arithmetic average Asian option. On the other side the answer of this
question is of fundamental importance for risk managers dealing with port-
folios which contain Asian options. In this section we apply the maximum

principle for parabolic PDE’s as it can be found for example in Stroock and



Varadhan [8] in order to prove that under the Black-Scholes assumption an

increase in volatility indeed leads to an increase in the option price.

Proposition 4.1. Assume that stock and bond follow the Black-Scholes dy-
namic (4) and assume that g(x) is a continuous convex function, which
is piecewise C' with bounded derivatives and at most finitely many sin-
gularities. Then the price of a continuous type arithmetic Asian option
g %fOT Sidt is a strictly increasing function of the wvolatility parameter
o> 0.

Proof. As the vega is just the discounted vega of the un-discounted value
function v we assume w.l.o.g. that the interest rate satisfies r = 0. In this
case the two value functions coincide and the partial differential equation

for the value function v(t,x,y, o) is given by
L 5 9
v + TUy + 30 T Ve = 0 (13)
with boundary conditions (10). Differentiating (13) with respect to o gives
L 5 9 2

Vtg + TUyo + 50 % Vago 4+ ox“ v, =0 (14)

Denoting the vega v,(t,x,y,0) of the option with V we find that
V, + LAY = —o2%0,, (15)

where L is the differential operator

2
Lfs = ;o2$2§$2 + 1‘882}
associated to the Asian option PDE (6) (r = 0). Differentiating the bound-
ary conditions (10) with respect to o we obtain that V vanishes on the whole
of the boundary. As ¢ was assumed to be positive, the maximum princi-
ple for parabolic PDE’s ( see for example Theorem 3.11, page 66 in [8] )
therefore implies that V is positive, given that the right hand side of (15) is
negative. The latter is true if v,, is positive. It therefore suffices to show

that the gamma v,, of the Asian option is positive. In order to do this, it



suffices to show that

0? r T
—E = Sidt >0 16
a$2 g T 0 ¢ ( )
where x = Sy and S’t ‘= exp (aWt — %UQt) denotes the normalized stock
price. Let us first assume that g is two times continuously differentiable. As
S; does not depend on x taking the second derivative in (16) gives

52 T T 1 T 2

ﬁE g % . S’tdt =K g" o gtdt T . S’tdt . (17)

Nl &

It follows from the convexity of g that the expression on the right hand
side of (17) is positive. If g is not two times continuously differentiable, an
approximation such as in [3] ( proof of Proposition 3.2. page 23 ) enables

us to get the same result. O

The result from Proposition 4.1. also holds in the case of a discrete type
arithmetic Asian option g (% Sy Sti) with convex payoff profile. This can
be shown using results of Vecer (2005) who derives a single partial differential
equation for the price of a discrete type arithmetic Asian option ( equation
(3.9) in [9] with ¢ chosen in (3.5) ). Positivity of the coefficient in front of the
second order term in Vecer’s equation (3.9) guarantees that the methodology
presented above using the maximum principle works in this case as well,
positivity of the gamma follows in exactly the same way as before. We omit

the details as in this article we focus on the continuous type.

5 The duration effect on arithmetic Asian calls

In this section we study the price effect of duration 1" over which the arith-
metic Asian option (1) is averaged. Intuitively one may think that if the
discounting effect is taken aside, since the average over a longer period is
taken, the variance of the average decreases and so does the option price.
In the discussion of the volatility effect we have already seen that this kind
of intuitive thinking is very misleading, in fact in this case it leads to the
wrong conclusion. Increasing the duration in fact has two effects, one is
that an average over a larger sample is taken, but the other one is that

the variance of the samples taken at a later time increases, as the asset is

10



assumed to follow a geometric Brownian motion. While the first effect gives
the option price a tendency to decrease, the second effect will lead to an
increase in the option price. We will show that if the discount effect e="7
is taken out, the option price indeed increases in 7, i.e. the chronos of the
un-discounted value function is positive. This means that the first effect
mentioned above dominates the second. We will prove this result by estab-
lishing a symmetry between the vega and the chronos of an Asian option.
Before we do this however we indicate that the result is not trivial and that
it can not be proved in analogy to the case of a plain vanilla call, where a
sub-martingale argument applies. In order to do this note that under the
risk neutral measure, which in this article is identified with the subjective
probability measure P, the discounted Black-Scholes stock price represents
a martingale. Assuming for simplicity that the interest rate is equal to zero
the Jensen inequality for the conditional expectation, see for example [7],
page 70, implies that for a monotonic increasing and convex payoff function

g(+) we have

E (9(Sr+c)| Fr) = g (E (Sr+c| Fr)) = 9(ST).

Taking expectation and using the tower property of the conditional expec-
tation shows that the option price is increasing with 7. In the case of a
plain vanilla call we also find a strong relation ship between the tau and the
chronos. In the case of an arithmetic Asian option the relationship between
tau and chronos is more complicated and depends on delta and T as equation
(12) shows. Furthermore the underlying process I, = %It = % fot S, du is not
a sub-martingale. This follows from the fact that it has bounded variation,
and as such could only be a submartingale if it would be increasing a.s.,
which it is obviously not. There is hence no direct conclusive martingale
based argument which proves positivity of the chronos of the un-discounted
value-function of an arithmetic Asian option of type (1). In the following
we will establish a symmetry between the chronos and the vega and then
use the positivity result obtained for the vega in Proposition 4.1. In order

to do this we use a scaling property of Brownian motion which allows us to

11



represent a change in volatility as an increase in speed. For ¢ > 0 denote

1
Sf=exp (0+€)W;— 5(0 + €)%t

- 1
S; = exp O'W(L‘_e)Qt - 5(0’ + €)%t

Lemma 5.1. The processes S(E.) and 5*(6) have the same distribution.

Proof. 1t follows directly from the scaling property of Brownian motion that

which in turn implies the statement of the lemma. O

Corollary 5.1. For ¢ > 0 we have

Syudu, (18)

i.e. the two sides have the same distribution.

Proof. 1t follows from the previous Lemma that

1 T 1 T
— Sedt ~ — Sedt.
T o " T o !

Now using the definition and substitution of s = (‘7:6)2 t we obtain

1 T

T

o+e 2
()T 1 5 o
exp ocWs— -0"s

Sedt =
t 2 o+e€

1
T

O
From Corollary 5.2 we immediately obtain the following symmetry for the
un-discounted value function o:

Proposition 5.1. For e > 0 we have

2

7t T 0.0

5(0,T,2,0,0 +€) =0 0,

12



Proof. Follows directly from (18) and (5). O

Using the previous result we can now easily derive the relationship between

the chronos and the vega of an arithmetic Asian option.

Proposition 5.2. The following identities hold at t =0

g

v = 5175 (19)
g
v = §Ua + rv. (20)

Proof. We conclude from Proposition 5.1 that

d
Vg = &@(O,T,$,O,O’+6)‘€:0

d 2

~ %5 0 2T 7400
de o 0

€=

2

= —Ur,
o

which shows (19). The second equality follows from taking discounting into

account.

O]

Finally we obtain the following result which addresses the monotonicity of
the un-discounted value function with respect to the duration 71" over which

the average is taken.

Proposition 5.3. Assume that the payoff function g(x) is convex. Then the
un-discounted Black-Scholes price of an Asian option with payoff g % fOT Sydt

18 increasing with duration time T.

Proof. This follows directly from equation (19) and Proposition 4.1.

6 Conclusions

We have shown that the Black-Scholes price of an arithmetic Asian option
with convex payoff profile is increasing in the volatility parameter o. This
result is important for the risk management of portfolios which contain Asian

options. It is not a trivial result, as we indicate with an example which

13



shows, that when the Black-Scholes assumption is disregarded, it does no
longer hold. We also show, that if the discounting effect is taken away, the
price of an arithmetic Asian option with convex payoff profile is increasing
in the duration time. Again this is a non trivial result and quite significant,

if deciding about the duration time, when an Asian option contract is setup.
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