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Abstract 

We show that under the Black Scholes assumption the price of an 
arithmetic average Asian call option with fixed strike increases with 
the level of volatility . This statement is not trivial to prove and for 
other models in general wrong. In fact we demonstrate that in a simple 
binomial model no such relationship holds. Under the Black-Scholes 
assumption however, we give a proof based on the maximum principle 
for parabolic partial differential equations. Furthermore we show that 
an increase in the length of duration over which the average is sampled 
also increases the price of an arithmetic average Asian call option, if 
the discounting effect is taken out. To show this, we use the result 
on volatility and the fact that a reparametrization in time corresponds 
to a change in volatility in the Black-Scholes model. Both results are 
extremely important for the risk management and risk assessment of 
portfolios that include Asian options. 
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1 Introduction 

Asian options are options where the payoff depends on the average of the 

underlying asset during at least some part of the life time of the option. 

The average can be taken in several ways, each leading to a different type 

of Asian option. According to the Handbook of Exotic Options [6] the 

name Asian option was coined by employees of Bankers Trust, which sold 

this type of options to Japanese firms that wanted to hedge their foreign 

currency exposure. These firms used these options because their annual 

reports were also based on average exchange rates over the year. Average 

type options are particularly suited to hedge risk at foreign exchange markets 

and by reason of the averaging effect, significantly cheaper than plain vanilla 

options. Effectively such options are traded since the mid 1980’s and first 

appeared in the form of commodity linked bonds. Specific examples are the 

Mexican Petro Bond and the Delaware Gold Index Bond. Asian options are 

OTC traded, however market and trading volume appear to grow very fast. 

A recent study of CIBC world markets revealed that Asian style options 

are the most commonly traded exotic options. Similar statements can be 

found in the Handbook of Exotic Options [6]. In the Black-Scholes model, 

the technically easiest case to consider is where the average is a geometric 

average. Since the product of log-normal distributed random variables is 

again log-normal distributed, explicit analytical expressions are available for 

the price of such options and everything appears to be well understood. On 

the other side, for the more natural version of an arithmetic average Asian 

option, no explicit pricing formulas are available and it is hard to say, how 

changes in parameters of the model are reflected in price changes. Our paper 

focuses on the case of arithmetic Asian options and how changes in volatility 

and duration effect its price. The average can be taken either continuously 

or discretely. An option of continuous average type is represented by the 

following example

 
 

 +T1 
Stdt − K ”continuous average price call”. 

T 0 

The continuous average type is of particular importance, since the Black-

Scholes partial differential equation can be easily modified in order to obtain 

a Black-Scholes like partial differential equation for the prices, see section 
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3. However, in contrast to the standard Black-Scholes partial differential 

equation, it is not possible to find a closed form solution for this PDE. On 

the other side it has to be said, that the continuous average type is neither 

traded at any financial market nor between any two financial institutions 

and in a way only represents an approximation of the discrete average type, 

which is of the form 

n
 1 

Sti − K ”discrete average price call” 
n 

i=1 

where 0 = t0 < t1 < t2 < ... < tn = T . PDE’s for a discretely sampled 

average Asian option are available, see for example Vecer [9], and the dis­

cussion presented in the following section can be adapted to this case. For 

the reason of clarity however we restrict our investigations in this article to 

the case of continuously sampled arithmetic Asian options, but we allow the 

payoff structure to be slightly more general than in the classical examples, 

that is of type 

T1 
g Stdt (1) 

T 0 

with g(x) being a convex function. The objective of this article is to un­

derstand the qualitative behavior of the price of this option with regards to 

changes in the Black-Scholes volatility parameter σ and the duration time 

T of the averaging process. We show the price is increasing in both param­

eters, at least if the discounting effect is neglected. From an intuitive point 

of view, the first result might be expected, but it is far from trivial. Carr [1] 

and Jagannathan [5] clearly point out that the idea of options prices rising 

with increasing volatility, even if these options have convex payoff profiles, is 

a widely held fallacy. Jagannathan clearly brings it to the point: Quote ”It 

is commonly believed that the value of a call option is a non-decreasing func­

tion of the riskiness of its underlying security. Such a belief is not correct.” 

Carr provides an example in which the price of a European call decreases 

with an increase in volatility. We adapt Carr’s example to the case of an 

arithmetic Asian call and show that the situation here is quite similar and 

increases in volatility may result in a decrease in price. Whether the price 

of an option is increasing in volatility or not, crucially depends on the dis­

tribution of the underlying. In the case of an arithmetic Asian option the 
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2 Negative vega’s for Asian calls in a Binomial 

model 

distribution of the underlying is only partly understood, see for example 

Carr and Schröder [2], Geman and Yor [4] or Yor [10], and it appears to 

be impossible from the knowledge of this distribution alone to directly infer 

about the volatility and duration effect on prices. We also found that it 

appears to be impossible to directly infer about the volatility effect from the 

Fourier transform of an Asian option, see for example Carr and Schröder [2]. 

As with regards to the effect of duration time T of the averaging process, 

intuition may in fact suggest that since more samples for the average are 

taken into account, volatility of the underlying decreases and therefore the 

option price does so as well. In this case not only the argument is wrong, 

but also its conclusion, as long as the Black-Scholes model is concerned. In 

fact we show that if the discounting effect is taken out, the price of an arith­

metic Asian option with convex payoff profile is increasing in duration of 

the averaging process and that the answers for volatility effect and duration 

effect are strongly related by a rescaling property of Brownian motion. The 

remainder of this article is a follows. In section 2 we adapt the example of 

Carr [1] to the case of an arithmetic Asian call, while in section 3 we focus on 

the Black-Schole theory of Asian options and derive certain Lemma’s which 

address symmetry properties of the price function as well as some structural 

relationships between the Greeks of an Asian option. In section 4 we derive 

the result for the volatility effect, while in section 5 we address the duration 

effect. The main conclusions are summarized in section 6. 

In this section we adapt the example in Carr [1] to the case of an Asian call 

and demonstrate in this way that the price of an arithmetic Asian call can in 

general be decreasing in volatility. Let us consider a twice averaged Asian 
+2 

option 1 Sti − K with maturity 2 years in a two-period binomial 2 
i=1 

model under zero interest rate. We assume that the initial price of the stock 

is S0 = 1 and the strike price is K = 1, which means the option is at the 

money. Denote the upstate and downstate parameter pair of the binomial 

model by (u, d) with u > 1 > d > 0. Then the stock prices are provided by 

the following tree. 
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u 

d 

u2 

ud 

d2 

A no arbitrage assumptions enables us to calculate the risk neutral proba­

bility p = 1−d
u d

for upwards and q = u−1
− u−d 

for downwards, which in turn yields 

the option’s value 

  +   +   

1 ( ) +
2 2 1 1 

C0 = p u + u − 1 +pq (ud + u) − 1 +pq (ud + d) − 1 . 
2 2 2

(2) 

We will later refer to the volatility parameter σ in the Black-Scholes model 

and for this reason, we must identify its analogue in the binomial model 
( )

above. Under the Black-Scholes assumption ln(S(t)) = r − 1σ2 t + σW (t)2 

and therefore σ2 = var(ln(S(t)))/t. The volatility parameter σ in the Black-

Schole model therefore corresponds to the risk-neutral log-normal variance 

of every single period of the binomial model, when length of each period is 

normalized to one. For the risk-neutral log-normal variance we obtain 

  u 
p(lnu − (p ln u + q ln d))2 + q(ln d − (p ln u + q ln d))2 = pq ln2( )

d

and therefore 
  u 

pq ln2 = σ2  △t = σ2,
d

or alternatively 
 

σ = pq ln2 u 
( ). (3) 
d

Note that in the setup here △t = 1 year and σ is the annual volatility. 

Equations (2) and (3) connect option price with the volatility of stock price 

through the tree’s parameters u and d. This enables us to draw the following 

graph showing a negative relationship between option price and volatility, 

once the volatility passes a critical value, in this example 1 . 2 
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3 Arithmetic Asian options in the Black-Scholes 

framework 

Non−positive Vega 
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Figure 1: Non-positive Vega 

To document the numerical result some pairs of volatility and option prices 

in the picture are listed in the table below. 

volatility price 

0.4357 0.2261 

0.4644 0.2389 

0.5279 0.2525 

0.5676 0.2424 

0.5900 0.2311 

op
tio

n 
pr

ic
e 

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 

In this section we briefly review some classical facts on Arithmetic Asian op­

tions in the Black-Scholes framework and in addition derive some symmetry 

properties of the price function. We work under the risk neutral measure 

and assume that stock price and bond price follow the dynamics 

dBt = Btrdt (4) 

dSt = St(rdt + σdWt). 

The arbitrage free price of an option with payoff (1) at time t is then given 

by 

T t1 � 
−r(T−t)v(t, T, x, y, σ) = e E g Sudu St = x, Sudu = y . (5) 

T 0 0 
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In difference to the standard notation, we include the parameters T and σ 

explicitly as arguments as we will later study the price function as a function 

of these arguments. A similar argument as in Black-Scholes (1973) leads to 

the following PDE 

2 vt − rv + xvy +
1 
σ2 x vxx = 0 (6) 

2 

with boundary conditions 

−r(T−t)v(t, T, 0, y, σ) = e g(y), 0 ≤ t < T, y ∈ R, σ > 0 (7) 

lim v(t, T, x, y, σ) = 0, 0 ≤ t < T, x ≥ 0, σ > 0 
y→−∞ 

v(T, T, x, y, σ) = g(y), x ≥ 0, y ∈ R, σ > 0 

As indicated before, in this article we are primarily interested in qualitative 

aspects and in particular monotonicity of the option price v(0, T, x, 0, σ) as 

function of T and σ. In the remainder we use the following notation for the 

Greeks of an arithmetic average Asian option: 

vt = tau = τ 

vT = chronos = χ 

vx = delta = Δ 

vy = iota = ι 

vσ = vega = V 

vxx = gamma = Γ 

The Greeks chronos and iota do not appear in the literature and have been 

named here with chronos and the Greek letter χ to indicate ”chronos” which 

is Greek for time and iota for the Greek letter ι, as the average process 
J t

It = 0 Sudu, which the variable y refers to is classically denoted with an I. 

We will find it convenient in the following to work with the un-discounted 

price function 
r(T−t)ṽ(t, T, x, y, σ) = e v(t, T, x, y, σ). (8) 

It is then easy to see that ṽ satisfies the following partial differential equation 

1 
ṽt + xṽy + σ2 x 2 ṽxx = 0 (9) 

2 
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with boundary conditions 

ṽ(t, T, 0, y, σ) = g(y), 0 ≤ t < T, y ∈ R, σ > 0 (10) 

lim ṽ(t, T, x, y, σ) = 0, 0 ≤ t < T, x ≥ 0, σ > 0 
y→−∞ 

ṽ(T, T, x, y, σ) = g(y), x ≥ 0, y ∈ R, σ > 0. 

The following relationships hold for the Greeks tau and chronos 

−r(T−t) ˜vt = rv + e vt 

−r(T−t)˜vT = −rv + e vT , 

while all other Greeks are simply the discounted partial derivatives of the 

un-discounted value function. We will later need a symmetry property of 

the un-discounted price function with regards to the variables t and T which 

is stated in the following Lemma. 

Lemma 3.1. The un-discounted price function ṽ(t, T, x, y, σ) of an arith­

metic Asian call (1) satisfies 

T − t 
ṽ(t, T, x, 0, σ) = ṽ 0, T − t, x, 0, σ . (11) 

T 

Proof. For y > 0 we have that 

T t1 � 
ṽ(t, T, x, y, σ) = E g Sudu St = x, Sudu = y

T 0 0 
Ty 1 � 

= E g + Sudu St = x 
T T t 

T y 1 � T − t 
= E g + Sudu St = x . 

T T − t t T 

Now we take the limit for y → 0 and obtain from the Markov property of 
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4 The volatility effect on arithmetic Asian calls 

the stock price dynamic that
 

  
 

 
1 T 

 �  

� 
 T − t 

ṽ(t, T, x, 0, σ) = E g Sudu �
� St = x 

T − t T 
  

 

t  
1 T−t 

 �  

� 
 T − t 

= E g Sudu �
� S0 = x 

T − t 
 

0 T 
 

T − t 
= v ̃ 0, T − t, x, 0, σ . 

T 

The following Lemma relates the Greeks tau, chronos and delta of the un­

discounted value function. 

Lemma 3.2. The following relationship for un-discounted Greeks holds at 

time t = 0: 

ṽx 
ṽt + ṽT + = 0 (12) 

T 

Proof. It follows from the previous Lemma that for all ǫ > 0 

    

T + ǫ 
ṽ ǫ, T + ǫ, x, 0, σ = ṽ (0, T, x, 0, σ) . 

T 

Differentiating with respect to ǫ and evaluation at ǫ = 0 gives 

d T + ǫ � 
0 = ṽ ǫ, T + ǫ, x, 0, σ 

dǫ T ǫ=0 

ṽx 
= ṽt + ṽT + . 

T 

We have seen in section 2 that it is a priori not clear whether or not an 

increase in the volatility parameter σ leads to an increase in the price of 

an arithmetic average Asian option. On the other side the answer of this 

question is of fundamental importance for risk managers dealing with port­

folios which contain Asian options. In this section we apply the maximum 

principle for parabolic PDE’s as it can be found for example in Stroock and 
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Varadhan [8] in order to prove that under the Black-Scholes assumption an 

increase in volatility indeed leads to an increase in the option price. 

Proposition 4.1. Assume that stock and bond follow the Black-Scholes dy­

namic (4) and assume that g(x) is a continuous convex function, which 

is piecewise C1 with bounded derivatives and at most finitely many sin­

gularities. Then the price of a continuous type arithmetic Asian option 
J T1g 

T 0 Stdt is a strictly increasing function of the volatility parameter 

σ > 0. 

Proof. As the vega is just the discounted vega of the un-discounted value 

function ṽ we assume w.l.o.g. that the interest rate satisfies r = 0. In this 

case the two value functions coincide and the partial differential equation 

for the value function v(t, x, y, σ) is given by 

2 vt + xvy +
1 
σ2 x vxx = 0 (13) 

2 

with boundary conditions (10). Differentiating (13) with respect to σ gives 

2 vtσ + xvyσ +
1 
σ2 x vxxσ + σx2 vxx = 0 (14) 

2 

Denoting the vega vσ(t, x, y, σ) of the option with V we find that 

Vt + LAS V = −σx2 vxx (15) t 

where LAS is the differential operator t 

1 ∂2 ∂ 
LAS σ2 2 = x + xt 2 ∂x2 ∂y 

associated to the Asian option PDE (6) (r = 0). Differentiating the bound­

ary conditions (10) with respect to σ we obtain that V vanishes on the whole 

of the boundary. As σ was assumed to be positive, the maximum princi­

ple for parabolic PDE’s ( see for example Theorem 3.11, page 66 in [8] ) 

therefore implies that V is positive, given that the right hand side of (15) is 

negative. The latter is true if vxx is positive. It therefore suffices to show 

that the gamma vxx of the Asian option is positive. In order to do this, it 
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5 The duration effect on arithmetic Asian calls 

suffices to show that 

2    

∂ x T 
  

E ˜g S tdt > 0 (16) 
∂x2 T 0 

( )

˜where x = S0 and St := exp σW 1
t − σ2t denotes the normalized stock 2 

price. Let us first assume that g is two times continuously differentiable. As 

S̃t does not depend on x taking the second derivative in (16) gives 

    

�

 
 
 

  
 

 

�

2  ∂2 x T x T 1 T

E ˜ ˜ ˜g Stdt = ′′ 
E g Stdt Stdt . (17) 

∂x2 T 0 T 0 T 0 

It follows from the convexity of g that the expression on the right hand 

side of (17) is positive. If g is not two times continuously differentiable, an 

approximation such as in [3] ( proof of Proposition 3.2. page 23 ) enables 

us to get the same result. 

The result from Proposition 4.1. also holds in the case of a discrete type 

arithmetic Asian option g 1 n with convex payoff profile. This can 
n i=1 Sti

be shown using results of Vecer (2005) who derives a single partial differential 

equation for the price of a discrete type arithmetic Asian option ( equation 

(3.9) in [9] with qt chosen in (3.5) ). Positivity of the coefficient in front of the 

second order term in Vecer’s equation (3.9) guarantees that the methodology 

presented above using the maximum principle works in this case as well, 

positivity of the gamma follows in exactly the same way as before. We omit 

the details as in this article we focus on the continuous type. 

In this section we study the price effect of duration T over which the arith­

metic Asian option (1) is averaged. Intuitively one may think that if the 

discounting effect is taken aside, since the average over a longer period is 

taken, the variance of the average decreases and so does the option price. 

In the discussion of the volatility effect we have already seen that this kind 

of intuitive thinking is very misleading, in fact in this case it leads to the 

wrong conclusion. Increasing the duration in fact has two effects, one is 

that an average over a larger sample is taken, but the other one is that 

the variance of the samples taken at a later time increases, as the asset is 
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assumed to follow a geometric Brownian motion. While the first effect gives 

the option price a tendency to decrease, the second effect will lead to an 
−rT increase in the option price. We will show that if the discount effect e

is taken out, the option price indeed increases in T , i.e. the chronos of the 

un-discounted value function is positive. This means that the first effect 

mentioned above dominates the second. We will prove this result by estab­

lishing a symmetry between the vega and the chronos of an Asian option. 

Before we do this however we indicate that the result is not trivial and that 

it can not be proved in analogy to the case of a plain vanilla call, where a 

sub-martingale argument applies. In order to do this note that under the 

risk neutral measure, which in this article is identified with the subjective 

probability measure P, the discounted Black-Scholes stock price represents 

a martingale. Assuming for simplicity that the interest rate is equal to zero 

the Jensen inequality for the conditional expectation, see for example [7], 

page 70, implies that for a monotonic increasing and convex payoff function 

g(·) we have 

E (g(ST+ǫ)| FT ) ≥ g (E (ST+ǫ| FT )) ≥ g(ST ). 

Taking expectation and using the tower property of the conditional expec­

tation shows that the option price is increasing with T . In the case of a 

plain vanilla call we also find a strong relation ship between the tau and the 

chronos. In the case of an arithmetic Asian option the relationship between 

tau and chronos is more complicated and depends on delta and T as equation 
J t1 1(12) shows. Furthermore the underlying process Ĩt = It = Sudu is not 

t t 0 

a sub-martingale. This follows from the fact that it has bounded variation, 

and as such could only be a submartingale if it would be increasing a.s., 

which it is obviously not. There is hence no direct conclusive martingale 

based argument which proves positivity of the chronos of the un-discounted 

value-function of an arithmetic Asian option of type (1). In the following 

we will establish a symmetry between the chronos and the vega and then 

use the positivity result obtained for the vega in Proposition 4.1. In order 

to do this we use a scaling property of Brownian motion which allows us to 
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represent a change in volatility as an increase in speed. For ǫ > 0 denote 

  

ǫ 1
St = exp (σ + ǫ)Wt − (σ + ǫ)2t

2
  

S̃ǫ 1 
exp σW σ ǫ 2+  t = − (σ + ǫ)2t .

(
σ 

) t 2

Lemma 5.1. ˜The processes Sǫ and Sǫ have the same distribution. (·) (·) 

Proof. It follows directly from the scaling property of Brownian motion that 

1 
( )W 2

σ+ǫ (σ+ǫ  ∼ W(·)
σ

) (·)
σ 

which in turn implies the statement of the lemma. 

Corollary 5.1. For ǫ > 0 we have 

 T  (σ+ǫ)
2

1 1 T

Sǫ 
tdt ∼ 

( )

σ 

Sudu, (18) 
T σ+ǫ 2 

0 T 0
σ 

i.e. the two sides have the same distribution. 

Proof. It follows from the previous Lemma that 

 T  

1 ǫ 1 T
˜S ǫ

T tdt ∼ S
T tdt. 

0 0 

( )2
Now using the definition and substitution of s = σ+ǫ

σ 
t we obtain 

  

2
T σ+ǫ  

T 
    ( ) 21 1 σ 1  σ 

S̃ǫ 
tdt = exp σW σ2

s − s ds 
T 0 T 0 2 σ + ǫ

σ ǫ 2 
( + ) T1 σ 

= 
( )2 Sudu. 

σ+ǫ T 0
σ 

From Corollary 5.2 we immediately obtain the following symmetry for the 

un-discounted value function ṽ: 

Proposition 5.1. For ǫ > 0 we have 

2σ + ǫ 
ṽ(0, T, x, 0, σ + ǫ) = ṽ 0, T, x, 0, σ . 

σ 
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Proof. Follows directly from (18) and (5). 

Using the previous result we can now easily derive the relationship between 

the chronos and the vega of an arithmetic Asian option. 

Proposition 5.2. The following identities hold at t = 0 

σ 
ṽT = ṽσ (19) 

2 
σ 

vT = vσ + rv. (20) 
2 

Proof. We conclude from Proposition 5.1 that 

d 
ṽσ = ṽ(0, T, x, 0, σ + ǫ)|ǫ=0 dǫ 

2 �d σ + ǫ 
� 

= ṽ 0, T, x, 0, σ 
� 

dǫ σ � 
ǫ=0 

2 
= ṽT ,

σ 

which shows (19). The second equality follows from taking discounting into 

account. 

Finally we obtain the following result which addresses the monotonicity of 

the un-discounted value function with respect to the duration T over which 

the average is taken. 

Proposition 5.3. Assume that the payoff function g(x) is convex. 
 

Then the 
J  

 T
un-discounted Black-Scholes price of an Asian option with payoff g 1

T 
S dt 0 t

is increasing with duration time T . 

Proof. This follows directly from equation (19) and Proposition 4.1. 

6 Conclusions 

We have shown that the Black-Scholes price of an arithmetic Asian option 

with convex payoff profile is increasing in the volatility parameter σ. This 

result is important for the risk management of portfolios which contain Asian 

options. It is not a trivial result, as we indicate with an example which 
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shows, that when the Black-Scholes assumption is disregarded, it does no 

longer hold. We also show, that if the discounting effect is taken away, the 

price of an arithmetic Asian option with convex payoff profile is increasing 

in the duration time. Again this is a non trivial result and quite significant, 

if deciding about the duration time, when an Asian option contract is setup. 
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