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forfeiture due to voluntary or involuntary employment termination and the early exercise due to the 
executive’s desire for liquidity or diversification are modeled as an exogenous point process with 
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1. Introduction 

Executive stock options (ESOs) currently constitute a sizable fraction of many 
firms’ total compensation expense. It is important to accurately assess the cost 
of these options to shareholders both for accounting purposes and from a mana­
gerial control perspective (see Carpenter, 1998; Foster et al., 1991; Jennergren and 
Naslund, 1993). Since 1995, the Financial Accounting Standards Board (FASB) 
SFAS 123 has mandated that an estimate of the cost of ESO grants be disclosed 
in a footnote. Although it is not required, the recommended valuation method is to 
use the Black Scholes European call pricing formula. The suggested maturity used 
in this formula is the expected life, although the maximum life (typically 10 years 
at grant) can also be used. Rubinstein (1995) argues on theoretical grounds that 
either method will tend to cause overvaluation. Similarly, Marquardt (1999) empir-
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ically determines that both methods overvalue the economic cost to shareholders 
of issuing ESOs. 

ESOs are typically long dated American calls which differ from standard op­
tions in that they have an initial vesting period during which exercise is proscribed. 
Although it is straightforward to numerically determine the value and the optimal 
exercise policy for ESOs in a frictionless market, certain institutional frictions com­
plicate the determination of the optimal exercise policy for ESOs. First, the holder 
of an ESO can not sell or transfer his option. Furthermore, the holder cannot hedge 
his call since short positions in the company’s stock are prohibited. In contrast, the 
issuer is allowed to transfer their liability or hedge their obligation. In general, this 
asymmetry drives a wedge between the value to the recipient and the value to the 
issuer. Both values are affected by the exercise policy used by executives, which is 
in general determined both by publicly available information such as stock prices 
and by executive-specific information such as personal portfolio composition, risk 
aversion, and the executive’s demand for liquidity. The optimal exercise policy 
employed by the executive need not match the optimal exercise policy prevailing in 
the absence of these frictions since early exercise may be optimal for diversification 
or liquidity reasons even if the underlying stock does not pay any dividends. A 
second reason why the executive’s optimal exercise policy may deviate from the 
perfect markets policy is that the executive may leave the firm either voluntarily 
or involuntarily while the option is alive. In this case, the executive forfeits his 
options if they are out-of-the-money, and will have to exercise early if they are 
in-the-money. 

Two general approaches have been adopted to modeling executive exercise 
decisions and valuing the cost of ESOs to the firm. In the first approach, one 
assumes that the executive exercises the option according to a policy that max­
imizes his expected utility subject to hedging restrictions (Huddart, 1994; Marcus 
and Kulatilaka, 1994; Detemple and Sundaresan, 1998). In this approach, one 
must explicitly model such unobservable variables as the executive’s risk aversion, 
his outside wealth, and the potential gain from changing his employment. In the 
alternative approach, one models early exercise as an exogenous stopping time, 
e.g., the first jump time of some exogenous Poisson process, as in Jennergren and 
Naslund (1993). The Poisson process serves as a proxy for anything that causes 
the executive to exercise the option early, including the desire for diversification 
or liquidity, and voluntary or involuntary employment termination. In contrast to 
the utility maximation approach, the hazard rate or intensity of this exogenous 
Poisson process is the only parameter in the model that needs to be estimated from 
empirical data. In an interesting recent paper, Carpenter (1998) shows that this 
second reduced form intensity-based model performs as well or better than the 
more complicated structural model in empirical tests of the two competing ESO 
valuation models in predicting actual exercise patterns for a sample of 40 firms. 

This dichotomy in modeling the executive’s exercise decision parallels the mod­
eling of default events required in the valuation of credit risky corporate debt. The 
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literature on pricing credit risky debt can be subdivided into two classes: structural 
models and reduced-form intensity-based models. The first class of models, dating 
back to Black and Scholes (1973) and Merton (1974), models the default event 
structurally as a utility maximization decision by the equity holders (see Leland 
(1994) and Leland and Toft (1996)). The second class of models are reduced-form 
models that exogenously specify default as occuring at the first jump time of a 
point process with random intensity (default hazard rate) (see Duffie et al., 1996; 
Duffie and Singleton, 1998; Jarrow and Turnbull, 1995; Jarrow et al., 1996; Lando, 
1998; Madan and Unal, 1996, 1998). Davydov et al. (1998) value credit risky debt 
in the intensity-based framework uisng an approach similar to ours. In all such 
models, the intensity of the point process is calibrated to empirical data. Due to the 
relative simplicity of calibration and empirical testing, the reduced-form modeling 
philosophy is gaining considerable popularity in the credit markets. 

The contribution of this paper is two-fold. First, we develop a general stochastic 
intensity-based framework for the valuation of ESOs in which the early exercise or 
forfeiture intensity ht = h(St, t)  depends on the underlying stock price and time. 
Second, we suggest two simple analytically tractable specifications of hazard rate-
based models of ESOs. In the first example, the intensity is specified as follows 
(assuming the ESO is vested): 

ht = λf + λe1{St >K}, (1) 

where St is the underlying stock price, K is the ESO’s strike price, λf is the 
constant intensity of early exercise or forfeiture due to the exogenous voluntary 
or involuntary employment termination (assumed independent of the stock price), 
and λe1{St >K} is the constant intensity of the early exercise due to the executive’s 
exogenous desire for liquidity or diversification assumed positive and constant if 
the ESO is in-the-money and zero otherwise (1A is the indicator function of the 
event A; e in λe stands for “exercise”). Thus, the intensity of forfeiture when the 
stock is out-of-the-money is λf (f stands for “forfeiture”), while the total intensity 
of early exercise when the option is in-the-money is λf + λe. The integrated hazard 
linearly depends on the occupation time of the underlying stock above the strike K 
(i.e., when the ESO is in-the-money) and the corresponding ESO valuation model 
draws on some recent results on occupation time derivatives (see Akahori, 1995; 
Chesney et al., 1997; Dassios, 1995; Davydov and Linetsky, 1998; Embrechts et 
al., 1995; Hugonnier, 1998; Linetsky, 1998, 1999; Pechtl, 1995, 1998). 

In the second analytically tractable example, the intensity is specified as follows 
(assuming the ESO is vested): 

ht = λf + λe(ln St − ln K)+ . (2) 
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In this case, the first term due to termination is still independent of the stock 
price,1 but the second term due to the desire for liquidity or diversification is now 
a monotonically increasing function of the underlying stock price if the ESO is 
in-the-money and zero otherwise (x + := x1{x>0} denotes the positive part of x). 
The integrated hazard linearly depends on the so-called Brownian area and the 
corresponding ESO valuation model draws on the results of Davydov, Linetsky 
and Lotz (1998) on area options. 

The remainder of this paper is organized as follows. In Section 2, we consider a 
general stochastic intensity-based framework for the valuation of ESOs. In Section 
3, we solve the model with the intensity specification given in (1). In Section 4, we 
solve the model with the intensity specification (2). Numerical examples are given 
in Section 5. Section 6 concludes the paper. 

2. A General Intensity-Based Formulation 

We assume frictionless markets, no dividends, a constant riskfree rate r, and  that  
the underlying stock price obeys the following diffusion process under the risk-
neutral probability measure Q: 

dSt = rStdt + σ (St, t)StdW
Q
, t  >  0, S0 = S,t 

where WQ is a standard Brownian motion, the process is starting at S0 = S at time t 

t = 0, and the local volatility function σ (S, t)  is assumed continuous and strictly 
positive for all S ∈ [0,∞) and bounded as S → ∞ (for all t ≥ 0). 

The time of early exercise or forfeiture T can be thought of as the first jump 
time of a point process with random intensity (hazard rate) ht , which is generally a 
function of time and the underlying stock price, ht = h(St , t). Then the probability 
under Q of no early exercise up to time t for a given stock price path {Su, 0 ≤ u ≤ 
t} is (see Bremaud (1980) and Lando (1998) for details on point processes with 
random intensity): 

f − 0 h(Su,u)du Q(T > t|{Su, 0 ≤ u ≤ t}) = e
t 

, (3) 

and [ f J
tQ − 0 h(Su,u)duQ (T > t) = E e ,0,S 

where the expectation is with respect to the risk-neutral measure Q. 
Letting t = 0 be the ESO grant date and tv ∈ [0, T  ] be the ESO vesting date, 

the value at t ∈ [0, T  ] of an unexercised ESO with strike price K and maturity T 
is given by the risk-neutral expectation: 

1 In general, one could also make the forfeiture intensity λf a function of the stock price arguing 
that the executive is more likely to leave the firm when the stock price is low relative to the strike 
price of his or her ESOs. For simplicity we assume that λf is constant. 
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−r(T−t ) Q
C(S, t;K,T ) = e E [1{T ≥T }(ST − K)+]t,S

Q+E [e −r(T −t )1{max(tv,t)≤T <T }(ST − K)+], (4)t,S

where T is a stopping time assumed to be the first jump time of the point process 
with intensity ht , and the subscript t, S in the expectation operator Et,S  signifies 
that the stock price is S at time t . Note that, following Jennergren and Naslund 
(1993), we assume that the jump risk is non-priced, i.e., that it can be diversified 
away by issuing a diversified portfolio of ESOs. Since many firms issue multiple 
ESOs2, we regard this as a reasonable assumption in practice. The first term on the 
right hand side of Equation (4) is the present value of the option payoff at maturity 
given no early exercise. The second term is the present value of the payoff at the 
time of exercise, given that the option is exercised early. This decomposition of 
value is analogous to a decomposition of value arising for defaultable securities. 
The first term in (4) is analogous to the present value of the promised payment 
conditional on no default, while the second term is the present value of the recovery 
payment paid at the time of default if default occurs prior to maturity. 

Due to the key relationship (3), the expectation can be re-written in the form: [ f J 
−r(T−t )E

Q −C(S, t;K,T ) = e e t
T 
hudu(ST − K)+ 

t,S  [ J f f u−r(u−t )E − hsdshu+ T 
e Q

e t (Su − K)+ du. max(tv,t) t,S  

By the Feynman-Kac theorem (see, e.g., Karatzas and Shreve (1992)), the ESO 
value C(S, t;K,T ) at time t , 0  ≤ t < T , is the unique solution to the Cauchy 
problem for the PDE: 

1 2 ∂
2C ∂C  ∂C2σ (S, t)S + rS − rC + h(S, t)[1{t>tv}(S − K)+ − C] +  = 0, (5)

2 ∂S2 ∂S  ∂t  

subject to the terminal condition 

C(S, T ;K,T ) = (S − K)+ . (6) 

The financial meaning of the second last term on the left-hand- side of Equation 
(5) is that over an infinitesimal time period dt , there is a probability htdt of the 
executive exercising his option and receiving (St − K)+ in exchange if the ESO is 
vested (t > tv) and nothing otherwise (the option is forfeited). 

In addition to the ESO value, we are also interested in the expected time of 
exercise or forfeiture (the expected ESO maturity): 

T̄ = TE0
P
,S[1{T ≥T }] + E0

P
,S[1{T <T }T ], (7) 

2 For example, Marquardt (1999) examines 58 Fortune 100 firms over a 21 year period and finds 
an average of 17 grants per firm. 
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and the expected stock price at the time of exercise or forfeiture: 

S̄ 
T	 = EP [1{T ≥T }ST ] + EP [1{T <T }ST ]. (8)0,S 0,S

Note that, in contrast to the ESO value calculation which is carried out under the 
risk-neutral measure Q, these quantities are calculated under the statistical measure 
P where: 

dSt = mStdt + σ (St, t)StdW
P , S0 = S,t 

and m is the expected annualized percentage rate of return on the stock in the real 
world (m is assumed constant). Using the key relationship (3) (considered under 
P ), it is easy to see that Equations (7)- (8) reduce to: 1	 1T	 T∂P (T > t)  

T̄	 = T P (T ≥ T )  − t dt = P(T > t)dt  
∂t0	 0 1 T [ f J
 

EP − 0 h(Su,u)du
 = e 
t 

dt,	 (9)0,S
 
0
 

and 1 [ f J T [ f J 
− h(St ,t)dt − 0 h(Su,u)duS̄ 

T = E0
P
,S e 0 

T 

ST + E0
P
,S e 

t 

h(St , t)St dt. (10) 
0 

Carpenter (1998), Huddart and Lang (1996), and Marquardt (1999) all give 
empirical expected times of exercise and average stock prices at the time of ex­
ercise for their samples. Given the values of parameters m, σ , S, tv , and  T , one can 
calibrate the exercise or forfeiture intensity ht to the empirical data using Equations 
(9) and (10). 

3.	 The Occupation Time Specification: A Step Option Model for Valuing 
ESOs 

In this section, we restrict the setup discussed in the previous section with a view 
towards obtaining explicit solutions for the quantities of interest. We assume con­
stant volatility, i.e. σ (S, t)  = σ , and that the option is vested, i.e., tv = 0 (we  
extend to the case of options that are not yet vested at the end of this Section). 
We also consider a particularly simple specification for the exercise or forfeiture 
intensity: 

ht = λf + λe1{St >K},	 (11) 

where St is the underlying stock price, K is the ESO’s strike price, λf is the con­
stant intensity of the early exercise or forfeiture due to the exogenous voluntary 
or involuntary employment termination (assumed independent of the stock price), 
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and λe1{St >K} is the constant intensity of the early exercise due to the executive’s 
exogenous desire for liquidity or diversification assumed positive and constant if 
the ESO is in-the-money and zero otherwise. 

Under these assumptions, the initial (i.e., t = 0) ESO value (4) simplifies to3: 

[ J 
−(r+λf )T Q −λeτ (T )C(S; K,T ; λf , λe) = e E e K 

+ 
(ST − K)+ 

0,S 

1 T [ J 
−(r+λf )t Q +(t)+ (λf + λe) e E0,S e −λeτK (St − K)+ dt, (12) 

0 f t+where τ (t) = 1{Su>K}du is the occupation time of the in-the-money region K 0 {S > K} up to time t . This expectation can be expressed as a portfolio of up-and­
out geometric step options with knock-out rate λe and knock-out barrier equal to 
the strike: 

−λf T +C(S; K,T ; λf , λe) = e C (S; T ,K,K)  λe 1 T 
−λf t ++(λf + λe) e C (S; t, K,K)dt, (13)λe 

0 

where Cλ
+ 
e
(S; t, K,K) is the value of an up-and-out geometric step call with strike 

price K, knock-out rate λe, knock-out barrier level K, and maturity t (see Linetsky 
(1998, 1999)): 

+ −rt Q −λeτ (t)C (S; t, K,K) = e E0,S[e K 
+ 

(St − K)+]. (14)λe 

The payoff at maturity t of a geometric step call can be interpreted as that of a 
standard call, except that the underlying share notional is path-dependent in that 

−λτK (t)it depends on the occupation time above the strike: e 
+ 

. In other words, a 
geometric step call loses a given fraction of its notional per unit time above the 
barrier. 

Introduce the following notation: 

1 S 1 σ 2 ν2 

x := ln , ν  := r − , ξ  := r + . (15)
σ K σ 2 2 

Then the expectation in Equation (14) reduces to: 

+ −(ξ+λe)t−νxC (S; t, K,K) = e K[w−λe (ν + σ ; 0, x, t)  − w−λe(ν; 0, x, t)], (16)λe 

3 Note that the constant forfeiture intensity λf is added to the discount rate in Equation (12). 
Intuitively, the possibility of forfeiture lowers the value of the ESO in the same fashion as the 
possibility of default lowers the value of a defaultable bond, and the intensity of forfeiture is added 
to the risk-free rate as a “credit spread”. 
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where the function w is defined as: [
νWt −ρr0 

−(t)1{Wt ≥k} 
J 

wρ(ν; k, x, t) := E0,x e , (17) 

where the expectation E0,x is conditional on the Brownian motion Wt starting at f t 
x at t = 0 and  r0 

−(t) = 1{Wu<0}du is the occupation time of the negative 0 
half-line (−∞, 0) up to time t .4 This expectation is computed in closed form in 
Linetsky (1999). For the reader’s convenience, the explicit analytical form of the 
function w is given in Appendix A. Thus, Equations (13) and (16) provide a simple 
analytical solution for the ESO value under the specification (11) for the exercise 
and forfeiture intensity. 

The expected time of exercise or forfeiture (9) under this specification is: 

1 T 

T̄ = e −(λf +λe+νP 
2 /2)t−νP xw−λe(νP ;−∞, x, t)dt,  (18) 

0 

¯where (recall that T and S̄ 
T are computed under the statistical measure P ): 

1 σ 2 

νP := m − . (19)
σ 2 

The expected stock price at the time of exercise or forfeiture is: 

2¯ −(λf +λe+νP /2)T −νP xST = e Kw−λe (νP + σ ;−∞, x, T  )  1 T 

+K e −(λf +λe+νP 
2 /2)t−νP x[λf w−λe(νP + σ ;−∞, x, t)  

0 

+λew−λe(νP + σ ; 0, x, t)]dt. (20) 

Now consider the case tv > 0, i.e., the option is not yet vested. Suppose Sv = 
S(tv) is the stock price on the vesting date. The ESO value on the vesting date tv is 
given by C(Sv; K,T − tv; λf , λe) defined by Equation (13) (note that the time to 
maturity is now equal to T − tv, so we need to substitute T → T − tv in Equation 
(13)). Then the ESO value at time t = 0 is computed by taking the expectation: 

C(S, 0; K, tv, T  ; λf , λe) 

1 ∞
 
−(r+λf )tv
= e C(Sv; K,T − tv; λf , λe)p

Q(Sv, tv|S, 0)dSv, (21) 
0 

4 For the background on occupation times and other functionals of Brownian motion and diffusion 
processes, as well as Feynman-Kac-type calculations of their laws, see Karatzas and Shreve (1992), 
Borodin and Salminen (1996) and Revuz and Yor (1994). 
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where pQ is the (lognormal) probability density of the stock price on the vesting 
date, given the known stock price today (at time t = 0): 

�	 � � �2Sv1 ln − µtv	 σ 2 
Q	 S p (Sv, tv|S, 0) =  exp − , µ  = r − . (22) 

Sv 2πσ 2tv 2σ 2tv 2 

4.	 The Brownian Area Specification: An Area Option Model for Valuing 
ESOs 

As in the previous section, we first assume that the option is already vested, i.e., 
tv = 0. Under the occupation time specification, the exercise or forfeiture intensity 
is constant above the strike. An analytically tractable alternative is: 

St 
+ 

ht = λf + λe(ln St − ln K)+ = λf + λe ln . (23)
K 

In this case, the first term due to voluntary or involuntary employment termination 
is still independent of the stock price, but the second term due to the desire for 
liquidity or diversification is now an increasing function of the moneyness St/K 
if the ESO is in-the-money and zero otherwise (x + denotes the positive part of x). 
A similar specification for the default hazard rate was used by Davydov, Linetsky, 
and Lotz (1998) to model credit risky corporate debt. 

The vested ESO value (4) under this specification takes the form:  	  1 T 
−(r+λf )T Q

C(S; K,T ; λf , λe) = e E exp −λe (ln St −ln K)+dt (ST − K)+0,S
0  1	 1T t 

−(r+λf )t Q+ e E0,S exp −λe (lnSu − lnK)+du 
0	 0 

×	 λf + λe ln 
St 

(St − K)+ dt. (24)
K 

To calculate this expectation, we first note that the stock price process can be 
represented as: 

= Keσ(νt+Wt)St ,	 (25) 

where Wt is a Brownian motion starting at x (defined in Equation (15)) at time 
t = 0. Then due to Girsanov’s theorem:  	  

2 f −(r+λf )T ν(WT −x)−ν
2 T−σλe W dtC(S;K,T ;λf ,λe) = e E0,x e 0 

T
t 
+ 

(KeσWT −K)+ 1	 
2 t 

T f −(r+λf )t ν(Wt−x)− ν2 t−σλe 0 W
+ +	 e E0,x e u du[λf + σλeWt ]

0 
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×(KeσWt − K)+ dt 

−(ξ+λf )T−νx= e K[�σλe(ν + σ ; 0, x, T  )  − �σλe(ν; 0, x, T  )]1 T 
−νx −(ξ+λf )t+e K e λf�σλe(ν + σ ; 0, x, t)  

0 

∂�σλe(ν + σ ; 0, x, t)  −λf �σλe(ν; 0, x, t)  + σλe 
∂ν  

∂�σλe(ν; 0, x, t)  −σλe dt, (26)
∂ν  

where we introduced the following notation: 

[ J 
νWt−αA+ 

t�α(ν; k, x, t) := E0,x e 1{Wt≥k} , (27) 

1 t 
A+ := W+du. (28)t u 

0 

The functional A+ is called Brownian area until time t (see Perman and Wellner, t 
1996). It is equal to the (random) area under the positive part of a Brownian sample 
path from zero to time t . The expectation in Equation (27) is calculated by Davydov, 
Linetsky, and Lotz (1998) via the Feynman-Kac theorem: 

1 ∞ [ J 
νy −αAt�α(ν; k, x, t) = e E0,x e 

+; Wt ∈ dy
 
k
 1 ∞ 

νyL−1= e {Gα(x, y; s)}dy, (29)t 
k 

where the expectation inside the integral is expressed as the inverse Laplace 
transform in s of the resolvent kernel Gα(x, y; s). Its analytical form is given in 
Appendix B.5 

The expected time of exercise or forfeiture under this specification is: 

1 T
 
−(λf +ν2 /2)t−νP x
T̄ = e P �σλe(νP ;−∞, x, t)dt,  (30) 

0 

where νP is given in Equation (19). The expected stock price at the time of exercise 
or forfeiture is: 

5 The calculation of this functional is close in spirit to the calculations of Geman and Yor (1993) 
for Asian options and Geman and Yor (1996) for double-barrier options and relies on the Feynman-
Kac formula. 
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−(λf +ν2 /2)T−νP xS̄ 
T = e P K�σλe (νP + σ ;−∞, x, T )  1 T
 

−(λf +ν2 /2)t−νP x
+K e P λf�σλe(νP + σ ;−∞, x, t)  
0 

∂�σλe(νP + σ ; 0, x, t)  + σλe dt. (31)
∂νP 

The case tv > 0, i.e., the option is not yet vested, is treated similarly to Equation 
(21). 

5. Numerical Examples 

To illustrate our models, consider a ten year ESO granted at-the- money6 (S = 
K = 100) and vested immediately (tv = 0). We assume that the underlying stock 
has volatility of 30% per annum, pays no dividends, the riskfree rate is 5% per 
annum, and the expected annualized percentage rate of return on the stock under 
the statistical measure P is m = 15% per annum (recall that the expected time 
of exercise or forfeiture and the expected stock price at the time of exercise or 
forfeiture are calculated under the statistical measure). Tables I and II give the ESO 
value at the grant date, the expected time of exercise or forfeiture, and the expected 
stock price at the time of exercise or forfeiture as functions of the parameters of 
the point process λf and λe under the occupation time specification (11) and the 
Brownian area specification (23), respectively. For λf = λe = 0, the ESO value 
is equal to the ten-year Black-Scholes value, the expected exercise time is equal to 
the ESO maturity (ten years), and the expected stock price at the time of exercise 
is equal to e 10mS (no early exercise or forfeiture). As the rates λf and λe increase, 
the ESO value, expected exercise or forfeiture time and the expected stock price at 

¯ ¯the time of exercise or forfeiture all decrease. Given T and ST , one can calibrate 
our models by backing out the intensity parameters λf and λe, and value ESOs 
with these parameter values. Carpenter (1998) reports that average exercise times 
for 10 year ESOs in her sample are about 5.8 years, with the average stock price 
at the time of exercise of about 2.8 times the ESO strike price. Marquardt (1999), 
who studies a different sample of ESO granting firms, reports that average exercise 
times for 10 year ESOs in her sample are about 5.06 years, with the average stock 
price at the time of exercise of about 2.02 times the ESO strike price. Thus, empir­
ically, typical exercise times are in the five to six year range, with the stock price 
at the time of exercise of two to three times the ESO strike. 

Consider an example of the occupation time model with λf = 8% per annum 
and λe = 12% per annum. The expected exercise time for these intensities is 4.99 
years, with the expected stock price at the time of exercise of 2.31 times the ESO 

6 Marquardt (1999) found that 85% of the 987 ESOs in her sample were issued with ten years to 
maturity. She states that most are issued with strike equal to stock price at grant. 



0 52.56 51.74 50.97 50.24 49.57 48.93 48.33 47.76 47.22 46.71 

0.02 49.03 48.31 47.63 47.00 46.41 45.85 45.32 44.82 44.34 43.89 

0.04 45.89 45.26 44.67 44.11 43.59 43.09 42.63 42.18 41.76 41.36 

0.06 43.09 42.54 42.02 41.53 41.07 40.63 40.22 39.83 39.45 39.10 

0.08 40.59 40.10 39.64 39.21 38.80 38.42 38.05 37.71 37.37 37.06 

0.1 38.35 37.92 37.51 37.13 36.77 36.43 36.10 35.79 35.50 35.22 

0.12 36.33 35.95 35.60 35.26 34.94 34.63 34.34 34.07 33.80 33.55 

0.14 34.52 34.18 33.86 33.56 33.28 33.01 32.75 32.50 32.27 32.04 

0.16 32.88 32.58 32.30 32.03 31.77 31.53 31.30 31.08 30.87 30.67 

0.18 31.39 31.12 30.87 30.63 30.41 30.19 29.98 29.78 29.59 29.41 

Expected exercise or forfeiture time (years) 
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Table I. Occupation Time Model. ESO values, expected times of exercise or forfeiture and ex­
pected stock prices at the time of exercise or forfeiture as functions of the intensity parameters λf 
and λe. Parameters: K = 100, S0 = 100, T = 10 years, σ = 0.30, r = 0.05, m = 0.15, tv = 0, 
no dividends 

λe 

λf 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

ESO value 

0 10.00 9.60 9.24 8.91 8.62 8.36 8.11 7.89 7.69 7.50 

0.02 9.06 8.72 8.40 8.12 7.87 7.64 7.43 7.23 7.05 6.89 

0.04 8.24 7.94 7.67 7.43 7.20 7.00 6.82 6.65 6.49 6.35 

0.06 7.52 7.26 7.02 6.81 6.62 6.44 6.28 6.13 5.99 5.87 

0.08 6.88 6.66 6.45 6.27 6.10 5.94 5.80 5.67 5.55 5.44 

0.1 6.32 6.12 5.95 5.78 5.63 5.50 5.37 5.26 5.15 5.05 

0.12 5.82 5.65 5.50 5.35 5.22 5.10 4.99 4.89 4.80 4.71 

0.14 5.38 5.23 5.09 4.97 4.86 4.75 4.65 4.56 4.48 4.40 

0.16 4.99 4.86 4.74 4.63 4.53 4.43 4.35 4.27 4.19 4.12 

0.18 4.64 4.52 4.42 4.32 4.23 4.15 4.07 4.00 3.94 3.87 

Expected stock price at time of exercise or forfeiture relative to strike 

0 4.48 4.18 3.93 3.71 3.53 3.37 3.23 3.10 2.99 2.90 

0.02 4.08 3.82 3.61 3.42 3.26 3.12 3.00 2.90 2.80 2.72 

0.04 3.73 3.51 3.33 3.17 3.03 2.91 2.81 2.72 2.63 2.56 

0.06 3.43 3.25 3.09 2.95 2.83 2.73 2.64 2.56 2.49 2.42 

0.08 3.17 3.01 2.87 2.76 2.65 2.57 2.49 2.42 2.35 2.30 

0.10 2.95 2.81 2.69 2.59 2.50 2.42 2.35 2.29 2.24 2.19 

0.12 2.75 2.63 2.53 2.44 2.36 2.30 2.24 2.19 2.14 2.10 

0.14 2.58 2.48 2.39 2.31 2.25 2.19 2.14 2.09 2.05 2.01 

0.16 2.43 2.34 2.26 2.20 2.14 2.09 2.04 2.00 1.97 1.93 

0.18 2.30 2.22 2.15 2.10 2.05 2.00 1.96 1.93 1.90 1.87 
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Table II. Area Model. ESO values, expected times of exercise or forfeiture and expected stock 
prices at the time of exercise or forfeiture as functions of the intensity parameters λf and λe. 
Parameters: K = 100, S0 = 100, T = 10 years, σ = 0.30, r = 0.05, m = 0.15, tv = 0, no 
dividends 

λe 

λf 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

ESO value 

0 52.56 50.33 48.29 46.42 44.71 43.13 41.68 40.35 39.11 37.96 

0.02 49.03 47.05 45.23 43.57 42.04 40.63 39.33 38.13 37.02 35.98 

0.04 45.89 44.13 42.51 41.02 39.66 38.39 37.23 36.14 35.14 34.20 

0.06 43.09 41.52 40.07 38.74 37.51 36.38 35.33 34.35 33.44 32.59 

0.08 40.59 39.19 37.89 36.69 35.59 34.56 33.61 32.73 31.90 31.13 

0.10 38.35 37.09 35.92 34.85 33.85 32.92 32.06 31.26 30.51 29.80 

0.12 36.33 35.20 34.15 33.18 32.28 31.44 30.65 29.92 29.24 28.59 

0.14 34.52 33.50 32.55 31.67 30.85 30.08 29.37 28.70 28.08 27.49 

0.16 32.88 31.96 31.10 30.30 29.55 28.85 28.20 27.59 27.01 26.47 

0.18 31.39 30.56 29.77 29.04 28.36 27.73 27.13 26.57 26.04 25.54 

Expected exercise or forfeiture time (years) 

0 10.00 9.32 8.72 8.18 7.69 7.26 6.86 6.51 6.19 5.89 

0.02 9.06 8.47 7.94 7.47 7.04 6.65 6.31 5.99 5.71 5.45 

0.04 8.24 7.72 7.26 6.84 6.46 6.12 5.82 5.54 5.28 5.05 

0.06 7.52 7.06 6.65 6.29 5.95 5.65 5.38 5.13 4.90 4.70 

0.08 6.88 6.48 6.12 5.79 5.50 5.23 4.99 4.77 4.57 4.38 

0.10 6.32 5.97 5.65 5.36 5.10 4.86 4.64 4.44 4.26 4.10 

0.12 5.82 5.51 5.23 4.97 4.74 4.52 4.33 4.15 3.99 3.84 

0.14 5.38 5.10 4.85 4.62 4.41 4.22 4.05 3.89 3.74 3.61 

0.16 4.99 4.74 4.52 4.31 4.13 3.96 3.80 3.66 3.52 3.40 

0.18 4.64 4.42 4.22 4.03 3.87 3.71 3.57 3.44 3.32 3.21 

Expected stock price at time of exercise or forfeiture relative to strike 

0 4.48 4.14 3.83 3.57 3.34 3.13 2.96 2.80 2.66 2.53 

0.02 4.08 3.78 3.52 3.29 3.09 2.92 2.76 2.62 2.50 2.39 

0.04 3.73 3.48 3.25 3.05 2.88 2.72 2.59 2.47 2.36 2.27 

0.06 3.43 3.21 3.02 2.84 2.69 2.56 2.44 2.33 2.24 2.16 

0.08 3.17 2.98 2.81 2.66 2.53 2.41 2.31 2.22 2.13 2.06 

0.10 2.95 2.78 2.63 2.50 2.39 2.28 2.19 2.11 2.04 1.97 

0.12 2.75 2.60 2.48 2.36 2.26 2.17 2.09 2.02 1.95 1.90 

0.14 2.58 2.45 2.34 2.24 2.15 2.07 2.00 1.94 1.88 1.83 

0.16 2.43 2.32 2.22 2.13 2.05 1.98 1.92 1.87 1.81 1.77 

0.18 2.30 2.20 2.11 2.04 1.97 1.91 1.85 1.80 1.76 1.72 
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strike. The ESO value corresponding to these parameters is $33.61. In contrast, the 
FASB-recommended valuation method is to use the Black Scholes European call 
pricing formula. The maturity used in this formula can be either the maturity date 
(ten years in this case) or an estimate of the expected life (4.99 years in this case). 
The corresponding Black- Scholes value of a ten year call is $52.56. It is 56.38% 
higher than the value predicted by our model. The Black-Scholes value of a 4.99 
year call is $35.92, 6.87% higher than the value predicted by our model. Thus, 
the ESO values computed according to the intensity-based model are significantly 
lower than the corresponding Black-Scholes values, accounting for the suboptimal 
behavior of the executive. This has significant accounting implications. If one were 
to value ESOs for accounting purposes using the Black-Scholes model as recom­
mended by FASB, one would significantly overstate their true costs to shareholders 
and unfairly penalize companies granting ESOs. 

6. Conclusion and Directions for Future Research 

The contribution of this paper is two-fold. First, we develop a general stochastic 
intensity-based framework for the valuation of executive stock options. Second, 
we suggest two analytically tractable specifications for the exercise and forfeiture 
intensity. Both specifications have the form (assuming the ESO is vested): 

ht = λf + λeφ(St )1{St>K}, 

where λf is the constant Poisson intensity of early exercise or forfeiture due to 
early voluntary or involuntary employment termination, and λeφ(St )1{St>K} is the 
early exercise intensity due to the executive’s desire for liquidity or diversification. 
The latter intensity is positive only when the option is in-the-money. Under the 
first specification, φ(S)  = 1. This leads to the analytically tractable occupation 
time model for ESOs, where the probability of early exercise due to the executive’s 
desire for liquidity or diversification depends on the occupation time of the in-the­
money region. Under the second specification, φ(S)  = ln S − ln K, leading to the 
analytically tractable Brownian area model. Both specifications reflect the fact that 
there are two distinct economic factors influencing the executive exercise decision. 
These are the executive’s desire for liquidity or diversification which only induces 
exercise when the option is vested and in-the-money, and the possibility of volun­
tary or involuntary employment termination (this is equally likely when the option 
is in- or out-of-the-money and is assumed to be independent of the stock price). 
We argue that our specification with two separate intensity parameters provides a 
more complete description of the economic situation at hand than previous work7 

which modeled early exercise and forfeiture as arising from a Poisson process with 
a single constant intensity parameter independent of the stock price. 

7 See Shimko (1990) and Jennergen and Naslund (1993) for the special case of our model with 
λe = 0. 
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Our results can be further extended in several ways. First, in practice firms 
sometimes reset the terms of previously issued ESOs, especially when declining 
stock prices have moved the option deep out-of-the-money. In some interesting 
recent work, Brenner, Sundaram, and Yermack (1998) develop a model to value 
ESOs, which accounts for the possibility of repricing. Repricing involves specify­
ing a new strike price when the stock price declines significantly.8 When the option 
is repriced, the new strike price is specified (in practice, the new strike is often set 
equal to the then-current stock price, i.e. the option is re-written at-the-money). 
Brenner, Sundaram and Yermack (1998) note that, ignoring the possibility of early 
exercise or forfeiture, an ESO whose strike price K will change to K ∗ the first time 
the stock price falls below a pre-specified barrier B, can be valued as a portfolio 
of a down-and-out call with the strike price K (old strike) and a down-and-in call 
with the strike K ∗ (new strike). Then the standard barrier option valuation formulas 
are used to value the ESO (see Rubinstein and Reiner (1991) for example). Our 
approach to modeling early exercise and forfeiture can be extended to ESOs subject 
to repricing in this manner by adding a lower barrier to our analysis. 

Consistent with our approach to modeling forfeiture and early exercise, an al­
ternative approach to modelling repricing is to assume that it occurs at the first 
jump time of a point process, with some intensity dependent on the stock price. 
One possible (and analytically tractable) choice would be: 

ht = λr 1{St <H }, 

where H is some barrier set at or below the strike K, and  λr is constant. We 
note that the model of Brenner, Sundaram, and Yermack (1998) arises as a special 
case of this framework by letting λr approach infinity. A second possible (and 
analytically tractable) choice for the specification of the repricing intensity would 
be: 

ht = λr(ln H − ln St )
+ , 

where again H ≤ K, and  λr is constant. As in the first specification, the probability 
of repricing in this model is zero if the option is in-the-money and positive when the 
option is out- of-the-money. Now, however the probability of repricing increases 
as the stock price declines below the barrier H . 

Second, our methodology can be extended to indexed ESOs. Johnson and Tian 
(1999) design and develop a pricing model for an ESO with a strike price indexed 
to a benchmark index. The indexed option filters out common risks beyond the 
executive’s control, thereby increasing the efficiency of incentive contracts by 
focusing them on the relative performance of the company stock relative to a 
benchmark. Johnson and Tian (1999) derive the ESO pricing formula based on 

8 The empirical evidence in Chance, Kumar, and Todd (1999) suggests that ESOs are usually 
repriced when the stock declines by about 25% 
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Margrabe’s (1978) exchange option formula, ignoring the effects of early exercise 
and forfeiture. Our approach can be used to relax the latter assumption. 

A third extension of this line of research would involve valuing ESOs of com­
panies which pay sizeable dividends. Formally, this is an extension of our results to 
time and stock price dependent intensity which becomes infinite if the stock price 
is above the critical stock price at an ex-dividend date. This extension would be 
most relevant for firms such as utilities which typically have large dividends and 
low volatilities. 

Finally, our methodology can be applied to value other assets. For example, it 
is well known that mortgages are not usually prepaid optimally and that companies 
often call their debt late. Potential explanations for late calling include bounded 
rationality, signalling phenomena, or agency costs. The latter two explanations 
account for the realistic possibility that the decision depends on private as well 
as public information. A model in which the probability of prepayment or call 
depends on the interest rate (and stock prices in the case of callable convertibles) 
might tractably capture the behavior of investors or managers more reliably than 
requiring that decisions be based on publicly available information. In general, 
the implications for asset pricing of optimizing behavior based on both public and 
private information is a fascinating avenue for future research. 

Appendix [ J 
A. The expectation E eνWT −  ρr

0  0 
−(T )

,x 1{WT ≥k} 

Let 0 ≤ t < T  . Introduce the following notation: 

√
 
d1 = √ , d2 = d1 + σ T , 
  

T
 

−k + x + νT 

√
 
d3 = √ , d4 = d3 + σ T , 
  

T
 

−k − x + νT 

−k − x + νt √ 
d5 = √ , d6 = d5 + σ t,  

t 

−k + νt √ 
d7 = √ , d8 = d7 + σ t,  

t 

2 x −1/2 −3/2C1 = 1 − − νx, C2 = t C1 − t xk, C3 = C1 − σx.  
T − t [ J 

Then the function wρ(ν; k, x, T ) ≡ Ex eνWT −ρr0 
−(T )1{WT ≥k} is given by 

(Linetsky, 1999): 
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• Region I: k ≥ 0 and  x ≥ 0 
2	 2 

I	 νx+ ν −νx+ νw (ν; k, x, T ) = e 2 T N(d1) − e 2 T N(d3)ρ

ν
2 f −ρ(T−t))e t−νx T (1−e 2+e √ νN(d5) + t−1/2N ′(d5) dt;0 2πρ(T  −t )3/2 

• Region II: k ≥ 0 and  x ≤ 0 9 

2νf −ρ(T  −t))e t 
II 	  T (1−e 2 

w (ν; k, x, T ) = √ νC1N(d7) + C2N
′(d7)ρ 0 2πρ(T  −t )3/2 

x 2−×e 2(T−t) dt; 
•	 Region III: k ≤ 0 and  x ≥ 0
 

wIII (ν; k, x, T ) = wI (ν; 0, x, T  )  + e −ρT [wII  (−ν; 0,−x, T )
 ρ ρ −ρ
II−w (−ν;−k,−x, T )];−ρ

•	 Region IV: k ≤ 0 and  x ≤ 0
 

wIV  (ν; k, x, T ) = wII (ν; 0, x, T  )  + e −ρT [wI (−ν; 0,−x, T )
 ρ ρ −ρ
I−w (−ν;−k,−x, T )],−ρ

where 1 x	 21 − z 2 dN(x) 1 − x 
N(x)  = √ e 2 dz, N ′(x) = = √ e 2
 

2π −∞ dx 2π
 

is the cumulative standard normal and its density. 

[ J 
αA+

E e 
 νWt 

0,x 
− t 1{Wt ≥k} B. The expectation 

Introduce the following notation: 

−2/3	 −2/3y1 = (2α) (2s + 2αy), y2 = (2α)−2/32s, y3 = (2α) (2s + 2αx), 
√ √

1/3 ′	 1/3 ′W± = 2sAi(y2) ± (2α) Ai (y2), V = 2sBi(y2) − (2α) Bi (y2), 

where Ai(z) and Bi(z) are Airy functions defined by (Abramowitz and Stegun, 
1965): 1 ∞ 31	 u 

Ai(z) = cos uz + du, 
π	 30 1 ∞ 3	 31	 u u 

Bi(z) = exp uz − + sin uz + du. 
π	 3 30 

9 For k = 0, the function wII  (ν; 0, x,  T  )  is defined as a limit of the integral for k → 0:ρ
 
II  II 
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Then the function Gα(x, y; s) entering the expression (29) and defined as the 
Laplace transform 1 ∞ [ J 

−st −αAte E0,x e 
+; Wt ∈ dy dt = Gα(x, y; s)dy
 

0
 

is given by (Davydov et al., 1998): 
• Region I: x ≤ 0 ≤ y 

2Ai(y1) √ 
2sxGI

α(x, y; s) = 
W− 

e , 

• Region II: x ≤ y ≤ 0 

1 √ W+ √ 

GII  2s(x−y) + 2s(x+y) 
α (x, y; s) = √ e e , 

2s W− 

• Region III: y ≤ x ≤ 0 

GIII  (x, y; s) = GII  (y, x; s), α α 

• Region IV: y ≤ 0 ≤ x 

GIV  (x, y; s) = GI (y, x; s), α α

• Region V: 0  ≤ y ≤ x 

2πAi(y3) V 
GV (x, y; s) = Bi(y1) − Ai(y1) ,α (2α)1/3 W− 

• Region VI: 0  ≤ x ≤ y 

GVI (x, y; s) = GV (y, x; s). α α 

The Airy functions are computed using the asymptotic expansions found in 
Abramowitz and Stegun (1965). To compute the inverse Laplace transform in 
Equation (29) numerically, we employ the Euler algorithm developed by Abate and 
Whitt (1995). This algorithm was previously applied to option pricing problems by 
Fu, Madan, and Wang (1998) and Davydov and Linetsky (1998). Then the integral 
in y in (29) is calculated numerically. Finally, (26) gives the ESO value under the 
forfeiture and early exercise intensity specification (23). 
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