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Abstract. This paper presents a general intensity-based framework to value executive stock options
(ESOs). It builds upon the recent advances in the credit risk modeling arena. The early exercise or
forfeiture due to voluntary or involuntary employment termination and the early exercise due to the
executive’s desire for liquidity or diversification are modeled as an exogenous point process with
random intensity dependent on the stock price. Two analytically tractable specifications are given
where the ESO value, expected time of exercise or forfeiture, and the expected stock price at the time
of exercise or forfeiture are calculated in closed-form.
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1. Introduction

Executive stock options (ESOs) currently constitute a sizable fraction of many
firms’ total compensation expense. It is important to accurately assess the cost
of these options to shareholders both for accounting purposes and from a mana-
gerial control perspective (see Carpenter, 1998; Foster et al., 1991; Jennergren and
Naslund, 1993). Since 1995, the Financial Accounting Standards Board (FASB)
SFAS 123 has mandated that an estimate of the cost of ESO grants be disclosed
in a footnote. Although it is not required, the recommended valuation method is to
use the Black Scholes European call pricing formula. The suggested maturity used
in this formula is the expected life, although the maximum life (typically 10 years
at grant) can also be used. Rubinstein (1995) argues on theoretical grounds that
either method will tend to cause overvaluation. Similarly, Marquardt (1999) empir-

* We are grateful for computational assistance from Dmitry Davydov and for comments from Jim
Bodurtha, Menachem Brenner, Jennifer Carpenter, Bill Margrabe, and Carol Marqurdt. They are not
responsible for any errors.
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ically determines that both methods overvalue the economic cost to shareholders
of issuing ESOs.

ESOs are typically long dated American calls which differ from standard op-
tions in that they have an initial vesting period during which exercise is proscribed.
Although it is straightforward to numerically determine the value and the optimal
exercise policy for ESOs in a frictionless market, certain institutional frictions com-
plicate the determination of the optimal exercise policy for ESOs. First, the holder
of an ESO can not sell or transfer his option. Furthermore, the holder cannot hedge
his call since short positions in the company’s stock are prohibited. In contrast, the
issuer is allowed to transfer their liability or hedge their obligation. In general, this
asymmetry drives a wedge between the value to the recipient and the value to the
issuer. Both values are affected by the exercise policy used by executives, which is
in general determined both by publicly available information such as stock prices
and by executive-specific information such as personal portfolio composition, risk
aversion, and the executive’s demand for liquidity. The optimal exercise policy
employed by the executive need not match the optimal exercise policy prevailing in
the absence of these frictions since early exercise may be optimal for diversification
or liquidity reasons even if the underlying stock does not pay any dividends. A
second reason why the executive’s optimal exercise policy may deviate from the
perfect markets policy is that the executive may leave the firm either voluntarily
or involuntarily while the option is alive. In this case, the executive forfeits his
options if they are out-of-the-money, and will have to exercise early if they are
in-the-money.

Two general approaches have been adopted to modeling executive exercise
decisions and valuing the cost of ESOs to the firm. In the first approach, one
assumes that the executive exercises the option according to a policy that max-
imizes his expected utility subject to hedging restrictions (Huddart, 1994; Marcus
and Kulatilaka, 1994; Detemple and Sundaresan, 1998). In this approach, one
must explicitly model such unobservable variables as the executive’s risk aversion,
his outside wealth, and the potential gain from changing his employment. In the
alternative approach, one models early exercise as an exogenous stopping time,
e.g., the first jump time of some exogenous Poisson process, as in Jennergren and
Naslund (1993). The Poisson process serves as a proxy for anything that causes
the executive to exercise the option early, including the desire for diversification
or liquidity, and voluntary or involuntary employment termination. In contrast to
the utility maximation approach, the hazard rate or intensity of this exogenous
Poisson process is the only parameter in the model that needs to be estimated from
empirical data. In an interesting recent paper, Carpenter (1998) shows that this
second reduced form intensity-based model performs as well or better than the
more complicated structural model in empirical tests of the two competing ESO
valuation models in predicting actual exercise patterns for a sample of 40 firms.

This dichotomy in modeling the executive’s exercise decision parallels the mod-
eling of default events required in the valuation of credit risky corporate debt. The
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literature on pricing credit risky debt can be subdivided into two classes: structural
models and reduced-form intensity-based models. The first class of models, dating
back to Black and Scholes (1973) and Merton (1974), models the default event
structurally as a utility maximization decision by the equity holders (see Leland
(1994) and Leland and Toft (1996)). The second class of models are reduced-form
models that exogenously specify default as occuring at the first jump time of a
point process with random intensity (default hazard rate) (see Duffie et al., 1996;
Duffie and Singleton, 1998; Jarrow and Turnbull, 1995; Jarrow et al., 1996; Lando,
1998; Madan and Unal, 1996, 1998). Davydov et al. (1998) value credit risky debt
in the intensity-based framework uisng an approach similar to ours. In all such
models, the intensity of the point process is calibrated to empirical data. Due to the
relative simplicity of calibration and empirical testing, the reduced-form modeling
philosophy is gaining considerable popularity in the credit markets.

The contribution of this paper is two-fold. First, we develop a general stochastic
intensity-based framework for the valuation of ESOs in which the early exercise or
forfeiture intensity h, = h(S;, t) depends on the underlying stock price and time.
Second, we suggest two simple analytically tractable specifications of hazard rate-
based models of ESOs. In the first example, the intensity is specified as follows
(assuming the ESO is vested):

hy = Ap+ Aelis, >k, (D

where §; is the underlying stock price, K is the ESO’s strike price, A is the
constant intensity of early exercise or forfeiture due to the exogenous voluntary
or involuntary employment termination (assumed independent of the stock price),
and A.1s,- k) is the constant intensity of the early exercise due to the executive’s
exogenous desire for liquidity or diversification assumed positive and constant if
the ESO is in-the-money and zero otherwise (1, is the indicator function of the
event A; e in X, stands for “exercise”). Thus, the intensity of forfeiture when the
stock is out-of-the-money is A ¢ (f stands for “forfeiture”), while the total intensity
of early exercise when the option is in-the-money is A  +A.. The integrated hazard
linearly depends on the occupation time of the underlying stock above the strike K
(i.e., when the ESO is in-the-money) and the corresponding ESO valuation model
draws on some recent results on occupation time derivatives (see Akahori, 1995;
Chesney et al., 1997; Dassios, 1995; Davydov and Linetsky, 1998; Embrechts et
al., 1995; Hugonnier, 1998; Linetsky, 1998, 1999; Pechtl, 1995, 1998).

In the second analytically tractable example, the intensity is specified as follows
(assuming the ESO is vested):

hy=hs+ i (nS, —InK)*. 2)
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In this case, the first term due to termination is still independent of the stock
price,! but the second term due to the desire for liquidity or diversification is now
a monotonically increasing function of the underlying stock price if the ESO is
in-the-money and zero otherwise (x* := x1,~¢y denotes the positive part of x).
The integrated hazard linearly depends on the so-called Brownian area and the
corresponding ESO valuation model draws on the results of Davydov, Linetsky
and Lotz (1998) on area options.

The remainder of this paper is organized as follows. In Section 2, we consider a
general stochastic intensity-based framework for the valuation of ESOs. In Section
3, we solve the model with the intensity specification given in (1). In Section 4, we
solve the model with the intensity specification (2). Numerical examples are given
in Section 5. Section 6 concludes the paper.

2. A General Intensity-Based Formulation

We assume frictionless markets, no dividends, a constant riskfree rate r, and that
the underlying stock price obeys the following diffusion process under the risk-
neutral probability measure Q:

ds, = rSdt + o (S;, 1)S,dWE, t >0, Sy=S,

where WtQ is a standard Brownian motion, the process is starting at Sy = S at time
t = 0, and the local volatility function o (S, ¢) is assumed continuous and strictly
positive for all S € [0, oo) and bounded as S — oo (for all ¢ > 0).

The time of early exercise or forfeiture 5 can be thought of as the first jump
time of a point process with random intensity (hazard rate) /,, which is generally a
function of time and the underlying stock price, i, = h(S;, t). Then the probability
under Q of no early exercise up to time ¢ for a given stock price path {S,,0 <u <
t} is (see Bremaud (1980) and Lando (1998) for details on point processes with
random intensity):

O(T > t1{Su, 0 < u < t}) = e~ JoMSwmdu, 3)
and
QT >1t) = EoQ,'s [e—féh(su,u)du] ’

where the expectation is with respect to the risk-neutral measure Q.

Letting + = 0 be the ESO grant date and ¢, € [0, T] be the ESO vesting date,
the value at ¢ € [0, T'] of an unexercised ESO with strike price K and maturity T’
is given by the risk-neutral expectation:

I'n general, one could also make the forfeiture intensity A ¢ a function of the stock price arguing

that the executive is more likely to leave the firm when the stock price is low relative to the strike
price of his or her ESOs. For simplicity we assume that A ¢ is constant.
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CS,t:K,T) = e " VE&[727)(Sr — K)T]
+EZ[e™ T N max (<7 <1y (S5 — K) T, )

where 7 is a stopping time assumed to be the first jump time of the point process
with intensity /., and the subscript ¢, S in the expectation operator E; g signifies
that the stock price is S at time 7. Note that, following Jennergren and Naslund
(1993), we assume that the jump risk is non-priced, i.e., that it can be diversified
away by issuing a diversified portfolio of ESOs. Since many firms issue multiple
ESOs?, we regard this as a reasonable assumption in practice. The first term on the
right hand side of Equation (4) is the present value of the option payoff at maturity
given no early exercise. The second term is the present value of the payoff at the
time of exercise, given that the option is exercised early. This decomposition of
value is analogous to a decomposition of value arising for defaultable securities.
The first term in (4) is analogous to the present value of the promised payment
conditional on no default, while the second term is the present value of the recovery
payment paid at the time of default if default occurs prior to maturity.
Due to the key relationship (3), the expectation can be re-written in the form:

C(S, t;K,T) = e TDEY [e—ffhud"(ST — K)+]
+./£ax(t,,,t) e_r(u_t)Ez?S [e_f’u hsdsp (S, — K)+] du.

By the Feynman-Kac theorem (see, e.g., Karatzas and Shreve (1992)), the ESO
value C(S,t; K, T) attime t, 0 < ¢t < T, is the unique solution to the Cauchy
problem for the PDE:

1, ,92C aC aC
~0%(8,1)8* — +rS— —rC + h(S, )1y, (S — K)t' = Cl+ — =0, (5
S50 (8. 08 = FrSoe = rCHh(S, Dy ( ) I+ S)

subject to the terminal condition
C(S, T;K,T)=(S—K)*. (6)

The financial meaning of the second last term on the left-hand- side of Equation
(5) is that over an infinitesimal time period dt, there is a probability h,dt of the
executive exercising his option and receiving (S, — K)* in exchange if the ESO is
vested (¢ > t,) and nothing otherwise (the option is forfeited).

In addition to the ESO value, we are also interested in the expected time of
exercise or forfeiture (the expected ESO maturity):

T = TE(iS[l{er}] + E§5[1{7<T}T]’ )

2 For example, Marquardt (1999) examines 58 Fortune 100 firms over a 21 year period and finds
an average of 17 grants per firm.
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and the expected stock price at the time of exercise or forfeiture:
Sy = E&g[l{sz}ST] + E€5[1{7<T}ST]- (8)

Note that, in contrast to the ESO value calculation which is carried out under the
risk-neutral measure Q, these quantities are calculated under the statistical measure
P where:

dS, =mS,dt + o (S;,1)S,dW}F, Sy =S,

and m is the expected annualized percentage rate of return on the stock in the real
world (m is assumed constant). Using the key relationship (3) (considered under
P), it is easy to see that Equations (7)- (8) reduce to:

T 9P(T > 1) r
TP(T >T)— —— = “dt = P(T > t)dt
0 ot 0

T

T
= f Efs e irseman] ar, ©)

0

and
- T T t
Sy = Efg[em o ho0is, ] 4 / Efg e frsentuncs, s, |dr. 10y
, | Eo

Carpenter (1998), Huddart and Lang (1996), and Marquardt (1999) all give
empirical expected times of exercise and average stock prices at the time of ex-
ercise for their samples. Given the values of parameters m, o, S, t,, and T, one can

calibrate the exercise or forfeiture intensity /4, to the empirical data using Equations
(9) and (10).

3. The Occupation Time Specification: A Step Option Model for Valuing
ESOs

In this section, we restrict the setup discussed in the previous section with a view
towards obtaining explicit solutions for the quantities of interest. We assume con-
stant volatility, i.e. 0(S,#) = o, and that the option is vested, i.e., , = 0 (we
extend to the case of options that are not yet vested at the end of this Section).
We also consider a particularly simple specification for the exercise or forfeiture
intensity:

hy = Lp+ Adis, >k, (11)

where S, is the underlying stock price, K is the ESO’s strike price, A f is the con-
stant intensity of the early exercise or forfeiture due to the exogenous voluntary
or involuntary employment termination (assumed independent of the stock price),
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and A.ls,- k) is the constant intensity of the early exercise due to the executive’s
exogenous desire for liquidity or diversification assumed positive and constant if
the ESO is in-the-money and zero otherwise.

Under these assumptions, the initial (i.e., # = 0) ESO value (4) simplifies to:

C(S; K, T3 g, he) = ¢ THITEL [e ek D5y — K|

T
+ O‘f + )\e)/ e—(r+)»f)tE£S [e—lgr;(t)(st _ K)+] dr, (12)
0

where r,}"(t) = fot 15~ kydu is the occupation time of the in-the-money region
{S > K} up to time ¢. This expectation can be expressed as a portfolio of up-and-
out geometric step options with knock-out rate A, and knock-out barrier equal to
the strike:

C(S; K, T;hp,he) = e M1CH(S; T, K, K)

T
+(Ar+ Ae)/ e_’\f’C/{Z(S; t, K, K)dt, (13)
0

where Ci: (S; ¢, K, K) is the value of an up-and-out geometric step call with strike
price K, knock-out rate A, knock-out barrier level K, and maturity ¢ (see Linetsky
(1998, 1999)):

Ci(S;1, K, K) = e " EL([e KO (S, — K)*]. (14)

The payoff at maturity ¢ of a geometric step call can be interpreted as that of a
standard call, except that the underlying share notional is path-dependent in that
it depends on the occupation time above the strike: ¢~ In other words, a
geometric step call loses a given fraction of its notional per unit time above the
barrier.

Introduce the following notation:

._11 S ._1 o? £ = +v2 (15)
x._an z ,v._a r 5 ) =r 5

Then the expectation in Equation (14) reduces to:

Cl(S:t, K, K) = e CPI KW, (v+0;0,x,0) —W_,,(v;0,x,0],  (16)

3 Note that the constant forfeiture intensity A ¢ is added to the discount rate in Equation (12).
Intuitively, the possibility of forfeiture lowers the value of the ESO in the same fashion as the
possibility of default lowers the value of a defaultable bond, and the intensity of forfeiture is added
to the risk-free rate as a “credit spread”.
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where the function W is defined as:
W, vk, x, 1) = B [0 Oy ] )

where the expectation E , is conditional on the Brownian motion W, starting at
xatt = O0and I'y(r) = fot 1(w, <oydu is the occupation time of the negative
half-line (—oo, 0) up to time ¢.* This expectation is computed in closed form in
Linetsky (1999). For the reader’s convenience, the explicit analytical form of the
function W is given in Appendix A. Thus, Equations (13) and (16) provide a simple
analytical solution for the ESO value under the specification (11) for the exercise
and forfeiture intensity.
The expected time of exercise or forfeiture (9) under this specification is:

T
;o / e—(,\f+x(,+u,2,/2)t—n)px\I,_M(UP; —00, x, t)dt, (18)
0

where (recall that 7 and 5‘7 are computed under the statistical measure P):

1 o?
Vpi=— m— — (19)
o 2
The expected stock price at the time of exercise or forfeiture is:
S‘T — e—()Lf-+)»g+l)[23/2)T—\)pr\I]—ke (UP + 0 —00, X, T)
T
+K/ e_(lf.+lE+V%)/2)t_VPx[)\’f\Il—)\,E (UP +o0;—00,x, t)
0
+AV_,, (vp +0;0,x,1)]dt. (20)

Now consider the case #, > 0, i.e., the option is not yet vested. Suppose S, =
S(t,) is the stock price on the vesting date. The ESO value on the vesting date ¢, is
given by C(S,; K, T — t,; Ay, A.) defined by Equation (13) (note that the time to
maturity is now equal to T — ¢,, so we need to substitute T — T — ¢, in Equation
(13)). Then the ESO value at time r = 0 is computed by taking the expectation:

C(S7 07 Ka tva T7 )“f7)“€)

o0
= ot / CSui K T = 103 2gs 3 p2(Sus 1015, 0)d S, @1
0

4 For the background on occupation times and other functionals of Brownian motion and diffusion
processes, as well as Feynman-Kac-type calculations of their laws, see Karatzas and Shreve (1992),
Borodin and Salminen (1996) and Revuz and Yor (1994).
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where p? is the (lognormal) probability density of the stock price on the vesting
date, given the known stock price today (at time ¢t = 0):

Sy _ 2 2
[in (%) - 1] } 2 o

2(S,,1,15,0) = ———n= - —r— 2
p=(Sy, 1,15, 0) 5 Zm%exr’ 2071, p=r--

4. The Brownian Area Specification: An Area Option Model for Valuing
ESOs

As in the previous section, we first assume that the option is already vested, i.e.,
t, = 0. Under the occupation time specification, the exercise or forfeiture intensity
is constant above the strike. An analytically tractable alternative is:

S +
hy=x;+r(nS, —InK) =i+ In Et : (23)

In this case, the first term due to voluntary or involuntary employment termination
is still independent of the stock price, but the second term due to the desire for
liquidity or diversification is now an increasing function of the moneyness S;/K
if the ESO is in-the-money and zero otherwise (x* denotes the positive part of x).
A similar specification for the default hazard rate was used by Davydov, Linetsky,
and Lotz (1998) to model credit risky corporate debt.

The vested ESO value (4) under this specification takes the form:

T
C(S; K, T;hf,h,) = e THITEL, |:exp —Ae / (nS,—InK)*dt (Sr — K)+:|
‘ ’ 0
T t
+ / e NS |:exp —e / (InS, —InK)"du
0 0

S
X |:Xf + X.In ?>i| S — K)+] dt. (24)

To calculate this expectation, we first note that the stock price process can be
represented as:

S, = Ke? W (25)

where W, is a Brownian motion starting at x (defined in Equation (15)) at time
t = 0. Then due to Girsanov’s theorem:

C(S, K’T;)"f,)\'e) — e—(r—Mf)TEO . [eV(WT_x)LZZT_U)\efoT Wt+d[(KeUWT —K)+}

T )2 .
+f e—(r+)tf)tE0’x [eU(W,—x)—Zt—ake Jo Wu*du[)\‘f + oA W]
0



220 PETER CARR AND VADIM LINETSKY

x(Ke’™ — K)*t dt
_ e—(i;‘+)»f)T—vxK[cDaM w+0;0,x,T) — q)g)w(V; 0,x,T)]
T
_J’_e—vxK/ e EPD L Dy, (v 4030, x, 1)
0

0P, (v+0;0,x,1)

A Dy, (v;0,x,1) + 0,

dv
aq)a 7 07 ’ 4
YL A GLILILI (26)
dv
where we introduced the following notation:
(Vi k2, 1) 1= Eo [N 1y, ] @7)
t
AF = / Wtdu. (28)
0

The functional A" is called Brownian area until time ¢ (see Perman and Wellner,
1996). It is equal to the (random) area under the positive part of a Brownian sample
path from zero to time t. The expectation in Equation (27) is calculated by Davydov,
Linetsky, and Lotz (1998) via the Feynman-Kac theorem:

o0
O, (v k,x, 1) = / eV Ey [e_‘“‘;r; W, e dy]
k

:/ e”yOC,_I{Ga(x,y;s)}dy, (29)
k

where the expectation inside the integral is expressed as the inverse Laplace
transform in s of the resolvent kernel G, (x, y; s). Its analytical form is given in
Appendix B.°

The expected time of exercise or forfeiture under this specification is:

T
rf:/ e CrtvB/Di=vex g L (yp: —00, x, 1)dt, (30)
0

where vp is given in Equation (19). The expected stock price at the time of exercise
or forfeiture is:

5 The calculation of this functional is close in spirit to the calculations of Geman and Yor (1993)
for Asian options and Geman and Yor (1996) for double-barrier options and relies on the Feynman-
Kac formula.
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S"J' = 6_()Lf+v%/2)T_UPxKCDU)LE (Up + o, —00, X, T)
T
-’rKf e Crtvp/2)i—vex A @y, (vp + 03 —00, x, 1)
0

aq)oAB(VP + 67 Ov-xa t)
oA,
avp

dt. €1y

The case 1, > 0, i.e., the option is not yet vested, is treated similarly to Equation
21).

5. Numerical Examples

To illustrate our models, consider a ten year ESO granted at-the- money® (S =
K = 100) and vested immediately (#, = 0). We assume that the underlying stock
has volatility of 30% per annum, pays no dividends, the riskfree rate is 5% per
annum, and the expected annualized percentage rate of return on the stock under
the statistical measure P is m = 15% per annum (recall that the expected time
of exercise or forfeiture and the expected stock price at the time of exercise or
forfeiture are calculated under the statistical measure). Tables I and II give the ESO
value at the grant date, the expected time of exercise or forfeiture, and the expected
stock price at the time of exercise or forfeiture as functions of the parameters of
the point process A r and A, under the occupation time specification (11) and the
Brownian area specification (23), respectively. For A; = A, = 0, the ESO value
is equal to the ten-year Black-Scholes value, the expected exercise time is equal to
the ESO maturity (ten years), and the expected stock price at the time of exercise
is equal to €'%" S (no early exercise or forfeiture). As the rates A, and 1, increase,
the ESO value, expected exercise or forfeiture time and the expected stock price at
the time of exercise or forfeiture all decrease. Given 7 and Sy, one can calibrate
our models by backing out the intensity parameters A, and A., and value ESOs
with these parameter values. Carpenter (1998) reports that average exercise times
for 10 year ESOs in her sample are about 5.8 years, with the average stock price
at the time of exercise of about 2.8 times the ESO strike price. Marquardt (1999),
who studies a different sample of ESO granting firms, reports that average exercise
times for 10 year ESOs in her sample are about 5.06 years, with the average stock
price at the time of exercise of about 2.02 times the ESO strike price. Thus, empir-
ically, typical exercise times are in the five to six year range, with the stock price
at the time of exercise of two to three times the ESO strike.

Consider an example of the occupation time model with A ; = 8% per annum
and A, = 12% per annum. The expected exercise time for these intensities is 4.99
years, with the expected stock price at the time of exercise of 2.31 times the ESO

6 Marquardt (1999) found that 85% of the 987 ESOs in her sample were issued with ten years to
maturity. She states that most are issued with strike equal to stock price at grant.
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Table 1. Occupation Time Model. ESO values, expected times of exercise or forfeiture and ex-
pected stock prices at the time of exercise or forfeiture as functions of the intensity parameters A ¢
and A.. Parameters: K = 100, So = 100, T = 10 years, 0 = 0.30, r = 0.05, m = 0.15,#, =0,
no dividends

he
Af 0 0.02 004 006 0.08 0.1 0.12 0.14 0.16 0.18

ESO value
0 52.56 51.74 50.97 50.24 49.57 4893 4833 4776 47.22 46.71
0.02 49.03 4831 47.63 47.00 46.41 4585 4532 4482 4434 43.89
0.04 4589 4526 44.67 44.11 4359 43.09 42.63 42.18 4176 41.36
0.06 43.09 4254 42.02 41.53 41.07 40.63 40.22 39.83 3945 39.10
0.08 40.59 40.10 39.64 39.21 38.80 3842 38.05 37.71 37.37 37.06
0.1 38.35 3792 3751 37.13 36.77 36.43 36.10 3579 3550 35.22
0.12 36.33 3595 3560 3526 3494 34.63 3434 3407 33.80 33.55
0.14 3452 3418 33.86 33.56 33.28 33.01 3275 3250 3227 3204
0.16 32.88 3258 3230 32.03 31.77 3153 31.30 31.08 30.87 30.67
0.18 31.39 31.12 30.87 30.63 30.41 30.19 2998 29.78 29.59 29.41

Expected exercise or forfeiture time (years)
0 1000 9.60  9.24 8.91 8.62 8.36 8.11 7.89  7.69 750
0.02  9.06 8.72 8.40 812 787 7.64 743 7.23 7.05 6.89
0.04 824 794  7.67 7.43 720 7.00 682  6.65 6.49 6.35
0.06  7.52 726  7.02 681 6.62 644 628 6.13 5.99 5.87
0.08 6.88 6.66 645 6.27 610 594 580 @ 5.67 5.55 5.44
0.1 632 6.12 595 578  5.63 550  5.37 526  5.15 5.05
0.12 582 565 550 535 522 510 499 489 480 471
0.14 538 5.23 509 497 486 475 4.65 456 448 440
0.16 499 486 474 4.63 4.53 4.43 4.35 427 419 412
0.18 4.64 452 442 432 423 4.15 4.07 400 394 387

Expected stock price at time of exercise or forfeiture relative to strike
0 448 418 3.93 3.71 3.53 3.37 3.23 310 299 2.90
0.02  4.08 382  3.61 342 326 3.12 300 290 280 272
004 373 3.51 3.33 3.17 3.03 291 2.81 272 2.63 2.56
006 343 3.25 3.09 2.95 2.83 2.73 264 256 249 2.42
0.08 3.17 3.01 2.87 276 2.65 2.57 249 242 235 2.30
0.10 295 2.81 2.69 259 250 242 235 229 224 219
012 275 2.63 2.53 244 236 230 224 219 214 210
0.14 2.8 2.48 2.39 2.31 2.25 219 214 209 205 2.01
0.16 243 234 226 220 214 209 204 200 1.97 1.93
0.18 230 222 215 210 2.05 2.00 1.96 1.93 1.90 1.87
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Table 1I. Area Model. ESO values, expected times of exercise or forfeiture and expected stock
prices at the time of exercise or forfeiture as functions of the intensity parameters A ¢ and Ae.
Parameters: K = 100, So = 100, T = 10 years, 0 = 0.30, »r = 0.05, m = 0.15, 1, = 0, no

dividends
Le

Af 0 0.02 004 006 0.08 0.1 0.12 0.14 0.16 0.18

ESO value
0 52.56 5033 4829 4642 4471 43.13 41.68 4035 39.11 37.96
0.02 49.03 47.05 4523 4357 42.04 4063 3933 3813 37.02 3598
0.04 4589 44.13 4251 41.02 39.66 3839 3723 36.14 3514 3420
0.06 43.09 4152 40.07 3874 37.51 3638 3533 3435 3344 3259
0.08 40.59 39.19 37.89 36.69 3559 3456 33.61 3273 3190 31.13
0.10 3835 37.09 3592 3485 33.85 3292 3206 3126 3051 29.80
0.12 36.33 3520 34.15 33.18 3228 3144 30.65 2992 2924 28.59
0.14 3452 3350 3255 31.67 30.85 30.08 2937 28.70 28.08 27.49
0.16 32.88 3196 31.10 30.30 29.55 28.85 2820 2759 27.01 2647
0.18 31.39 3056 29.77 29.04 2836 27.73 27.13 2657 26.04 2554

Expected exercise or forfeiture time (years)
0 10.00 9.32 8.72 8.18 7.69 7.26 6.86 6.51 6.19 5.89
0.02 9.06 8.47 7.94 7.47 7.04  6.65 6.31 5.99 5.71 5.45
0.04 824 772  7.26 6.84 646 6.12 5.82 5.54 5.28 5.05
0.06 7.52 7.06 6.65 6.29 5.95 5.65 5.38 5.13 490 470
0.08 6.88 6.48 6.12 5.79 5.50 5.23 4.99 477 4.57 4.38
0.10 6.32 5.97 5.65 536  5.10 4.86 4.64 444 426  4.10
0.12 5.82 5.51 5.23 4.97 4.74 4.52 4.33 4.15 3.99 3.84
0.14 5.38 510  4.85 462 441 422 4.05 3.89 3.74 3.61
0.16  4.99 474 452 431 4.13 3.96 3.80 3.66 3.52 3.40
0.18 4.64 442 422  4.03 3.87 3.71 3.57 3.44 332 3.21

Expected stock price at time of exercise or forfeiture relative to strike
0 4.48 4.14 3.83 3.57 3.34 3.13 2.96 280  2.66 2.53
0.02  4.08 3.78 3.52 3.29 3.09 2.92 2.76 2.62 2.50 2.39
0.04 3.73 3.48 3.25 3.05 2.88 2.72 2.59 2.47 2.36 2.27
0.06 3.43 3.21 3.02 2.84  2.69 2.56 2.44 2.33 2.24 2.16
0.08 3.17 2.98 2.81 266 253 241 2.31 222 2.13 2.06
0.10 2.95 2.78 2.63 250 239 2.28 2.19 2.11 2.04 1.97
0.12 2.75 2.60 2.48 236 226 2.17 2.09 2.02 1.95 1.90
0.14 2.58 2.45 2.34 224 215 2.07 2.00 1.94 1.88 1.83
0.16 2.43 2.32 222 2.13 2.05 1.98 1.92 1.87 1.81 1.77
0.18 2.30 2.20 2.11 2.04 1.97 1.91 1.85 1.80 1.76 1.72
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strike. The ESO value corresponding to these parameters is $33.61. In contrast, the
FASB-recommended valuation method is to use the Black Scholes European call
pricing formula. The maturity used in this formula can be either the maturity date
(ten years in this case) or an estimate of the expected life (4.99 years in this case).
The corresponding Black- Scholes value of a ten year call is $52.56. It is 56.38%
higher than the value predicted by our model. The Black-Scholes value of a 4.99
year call is $35.92, 6.87% higher than the value predicted by our model. Thus,
the ESO values computed according to the intensity-based model are significantly
lower than the corresponding Black-Scholes values, accounting for the suboptimal
behavior of the executive. This has significant accounting implications. If one were
to value ESOs for accounting purposes using the Black-Scholes model as recom-
mended by FASB, one would significantly overstate their true costs to shareholders
and unfairly penalize companies granting ESOs.

6. Conclusion and Directions for Future Research

The contribution of this paper is two-fold. First, we develop a general stochastic
intensity-based framework for the valuation of executive stock options. Second,
we suggest two analytically tractable specifications for the exercise and forfeiture
intensity. Both specifications have the form (assuming the ESO is vested):

ht = )\f +)“e¢(St)1{S[>K}a

where A s is the constant Poisson intensity of early exercise or forfeiture due to
early voluntary or involuntary employment termination, and A.¢ (S;)1s,- k) is the
early exercise intensity due to the executive’s desire for liquidity or diversification.
The latter intensity is positive only when the option is in-the-money. Under the
first specification, ¢(S) = 1. This leads to the analytically tractable occupation
time model for ESOs, where the probability of early exercise due to the executive’s
desire for liquidity or diversification depends on the occupation time of the in-the-
money region. Under the second specification, ¢(S) = In S — In K, leading to the
analytically tractable Brownian area model. Both specifications reflect the fact that
there are two distinct economic factors influencing the executive exercise decision.
These are the executive’s desire for liquidity or diversification which only induces
exercise when the option is vested and in-the-money, and the possibility of volun-
tary or involuntary employment termination (this is equally likely when the option
is in- or out-of-the-money and is assumed to be independent of the stock price).
We argue that our specification with two separate intensity parameters provides a
more complete description of the economic situation at hand than previous work’
which modeled early exercise and forfeiture as arising from a Poisson process with
a single constant intensity parameter independent of the stock price.

7 See Shimko (1990) and Jennergen and Naslund (1993) for the special case of our model with
re = 0.
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Our results can be further extended in several ways. First, in practice firms
sometimes reset the terms of previously issued ESOs, especially when declining
stock prices have moved the option deep out-of-the-money. In some interesting
recent work, Brenner, Sundaram, and Yermack (1998) develop a model to value
ESOs, which accounts for the possibility of repricing. Repricing involves specify-
ing a new strike price when the stock price declines significantly.® When the option
is repriced, the new strike price is specified (in practice, the new strike is often set
equal to the then-current stock price, i.e. the option is re-written at-the-money).
Brenner, Sundaram and Yermack (1998) note that, ignoring the possibility of early
exercise or forfeiture, an ESO whose strike price K will change to K* the first time
the stock price falls below a pre-specified barrier B, can be valued as a portfolio
of a down-and-out call with the strike price K (old strike) and a down-and-in call
with the strike K* (new strike). Then the standard barrier option valuation formulas
are used to value the ESO (see Rubinstein and Reiner (1991) for example). Our
approach to modeling early exercise and forfeiture can be extended to ESOs subject
to repricing in this manner by adding a lower barrier to our analysis.

Consistent with our approach to modeling forfeiture and early exercise, an al-
ternative approach to modelling repricing is to assume that it occurs at the first
jump time of a point process, with some intensity dependent on the stock price.
One possible (and analytically tractable) choice would be:

hy = A Ays, <y,

where H is some barrier set at or below the strike K, and A, is constant. We
note that the model of Brenner, Sundaram, and Yermack (1998) arises as a special
case of this framework by letting A, approach infinity. A second possible (and
analytically tractable) choice for the specification of the repricing intensity would
be:

h; =Xx(InH —1nS,)",

where again H < K, and A, is constant. As in the first specification, the probability
of repricing in this model is zero if the option is in-the-money and positive when the
option is out- of-the-money. Now, however the probability of repricing increases
as the stock price declines below the barrier H.

Second, our methodology can be extended to indexed ESOs. Johnson and Tian
(1999) design and develop a pricing model for an ESO with a strike price indexed
to a benchmark index. The indexed option filters out common risks beyond the
executive’s control, thereby increasing the efficiency of incentive contracts by
focusing them on the relative performance of the company stock relative to a
benchmark. Johnson and Tian (1999) derive the ESO pricing formula based on

8 The empirical evidence in Chance, Kumar, and Todd (1999) suggests that ESOs are usually
repriced when the stock declines by about 25%
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Margrabe’s (1978) exchange option formula, ignoring the effects of early exercise
and forfeiture. Our approach can be used to relax the latter assumption.

A third extension of this line of research would involve valuing ESOs of com-
panies which pay sizeable dividends. Formally, this is an extension of our results to
time and stock price dependent intensity which becomes infinite if the stock price
is above the critical stock price at an ex-dividend date. This extension would be
most relevant for firms such as utilities which typically have large dividends and
low volatilities.

Finally, our methodology can be applied to value other assets. For example, it
is well known that mortgages are not usually prepaid optimally and that companies
often call their debt late. Potential explanations for late calling include bounded
rationality, signalling phenomena, or agency costs. The latter two explanations
account for the realistic possibility that the decision depends on private as well
as public information. A model in which the probability of prepayment or call
depends on the interest rate (and stock prices in the case of callable convertibles)
might tractably capture the behavior of investors or managers more reliably than
requiring that decisions be based on publicly available information. In general,
the implications for asset pricing of optimizing behavior based on both public and
private information is a fascinating avenue for future research.

Appendix
A. The expectation E , [e"WT_pF(?(T)l{WTzk}]

Let 0 <t < T. Introduce the following notation:

—k T
d; = & d> = d, —|—a«/7,
JT
—k — T
d3=$, d4=d3+0’\/7,
T
—k—x 4+ vt
ds=——"—— " do=ds+ o/t
5 N 6 5
—k + vt
d; = , dyg =dy+o/t,
7 N 3 7
2
Ci=1- T V% C,=t""2C, —t7*xk, C3=C,—ox.
Then the function ¥,(v;k,x,T) = E, [e”WT—pra(T)l{WTzk}] is given by

(Linetsky, 1999):
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e Regionl: k> 0andx >0

1)2 1)2
\I'{)(v; k,x,T) = e”**TTN(d)) — e T N(d3)

v2
T (1—ePT-D)e2!

te " fy Camam N(s) + 17PN (ds) dr;

e RegionIl:k>0andx <0°

v2
T (1—e—PT-D)e' 2!
Wi k,x, T) = [ “@;(T;; vC N (dr) + C2N'(dy)
Xe_Z(%ft) d[’
e Regionlll: k <0Oandx >0

\P/gll(v; ka X, T) = \If{)(l), 07 X, T) + e_pT[\Ififo(—]); 05 —X, T)

e RegionIV:k <0Oandx <0

\Ijév(v; k7 X, T) = \P/gl(v7 07 X, T) + e_pT[\Ilip(_v; 05 —X, T)
—\Ifip(—l), _kv —X, T)]a

where

1 roo2 dN (x) 1 2
— e 2dz, N'(x)= = e 2
V27T /—oo dx 27T

is the cumulative standard normal and its density.

N(x) =

B. The expectation E , [e”W'_“Afl{Wtzk}]

Introduce the following notation:
yi = Qa) 3 2s 4+ 2ay), y2 = Qo) 2, y3 = Q)25 + 2ax),
Wa = v254i(y) £ 20)'PAi'(y2), V =V2sBi(y2) — Q) Bi' (y),

where Ai(z) and Bi(z) are Airy functions defined by (Abramowitz and Stegun,
1965):

1 [ u’
Ai(z) = ;/ cos uz+ 3 du,
0

1 (> u’ u’
Bi(z) = —/ exp uz— — +sin uz+ — du.
T Jo 3 3
9 For k = 0, the function \IJ{)](v; 0,x,T) is defined as a limit of the integral for k — 0:
Wi (v:0,x, T) = limg o W2 (v k, x, T).
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Then the function G, (x, y; s) entering the expression (29) and defined as the
Laplace transform

o
/ e "Eo, [e_“Ar; W, € dy] dt = Gy(x, y; s)dy
0
is given by (Davydov et al., 1998):
e Regionl:x <0<y

_ 2Ai(y1)emx

Gl(x,y:s
o (X, y58) W
e Regionll: x <y <0

1 1%
Gl (x,y;8) = —= VP00 4 Lovntn
: Nex W_

e Regionlll: y <x <0

Gl (x,y39) = Gl (v, %3 9),
e RegionlV:y <0 <x

G (x,y:8) = GL(y.x:9),
e RegionV:0<y<ux

2w Ai(y3)
Vv . —
GO( (x’ y’ S) - (20{)1/3

e RegionVI.0<x <y

} V.
Bl(yl)_W—Al(yl) ,

Go (x,y;8) = Gy (y,x;5).

The Airy functions are computed using the asymptotic expansions found in
Abramowitz and Stegun (1965). To compute the inverse Laplace transform in
Equation (29) numerically, we employ the Euler algorithm developed by Abate and
Whitt (1995). This algorithm was previously applied to option pricing problems by
Fu, Madan, and Wang (1998) and Davydov and Linetsky (1998). Then the integral
in y in (29) is calculated numerically. Finally, (26) gives the ESO value under the
forfeiture and early exercise intensity specification (23).
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