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GENERATING INTEGRABLE ONE DIMENSIONAL DRIFTLESS
 

DIFFUSIONS
 

PETER CARR, PETER LAURENCE AND TAI-HO WANG 

Abstract. A criterion on the diffusion coefficient is formulated that allows the 
classification of driftless time and state dependent diffusions that are integrable in 
closed form via point transformations. In the time dependent and state depen­
dent case a remarkable intertwining with the inhomogeneous Burger’s equation is 
exploited. The criterion is constructive. It allows us to construct families of drift-
less diffusions parametrized by a rich class containing several arbitrary funtions for 
which the solution of any initial value problem can be expressed in closed form. We 
also derive an elegant form for the masters equation for infinitesimal symmetries, 
previously considered only in the time homogeneous case. 

Résumé Nous présentons une condition nécessaire et suffisante sur le coefficient 
de diffusion g(x, t) d’une diffusion sans drift, afin que celle-ci puisse se réduire, par 
des transformations ponctuelles des variables dépendentes et indépendantes, à la 

1 Aforme canonique de Lie ut − uxx + 
x2 u = 0 où A ∈ R. Lie a démontré que celle-ci 

2

est la forme canonique d’une diffusion dont le groupe de symétrie est de dimension 
quatre ou six. Notre résultat complète donc celui de Lie, en donnant une condition 
locale intrinsèque sur g rendant possible une telle réduction, ainsi qu’une condition 
constructive, dans la mesure où elle nous permet de construire de façon explicite la 
solution fondamentale de l’equation correspondante. 

Version Française abrégée 

Considérons le problème consistant à trouver la probabilité de transition d’une 
diffusion 

dxt = g(xt, t)dWt, t ∈ [0, T ] 

sur un espace de probabilité filtré (Ω,B, P ), où Wt est un mouvement Brownien uni­
dimensionel. Il est bien connu que résoudre ce problème équivaut à déterminer la 
solution fondamentale de l’équation rétrograde 

ut +
1 
g 2(x, t)uxx = 0 (1) 

2

avec condition finale 

u(ξ, T ) = δξ(x). (2) 

Un problème de grande importance en physique et en mathématiques financières est 
de pouvoir exhiber cette solution fondamentale sous une forme explicite. Lie, voulant 
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2 PETER CARR, PETER LAURENCE AND TAI-HO WANG 

classifier toutes les équations aux dérivées partielles du second ordre qui puissent se 
résoudre par un processus “d’intégration”, a démontré le théorème suivant : 

Proposition 1. (Lie [11]) Soit 

La,b,cu ≡ ut + a(x, t)uxx + b(x, t)ux + c(x, t)u = 0 (3) 

avec a(x, t)  0. ebre de Lie principale LP (c.a.d. l’algèbre de Lie admise par l’ = L’alg`
équation (3)) ayant pour coefficients a, b, c, admet les opérateurs de symétrie triviaux 
u ∂ et φ(x, t) ∂ , où φ est une solution de (3) et peut se mettre sous la forme 

∂u ∂u

vτ = vyy + Z(τ, y)v (4) 

par le biais d’une transformation, appelée transformation d’équivalence de Lie, soit : 

y = α(x, t), τ = β(t), v = γ(y, τ)u(y, τ), αx = 0, βt  0. (5)  = 

Si l’équation (3) admet une extension de l’algèbre de Lie principale par un opérateur 
de symétrie suppl´ eduit `ementaire, elle se r´ a la forme 

vτ = vyy + Z(y)v. (6) 

Si l’algèbre s’étend par trois operateurs supplémentaires (la partie finie de l’algèbre 
est de dimension 4), elle se réduit à la forme 

A 
vτ − vyy + v = 0 où A est une constante. (7) 

y2 

Si Lp s’étend par cinq opérateurs, l’ équation (3) se réduit ` equation de la chaleur a l’ ´

vτ − vyy = 0. (8) 

Notre principal résultat est un critère sur le coefficient de diffusion, qui permet de 
décider quand une diffusion peut se mettre sous une des formes (7) ou (8). Etant 
donné que les diffusions considérées peuvent, comme dans le cas des diffusions CEV 
où g(x, t) = x1+β, β ∈ R, être dégénérées et que la transformation de Lie-Bluman 

J x 1 y = 
-

dx' + ζ(t), qui suppose l’intégrabilité de 1/g, n’est pas dans ces cas­
a g(x ,t)

là bien définie, nous introduisons une classe de diffusions dégénérées qui n’est pas 
la plus générale possible mais qui permet, sans peine, d’appliquer la transformation 
de Lie-Bluman dans la plupart des cas rencontrés en physique et en mathématiques 
financières. 

Definition 1. Soit I = (l, r) ⊂ R un intervalle, pouvant être non borné. Soit Lu = 
ut − 1

2
g2(x, t)uxx = 0 une diffusion sur l’ intervalle I. Supposons que g(x, t) ≥ 0 soit 

continu sur I. Définissons de façon itérative un recouvrement fini ∪i[li, ri] = ∪iIi = I 
de I avec pour centres associés mi, selon le procédé suivant: 

• Choisissons m1 avec g(m1, t)  = 0 et définissons l1 et r1 par 
    

  x dx' x dx'
l1 = inf x ∈ I : > −∞ , r1 = sup x ∈ I : < +∞ . 

m1 
g(x', t) m1 

g(x', t) 

l1 dx- r1 dx ­

et posons R− = 
J 

, R+ = 
J

.1 m1 g(x-,t) 1 m1 g(x-,t)

• Ayant défini mi, Ri 
± et Ii pour i ≤ i0, définissons mi0+1 en choisissant mi0+1 ∈ 

I \ ∪i0 Ii avec g(mi0+1, t) > 0 et par la suite en procédant comme ci-dessus. i=1
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Definition 2. Nous disons qu’une diffusion Lu = 0 est modéremment degénérée si 
li, ri et mi peuvent être choisis indépendement du temps et si ce recouvrement est 
fini. 

Proposition 2. Soit Lu = 0 une diffusion modéremment degénérée avec recouvre-
J y

ment associé C = {Ii = [li, ri] : i = 1, · · · , n}. Soit H(i)(y, t) = 
D(i) g̃

(i)(y ' , t)dy ' +mi, 
J 

avec g̃(i) satisfaisant g̃(i)(Y (i)(x, t), t) = g(x, t), y = Y (i)(x, t) = 
x 1 dx ' +D(i)(t). 
mi g(x -,t)

Pour chaque Ii ∈ C, 

• Une condition nécessaire et suffisante afin qu’une diffusion modéremment 
degén´ ee puisse se r´ ` `er´ eduire a une forme canonique a quatre dimension est qu’il 
existe λ(i) = 0 et des coefficients A(i), B(i), C(i), D(i), tels que D̈ (i)−2A(i)D(i) = 
B(i) et tels que pour chaque i, H(i) satisfait l’EDP 

1 
Ht − Hyy + β(i)Hy = 0 pour y ∈ (Ri 

−, R+ 
i ) \ {D(i)(t)}, (9) 

2 

et les conditions 

H(D(i) + Ri 
−, t) = li, H(D(i), t) = mi, H(D(i) + Ri 

+, t) = ri 

où β(i) = −(log α(i))y, avec α
(i) satisfaisant l’ équation
 

  

λ(i) 
 
 

αt − 1 
αyy + + A(i)(t)y 2 + B(i)(t)y + C(i)(t) α = 0 (10) 

2 (y − D(i)(t))2 

pour y ∈ (Ri 
−, Ri 

+) \ {D(i)(t)}. Notons que le produit d’une solution de (9) et 
d’une solution de (10), c.à.d. H(i)α(i), satisfait aussi ` = D(i)(t).a (10) pour y 

Ce résultat peut être utilisé pour exhiber de nouvelles classes de diffusions dont 
la solution fondamentale peut s’exprimer sous forme explicite. Une simple extension 
de la méthode au cas avec drift met en lumière la structure de groupe sous-jacente 
du résultat de Feller [8] et une extension de certains résultats bien connus pour les 
procéssus CEV, dans le cas où leur coefficients peuvent dépendre du temps. Voir 
Exemples 1 et 2 de la version anglaise. 

English Version 

Consider the problem of determining the transition probability of a one-dimensional 
diffusion 

dxt = g(xt, t)dWt, t ∈ [0, T ], x0 = ξ, 

where Wt is a standard Brownian motion with respect to an underlying probability 
space (Ω,B, P ). As is well known, under general conditions, this problem is equivalent 
to finding the solution of the backward Kolmogorov equation for u(ξ, t, η, T ) 

ut +
1 
g 2(ξ, t)uξξ = 0 (11) 

2

with terminal condition 

u(ξ, 0, η, T ) = δη(ξ). (12) 
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In the setting of more general one dimensional diffusions, Sophus Lie [11] discovered 
a classification of second order differential equations in two variables. A detailed 
statement of this classification in the parabolic case can be found in the French version 
of this note. Lie’s main result is that the symmetry algebra LP of the equation 

La,b,cu ≡ ut − a(x, t)uxx − b(x, t)ux − c(x, t)u = 0, a > 0 (13) 

is the direct sum of two components LP = Lf
P ⊕ LP 

∞, where L∞ 
P is generated by 

symmetry operators of the form φ(x, t) ∂ for φ an arbitrary solution of (13). Lie 
∂u 

showed that Lf
P is one, two, four or six dimensional. All such equations can be 

reduced, by a transformation called Lie’s equivalence transformation, hereafter LET 
(also known as a linear point transformation), 

y = α(x, t), τ = β(t), v = γ(y, τ)u(y, τ), αx = 0, βt = 0, (14) 

to the form 
1 

vt − vyy + Z(t, y)v = 0, (15) 
2 

called Lie’s canonical form. Z is called the potential term. Actually (13) can be 
reduced to the form (15) without making a time change using a particular equivalence 
transformation, the Lie-Bluman transformation defined in the sequel (see (17-18)). If 
the finite component of the symmetry group is at least two dimensional Lie showed 
that (13) can be put in canonical form with a potential term Z(y) independent of 

t. At the other extreme, if Lf
P is six dimensional, the canonical form is the heat 

equation, ie. Z = 0. All diffusion equations possessing a four dimensional symmetry 
group can be transformed, by an equivalence transformation, to the form 

1 λ 
vt − vyy + v = 0 (16) 

2 y2 

where λ is a nonzero constant. The fundamental solution of the above equation can 
be shown to be (see [10]) 

f

−   

tyξ e
ξy 

ξy (y − ξ)2 

F (t, y, ξ) = K √ I κ, exp − , 
t t t 2t 

where κ = ± 
√ 

1+8λ , K is a normalization constant that ensures limt→0+ 

J 

F (t, y, ξ)dξ = 
2 2 

1 and I(κ, ·) is a modified Bessel function of order κ. It is this class that will be the 
main focus of the present paper which will be devoted to fully characterizing those 
diffusion coefficients which are associated with the four dimensional symmetry class 
and will also provide a constructive method for determining such coefficients. On 
the other hand, no canonical form, i.e. no special choice(s) of potential Z, has been 
identified to date characterizing all equations possessing a symmetry group of dimen­
sion 2, corresponding to the smallest non-trivial symmetry algebra. In this note we 
concentrate on the important case b = c = 0 of a driftless diffusion. Our results read­
ily extend beyond this case taking on however a more complicated and less intuitive 
form. Although we do not classify driftless diffusions with two dimensional symmetry 
group, we also provide in this note, for the first time in the time-dependent case, an 
elegant form for the ”master equation” (see (34)) and the latter is a significant step 
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towards finding new classes of driftless diffusions with two dimensional symmetry 
group and towards unifying previous special cases. 

1. Main Results 

It is natural to ask the following questions: 

• Question : Characterize the diffusion coefficients g(x, t) for which the corre­
sponding equation can be reduced to canonical form (16) for λ = 0 or for 
λ = 0 by a point transformation. 

Important examples, such as the case g(x, t) = x1+β , β ∈ R, x ≥ 0 that plays a central 
role in mathematical finance, are mappable to the four dimensional class and are at 
the same time degenerate diffusions. Introducing the Lie-Bluman transformation 
(LBT), a special Lie equivalence transformation that can be used to transform (13) 
to canonical form (15) 

x 1 
y = Y (x, t) = dx ' + ζ(t) change of independent variable, (17) 

0 g(x ' , t) 
y � � 

1 g̃y
v = w exp Yt + change of dependent variable, (18) 

ζ 2 g̃

where g̃(y, t) = g(Y −1(x, t), t) and ζ(t) is an arbitrary function of t, (19) 

we observe that when applying LBT to a diffusion degenerate at zero (for instance 
CEV processes mentioned above) there are issues of non-integrability for values of 
β ≥ 0. That is why below we will introduce a slight modification of the Lie-Bluman 
methodology that is better suited to deal with such degeneracies. Note also that 
although LBT can be used to transform a diffusion equation with a diffusion coefficient 
in a certain class into canonical form (15) with a particular potential Z associated 
to a given symmetry class, this does not exclude that there may be a larger class 
of diffusion coefficients that may be put into the same canonical form by a different 
equivalence transformation. We are now in a position to state our main results. We 
begin with a definition whose purpose is to split up the domain on which the diffusion 
is being considered into several maximal subdomains in which LBT can be applied. 
The following definition is flexible enough to account for most applications found in 
practice. If the diffusion coefficient is pathological enough, the definition needs to be 
generalized to include time dependent centers and countably infinite coverings. 

Definition 3. Let I = (l, r) ⊂ R be an open (possibly infinite or semi-infinite) 
interval. Let Lu = ut − 2

1 g2(x, t)uxx = 0 be a diffusion on the interval I. Assume that 
g(x, t) ≥ 0 is continuous on I. Define iteratively a finite covering ∪i[li, ri] = ∪iIi = I 
of I with collection of centers mi as follows (with the convention that [li, ri] = (l, ri] 
if li = l and [li, ri] = [li, r) if ri = r hereafter): 

• Choose m1 where g(m1, t) = 0 and define l1, r1 and then R1 
−, R1

+ by 
x dx ' x dx ' 

l1 = inf x ∈ I : > −∞ , r1 = sup x ∈ I : < +∞ 
m1 

g(x ' , t) m1 
g(x ' , t) 
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r1l1 dx ' dx ' 
R− = , R+ = .1 

m1 
g(x ' , t) 1 

m1 
g(x ' , t) 

• Having defined mi, Ri 
± and Ii for i ≤ i0 define mi0+1 by picking mi0+1 ∈ 

I \ ∪i
i
0 
=1Ii with g(mi0+1, t) > 0 and proceed as before. 

Definition 4. We say that Lu = 0 is a moderately degenerate diffusion if the li, ri 

and mi’s can be chosen independently of time and if the covering is finite. 

Proposition 3. Let Lu = 0 be a moderately degenerate diffusion as in Defini­
tion 4 with associated natural covering C = {Ii = [li, ri] : i = 1, · · · , n}. Let 

J y
H(i)(y, t) = 

D(i) g̃
(i)(y ' , t)dy ' + mi, where g̃(i) satisfies g̃(i)(Y (i)(x, t), t) = g(x, t) and 

J x 1 + D(i)(t).y = Y (i)(x, t) = dx ' For each Ii ∈ C,
mi g(x -,t)

(1) a necessary and sufficient criterion for a moderately degenerate driftless diffu­
sion to be reducible to a four dimensional canonical form is that there exist a 

¨ λ(i) = 0, coefficients A(i), B(i), C(i), D(i) with D(i) − 2A(i)D(i) = B(i) such that 
H(i) satisfies the partial differential equation 

1 ( )

Ht − Hyy + β(i)Hy = 0, for y ∈ Ri 
−, Ri 

+ \ {D(i)(t)}, (20) 
2 

subject to the conditions (with li ≤ mi ≤ ri) 

H(D(i) + Ri 
−, t) = li, H(D(i), t) = mi, H(D(i) + Ri 

+, t) = ri 

(i) (i)
where β(i) = −(log α2 ) and where α2 satisfies the equation 

λ(i) 
2αt − 1 

αyy + + A(i)(t)y + B(i)(t)y + C(i)(t) α = 0 (21) 
2 (y − D(i)(t))2 

for y ∈ (Ri 
−, Ri 

+) \ {D(i)(t)}. Note that the product of a solution of (20) and 
(i) (i)

a solution of (21), i.e. α1 := H(i)α2 , also satisfies (21) when y = D(i)(t), 
hence H(i) is the ratio of two solutions of (21). 

(2) a necessary and sufficient criterion for a moderately degenerate driftless dif­
fusion to be reducible to a six dimensional canonical form is that H(i) satisfies 
the partial differential equation 

1 
Ht − 

2 
Hyy + β(i)Hy = 0, for y ∈ (Ri 

−, Ri 
+) \ {D(i)(t)} (22) 

subject to the conditions 

H(D(i) + Ri 
−, t) = li, H(D(i), t) = mi, H(D(i) + Ri 

+, t) = ri 

where β(i) = −(log α(i))y and α(i) satisfies the equation
 

1 (

2 
)


αt − αyy + A(i)(t)y + B(i)(t)y + C(i)(t) α = 0. (23) 
2 

Here A(i), B(i) and C(i) are arbitrary time dependent functions. The general 
1solution of equation (22) can be expressed as the ratio 

α
(i) 

of two arbitrary (i)
α2 

(i) (i)
solutions α1 and α2 of equation (23) where β(i) in (22) is given by β(i) = 

−(log α2
(i)

)y. 
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We shall restrict ourselves to any of the subintervals I ∈ C in the following therefore 
the dependence of the index i will be suppressed for notational simplicity. 

Remark 1. Having determined the solution H(y, t) one obtains the diffusion coeffi-
J y

cient g̃ = Hy in the (implicit) y variable, notes that H(y, t) = 
D(t)

g̃(y ' , t)dy ' + m so 

y = Y (x, t) ⇔ x = H(y, t), i.e. one inverts the now known function H(y, t) and then 
sets g(x, t) = g̃(Y (x, t), t). The additional conditions on the endpoints and center of 
the Ii interval ensure that such a process is a self-consistent one. In some cases the 
resulting H will be a weak solution (appropriately defined) of the equation throughout 
the entire interval but this will not generally be the case. We also remark that, if the 
conditions on g(x, t) are strengthened to g ∈ C1 then by construction , Ri 

− = −∞ 
except possibly for the leftmost subinterval and Ri 

+ = +∞ except possibly for the 
rightmost subinterval. 

Remark 2. In the theory of the Schroedinger equations and reduction to Liouville 
form a key role is played by the equation {z, r} = 2J(r) where {z, r} is the Schwarzian 
derivative. A classical theorem due to Schwarz [9] says that the solution of this equa­
tion can be expressed as the ratio of two independent solutions of ψ '' (t) + J(r)ψ = 0. 
As far as we can tell this observation (constructive procedure), in the context of para­
bolic equations with time dependent coefficients, appears to be new even in the context 
of reducibility to the heat equation. A related remark, generalizing results in Albanese 
et al [1] to the time dependent case, was made by Albanese [3]. Lastly note that the 
relation between (22) and (23) holds independently of the particular potential chosen 
and so may prove to be valuable in the case of 2D symmetry group as well. 

Proposition 4. (Time independent case) In the special case in which g(x, t) is time 
independent, Proposition 3 can be put in the following form. Let v = log(g̃)y. 

(1) A necessary and sufficient condition for a moderately degenerate driftless dif­
fusion with time independent diffusion coefficient to have a four dimensional 
symmetry group is that 

2 vy − 1 
v = 

λ 
+ A(y − D)2 + C, 

2 (y − D)2
 

where λ = 0, A,C and D are constants.
 
(2) A necessary and sufficient condition for a moderately degenerate driftless dif­

fusion with time independent diffusion coefficient to have a six dimensional 
symmetry group is that 

2 vy − 1 
v = Ay2 + By + C, 

2 
where A and B and C are constants. 

The diffusion coefficient as a function of x, t can then be reconstructed in the same 
way as described in Remark 1 above. 

Discussion Note that Proposition 3 allows the construction of a rich class of 
solvable driftless diffusions. This richness is characterized by the freedom to choose 
the time dependent parameters A,B,C,D in (21) and (23) as well as by the freedom 
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in the choice of initial condition α1
0 and α2

0 of the solutions in (21) and (23). (An 
illustration is given in Proposition 5.) In the case of the reduction to the heat equation, 
closely related results to the above have been obtained by Bluman [4]. In the case of 
time independent g, there are related results by Albanese and Campolieti [2]. 

1+8λProposition 5. Let J = (0,∞), λ ≥ −
8
1 , κ = 

√ 

2 
and αi

0 , i = 1, 2, be positive 
integrable functions defined on J and 

√ − y 2 

2tye ∞ ξy ξ2 

α0α1(y, t) = Iκ ξ exp − 1(ξ)dξ, 
t t 2t0 

√ − y 2 

2tye ∞ ξy ξ2 

α0α2(y, t) = Kκ ξ exp − 2(ξ)dξ, 
t t 2t0 

where Iκ and Kκ are the modified Bessel functions of first and second kind of order 
κ respectively. Define 

J ∞ ( )√ ξ

α1(y, t) Iκ 
yξ ξe− 2

2 

t α1
0(ξ)dξ 

H(y, t) := = 
J 

0 
(

t 
)√ ξ2 

. 
α2(y, t) ∞ yξ 

0 
Kκ t 

ξe− 2t α2
0(ξ)dξ 

Then we have, for all t ≥ 0, H(0+, t) = 0, H(∞, t) = ∞, m1 = 0 and for the 
parameters in the potential A = B = C = D = 0, λ ≥ −1

8 
and Hy(y, t) > 0 for y ∈ J . 

Note that the change of variable x = H(y, t) transforms the positive half line J onto 
itself. Define g̃ by Hy and note that 

⎡ ⎤ 

J ( )
2 

J ( )
2∞ yξ − ∞ yξ ξ3/2 −H(y, t) Iκ+1 ξ3/2e

ξ

2t α0
1(ξ)dξ Kκ+1 e

ξ

2t α2
0(ξ)dξ 

⎣ 

0 t 0 t 
⎦g̃(y, t) = 

J ( )√ ξ2 
+ 

J ( )√ ξ2 
. 

t ∞ yξ ∞ yξ Iκ ξe− 2t α1
0(ξ)dξ Kκ ξe− 2t α0

2(ξ)dξ 
0 t 0 t 

Hence, according to Proposition 3, we obtain a class of diffusion coefficients g(x, t) 
(parametrized by the initial conditions α1

0 and α2
0) on the positive half line, which 

can be transformed to the canonical form (16) for the equations of four dimensional 
symmetry group, by expressing g̃ in the original variables, i.e. by letting g(x, t) = 
g̃(H−1(x, t), t). 

Recently Spichak and Stognii [15] have given a complete answer in a complementary 
setting concerning forward Kolmogorov equations with trivial principal part (diffusion 
coefficient equal 1

2
) and arbitrary time dependent drift: Find all drift coefficients b 

for diffusions of the form L−1/2,−b,−bxu = ∂τu − 1
2
uxx − (b(x, t)u)x = 0, which can be 

reduced by point transformations to the form (16) for λ = 0 and for λ = 0. They 
have established the following proposition 

Proposition 6. (Spichak and Stognii) The class of operators of the form L−1/2,−b,−bx 

admitting a four-dimensional algebra of invariance is described by the condition 

1 λ 
bt + bxx + bbx = + F (t)x + G(t), (24) 

2 (x − H(t))3 

where λ = 0 and where H(t), F (t), G(t) are arbitrary functions restricted only by the 
condition G = H '' − FH. 
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In their paper, Spichak and Stognii start with the general forward equation ut − 
(au)xx − (bu)x = 0 and “reduce” this more general equation to that with a = 

2
1 

and arbitrary b by appealing to a random time change, due to Dynkin. Thus the 
role of the original diffusion coefficient in the reducibility is not detectable in their 
approach. Moreover, since stochastic time changes cannot, to our knowledge, be 
recast as point or equivalence transformations, Spichak and Stognii’s results cannot 
easily be adapted to obtain a criterion of the kind presented in the present paper and 
regarding reducibility criteria on the diffusion coefficient. In the case of reducibility 
to the heat equation general criteria were given by Bluman [4]. However, in his 
approach, the decoupling into H equation in y variable and generalization of the 
Schwarz procedure does not explicitly appear . 

2. Idea of proofs of main results 

In the proof of the main results there is an interaction between the following ingre­
dients 

• LBT (17)-(18) is a key ingredient in establishing the sufficiency part of Propo­
sition 3. 

• The Lie-Ovsiannikov equivalence transformation (LOT) defined below (see 
(26)). This is needed to establish the necessity of our criterion in Proposition 
3. The key property thereof that is exploited is that the Lie-Ovsiannikov 
transformations are the most general transformations that map an equation 
in Lie canonical form back into the same form (with a, in general, different 
potential). Combining this with LBT leads to a simple proof of necessity. 

Proposition 7. Given two diffusions in canonical form 

ut − 1 
uyy + Z(t, y)u = 0 (∗), ut̄ − 1 

uȳȳ + Z̄(t, ¯ ȳ)ū = 0 (∗∗) (25) 
2 2 

there exists a special class of point transformation which map (*) to (**): 
  

˙
t̄ = a 2(t)dt, ȳ = a(t)y + b(t), u = ū exp

ȧ
y 2 + 

b
y + c , (26) 

2a a 

where a, b and c are three arbitrary functions of t, transforms 

ut − 1 
uyy + Z(t, y)u = 0 to ūt̄ − 1 

ūȳȳ + Z̄ū = 0 (27) 
2 2 

in the new variables. The potentials Z̄ and Z are related by 

2 ¨ ˙ ˙
2 ¯ aä − 2ȧ 2 ab − 2ȧb ȧ b2 

a Z = Z + y + y + ċ − − . 
2 2 22a a 2a 2a

The importance of the latter transformation is illustrated by the right up and down 
arrows in diagram 1. 
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Corollary 1. (Lie-Ovsiannikov) In the special case where Z̄(t, ¯ ȳ) = 
ȳ
λ 
2 , the most 

general Z(t, y) equivalent to it is of the form 

2 ¨ ˙ ḃ2λ aä − 2ȧ ab − 2ȧb ȧ− y 2 − y − ċ + + , (28) 
b 2 2 2(y + )2 2a a 2a 2a
a

where a(t), b(t), c(t) are arbitrary functions. 

¯Corollary 2. In the special case where Z(t, ¯ ȳ) = 
ȳ
A 
2 , the most general Z(t, y) equiv­

alent to it is of the form 

λ 
+ A(t)y 2 + B(t)y + C(t), (29) 

(y − D(t)2) 

where 

¨ B(t) = D − 2AD, (30) 

but A,B,C,D are otherwise arbitrary. 

Remark 3. Corollary 1 is proved in [14]. Corollary 2 appears to be new. It explains 
the appearance of restriction (30) in Proposition 3. 

The strategy we will use in order to give a complete characterization of all diffusion 
coefficients that can be mapped by some arbitrary Lie equivalence transformation 
(ie. LET but not necessarily LBT) to the canonical form (16) is to exploit the above 
ingredients in a way illustrated by the following diagram. 

Driftless diffusion LBT { ut − 1 uyy + λ 
2 u = 0

2 ywith diffusion coefficient g̃   
 

 

 

 

 

 

 

 

 

 

 

 LOT 

 

 

     LET
_ 

1 λ ut − uyy +2 (y−D(t))2 

+A(t)y2 + B(t)y + C(t)] u = 0 

Diagram 1 

Outline of the proof of Proposition 3. 

Part I: Sufficiency The proof of sufficiency is done by applying the following argu­
ment subinterval by subinterval, hence we shall suppress the dependence of the index 
i in the following for notational simplicity. To establish the sufficiency of conditions 
(20)-(21) for any subinterval I ∈ C, we need to show that whenever these conditions 
are satisfied, it is possible to find a point transformation that maps the equation (11) 

βto an equation of the form (21) for v = e 
J 

u. This is shown by using the LBT to 
map the original equation to the equation 

1 1 1 y 

β̃2 − ˜ ˜vt − vyy + βy + ∂t βdy v = 0,
2 2 2 D(t) 

1 g̃ywhere β = yt + . A key step is to re-express β in the (y, t) variables as β̃ = 
2 g̃ 


Ht− 1Hyy 
J y
− 2 where H = g̃ + m. In order for the potential term to equal the target 

Hy D(t)
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potential term (29), we need to enforce the condition 
y1 1 λ 

β̃2 − ˜ ˜ 2βy + ∂t βdy = + A(t)y + B(t)y + C(t). (31) 
2 2 D(t) (y − D)2 

Now, note that (31) is an inhomogeneous viscous Burger’s equation for β̃. Using the 

Hopf-Cole transformation β̃ = − log(α)y is transformed to (21) for α. 

Part II: Necessity To show necessity one can argue as follows: If the original 
driftless diffusion has a four dimensional symmetry group, any equivalence transfor­
mation that reduces it to canonical form, will necessarily reduce it to a canonical form 
with potential (29). This is due to the fact that equivalence transformations preserve 
the order of the symmetry group and equations in canonical form which have four 
dimensional symmetry group necessarily have a potential of precisely the form (29). 

Example 1. Singular diffusion. Feller [8] considered the (singular) diffusion equa­
tion of the form 

ut − (axu)xx + ((bx + c)u)x = 0 (32) 

on the half line {0 < x < ∞}, where a, b, c are constants, a > 0. Note that (32) is a 
moderately degenerate diffusion with I = (0,∞). By applying the change of variables 
(17) and (18), (32) is transformed to the following canonical form in Proposition 4. 

vt − 1 

2 
vyy + 

� 

1 

2 

c 

a 
− 1 

2 

c 

a 
− 3 

2 

1 

y2 
+ 

b2 

8 
y 2 + 

bc 

2a 

� 

v = 0, 

� 

J x √ 1 2xwhere y = 
0 

dx ' = 
a 
, y ∈ (0,∞). Hence the fundamental solution given 

2ax ­

in [8] (see Lemma 9) can be derived by reversing the transformation (modulo the 
consideration of the boundary conditions). In the cases that c = a 

2 
or c = 3

2 
a , (32) is 

six dimensional and hence can be further transformed to the heat equation by LOT. 

Example 2. Time dependent CEV process. A shifted time dependent CEV 
process generalizing processes widely used in mathematical finance of the form 

ut − 1 
σ2(t)(S + α(t))β uSS − (r(t) − d(t))(S + α(t))uS + ru = 0 (33) 

2 

when reduced to canonical form by an LBT transformation is easily seen to have a 
potential of the form (29) with D = 0 and B = 0. Thus its fundamental solution can 
be expressed in closed form providing an extension and easy proof of a result obtained 
recently by Lo and Hui [12]. Though (33) is not driftless unless r = d it can be treated 
by trivial modifications of the results in Proposition 3. 

Master Equation for symmetry group 

ˆX = τ(t)∂t + ξ(x, t)∂x + φ(x, u, t)∂u, φ = uβ(x, t) 

is, as usual, the infinitesimal generator of the symmetry group. It is easily shown that 
J xτt(t) 1ξ has the form g(x, t)G(x, t)−g(x, t)Gt(x, t)τ(t)+c(t) where G(x, t) = dx ' .

2 m g(x -,t)
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One then shows that the master equation for the determination of the symmetry group 
is of the form: 

1 
g(p1t − q1x)c − ctt + g(p5t − q5x)τ + g(p3t + p5 − q3x)τt + Gτttt = 0,

2 

where qi = 
2
1 g2pix and 

gxx gt 1 1 
p1 = − p2 = − p4 = − G,

2 g2 g 2g 

1 gtG 1 Gt 1 1 gx 
p3 = − + + gxxG + ,

2 g2 2 g 4 4 g 

Gtt gtGt 1 gxt 1 
p5 = + + − gxxGt. 

g g2 2 g 2

This generalizes the results of Cicogna and Vitali (see equation 14, p. 454 in [7] and 

[6]) to the time dependent case. Next one studies the master equation β̂xt = β̂tx and 
finds after a considerable amount of computation and manipulation that it can be 
cast into the following elegant form 

− D ''' (y − D) + D '' D ' )τc(Uy − ∂t[β̃(D(t), t)]) − (y − D)ctt + (Ut + D ' Uy 

y − D 3 (D ' )2 (y − D)2 

+ Uy + U − D '' (y − D) + τt + τttt = Σ(t) (34) 
2 2 2 4 

J y Ht− 1 
1 β̃2 − 1 ˜ ˜ 2

Hyy where U = βy + ∂t βdy as in (31), β̃ = − as in Proposition 3 and 
2 2 D(t) Hy 

Σ(t) is an arbitrary function of t. This simple form of the masters equation appears 
to be new even in the time independent case. Since in the case of two dimensional 
symmetry there is no all inclusive form for the solvable cases of the canonical potential 
our hope is that this new form of the master equation can be exploited in future work 
in determining new classes of solvable two dimensional driftless diffusions. 

Acknowledgements We wish to thank Jean Damien Arterit for his assistance in 
preparing the French version of this note. 
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E-mail address: laurence@mat.uniroma1.it 

Tai-Ho Wang 

National Chung-Cheng University 

160, San-Hsing, Min-Hsiung, Chia-Yi621, Taiwan 

E-mail address: thwang@math.ccu.edu.tw 

mailto:laurence@mat.uniroma1.it
mailto:pcarr4@bloomberg.com



