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GENERATING INTEGRABLE ONE DIMENSIONAL DRIFTLESS
DIFFUSIONS

PETER CARR, PETER LAURENCE AND TAI-HO WANG

ABSTRACT. A criterion on the diffusion coefficient is formulated that allows the
classification of driftless time and state dependent diffusions that are integrable in
closed form via point transformations. In the time dependent and state depen-
dent case a remarkable intertwining with the inhomogeneous Burger’s equation is
exploited. The criterion is constructive. It allows us to construct families of drift-
less diffusions parametrized by a rich class containing several arbitrary funtions for
which the solution of any initial value problem can be expressed in closed form. We
also derive an elegant form for the masters equation for infinitesimal symmetries,
previously considered only in the time homogeneous case.

Résumé Nous présentons une condition nécessaire et suffisante sur le coefficient
de diffusion g(z,t) d’une diffusion sans drift, afin que celle-ci puisse se réduire, par
des transformations ponctuelles des variables dépendentes et indépendantes, a la
forme canonique de Lie u; — %um + m%u =0ou A € R. Lie a démontré que celle-ci
est la forme canonique d’une diffusion dont le groupe de symétrie est de dimension
quatre ou six. Notre résultat complete donc celui de Lie, en donnant une condition
locale intrinseque sur g rendant possible une telle réduction, ainsi qu'une condition
constructive, dans la mesure ou elle nous permet de construire de fagon explicite la
solution fondamentale de I’equation correspondante.

Version Francaise abrégée

Considérons le probleme consistant a trouver la probabilité de transition d’une
diffusion

dxt - g(‘rht)th? te [O7T]

sur un espace de probabilité filtré (€2, B, P), ou W; est un mouvement Brownien uni-
dimensionel. Il est bien connu que résoudre ce probleme équivaut a déterminer la
solution fondamentale de I’équation rétrograde

1

avec condition finale

w(&,T) = 0¢(x). (2)
Un probleme de grande importance en physique et en mathématiques financieres est
de pouvoir exhiber cette solution fondamentale sous une forme explicite. Lie, voulant
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classifier toutes les équations aux dérivées partielles du second ordre qui puissent se
résoudre par un processus “d’intégration”, a démontré le théoreme suivant :

Proposition 1. (Lie [11]) Soit
L%y = uy + a(z, t)ugy + bz, t)u, + c(z,t)u =0 (3)

avec a(x,t) # 0. L’algébre de Lie principale Lp (c.a.d. l’algébre de Lie admise par I’
équation (3)) ayant pour coefficients a, b, ¢, admet les opérateurs de symétrie triviaux
u% et ¢(x,t)-2L, ot ¢ est une solution de (3) et peut se mettre sous la forme

ou’
Ur = vy + Z(T,y)v (4)
par le biais d’une transformation, appelée transformation d’équivalence de Lie, soit :
Y= Oé(l',t), T = ﬁ(t)a v = ’y(y,T)u(y, 7—)7 Qg 7A 0, G 7é 0. (5>

Si léquation (3) admet une extension de l’algébre de Lie principale par un opérateur
de symétrie supplémentaire, elle se réduit a la forme

Uy = Uy + Z(y)v. (6)

Si lalgebre s’étend par trois operateurs supplémentaires (la partie finie de l'algébre
est de dimension 4), elle se réduit a la forme

Uy — Uyy + EU =0 ou A estune constante. (7)

Si L, s’étend par cing opérateurs, I’ équation (3) se réduit a I’ équation de la chaleur
Uy — Uy = 0. (8)

Notre principal résultat est un critere sur le coefficient de diffusion, qui permet de
décider quand une diffusion peut se mettre sous une des formes (7) ou (8). Etant
donné que les diffusions considérées peuvent, comme dans le cas des diffusions CEV
ot g(z,t) = 177, 3 € R, étre dégénérées et que la transformation de Lie-Bluman
Yy = fax g(;t)dx’ + ((t), qui suppose l'intégrabilité de 1/g, n’est pas dans ces cas-
la bien définie, nous introduisons une classe de diffusions dégénérées qui n’est pas
la plus générale possible mais qui permet, sans peine, d’appliquer la transformation
de Lie-Bluman dans la plupart des cas rencontrés en physique et en mathématiques
financieres.

Definition 1. Soit I = (I,7) C R un intervalle, pouvant étre non borné. Soit Lu =
Uy — %gQ(x, )z = 0 une diffusion sur 1’ intervalle I. Supposons que g(z,t) > 0 soit
continu sur I. Définissons de fagon itérative un recouvrement fini U;[l;, ;] = U;il; = 1
de I avec pour centres associés m;, selon le procédé suivant:

e Choisissons my avec g(mq,t) # 0 et définissons ly et ry par

LL=infldzel / do’ el /m da’ |
= 1n X . —0Q 71 = Su i . xO .
' my 9(',1) o P my 9(@, 1)

- _ (h _da + _ (" _dx
et posons Ry = | Rf = |

my g(z',t)’ m1 g(a',t)”
e Ayant défini m;, Rf et I; pouri < iy, définissons m;,+1 en choisissant m; 41 €
I\ U2, I; avec g(miyi1,t) > 0 et par la suite en procédant comme ci-dessus.
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Definition 2. Nous disons qu’une diffusion Lu = 0 est modéremment degénérée si
l;, r; et m; peuvent étre choisis indépendement du temps et si ce recouvrement est

fini.

Proposition 2. Soit Lu = 0 une diffusion moderemment degénérée avec recouvre-
ment associéC {I; =[l;,r;] :i=1,--- ,n}. Soit H® = [ g(l (v, t)dy +m;,
avec § satisfaisant GO (YD (x,t),t) = g(x,t), y = Y0 )(x,t) fm g(z,t —L—da’ + DO ().
Pour chaque I; € C,

e Une condition nécessaire et suffisante afin qu’une diffusion modéremment
degénérée puisse se réduire a une forme canonique a quatre dz’mension est qu il
existe N = 0 et des coefficients AV, BOD, COD DO tels que DM —2AD DO =
BY et tels que pour chaque i, H® satzsfazt l’EDP

1 } 3 ;
H; — 9ty + ﬁ(Z)Hy =0 poury € (R; 7R;r) \ {D( )(t)}, 9)

et les conditions

H(DY + Ry t) =1;, HDY,t) = m;, H(DY + Rf 1) =
ot B9 = —(log a),,, avec o satisfaisant I’ équation

1 2@
ou= o+ (=
pour y € (R, RN\ {DWD(t)}. Notons que le produit d’une solution de (9) et
d’une solution de (10), c.a.d. H"aW | satisfait aussi a (10) pour y = DD(t).

+A@Oy+B“OwHW(0a=0 (10)

Ce résultat peut étre utilisé pour exhiber de nouvelles classes de diffusions dont
la solution fondamentale peut s’exprimer sous forme explicite. Une simple extension
de la méthode au cas avec drift met en lumiere la structure de groupe sous-jacente
du résultat de Feller [8] et une extension de certains résultats bien connus pour les
procéssus CEV, dans le cas ou leur coefficients peuvent dépendre du temps. Voir
Exemples 1 et 2 de la version anglaise.

English Version

Consider the problem of determining the transition probability of a one-dimensional
diffusion

dxt = g(xt,t)th, t e [O,T], XTg = 57

where W; is a standard Brownian motion with respect to an underlying probability
space (2, B, P). As is well known, under general conditions, this problem is equivalent
to finding the solution of the backward Kolmogorov equation for u(&,t,n,T)

1
ut+592(§,t)u§§ =0 (11)
with terminal condition

u(&,0,1,T) = 6,(). (12)
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In the setting of more general one dimensional diffusions, Sophus Lie [11] discovered
a classification of second order differential equations in two variables. A detailed
statement of this classification in the parabolic case can be found in the French version
of this note. Lie’s main result is that the symmetry algebra Lp of the equation

£“’b’°u = Ut — a(x, t)uxx - b(l’, t)uw - C(J?, t)u = 07 a>0 (13)

is the direct sum of two components Lp = L”; @ LY, where L¥ is generated by
symmetry operators of the form ¢(z,t)2 for ¢ an arbitrary solution of (13). Lie

showed that ££ is one, two, four or six dimensional. All such equations can be
reduced, by a transformation called Lie’s equivalence transformation, hereafter LET
(also known as a linear point transformation),

y=oa(z,t), 7=06(t), v="(y,Tu(y,7), az =0, B =0, (14)

to the form
1
Vg — §vyy + Z(t,y)v =0, (15)

called Lie’s canonical form. Z is called the potential term. Actually (13) can be
reduced to the form (15) without making a time change using a particular equivalence
transformation, the Lie-Bluman transformation defined in the sequel (see (17-18)). If
the finite component of the symmetry group is at least two dimensional Lie showed
that (13) can be put in canonical form with a potential term Z(y) independent of
t. At the other extreme, if ££ is six dimensional, the canonical form is the heat
equation, ie. Z = 0. All diffusion equations possessing a four dimensional symmetry
group can be transformed, by an equivalence transformation, to the form

1 A
v Uyt Ev =0 (16)
where \ is a nonzero constant. The fundamental solution of the above equation can
be shown to be (see [10])

_&y
Flt,y,€) = Iy € tI(n é—y)exp U

t Vi 2
where Kk = j:—d;“w, K is a normalization constant that ensures lim,_,o+ f&e F(t,y,&)d¢ =

1 and Z(k,-) is a modified Bessel function of order x. It is this class that will be the
main focus of the present paper which will be devoted to fully characterizing those
diffusion coefficients which are associated with the four dimensional symmetry class
and will also provide a constructive method for determining such coefficients. On
the other hand, no canonical form, i.e. no special choice(s) of potential Z, has been
identified to date characterizing all equations possessing a symmetry group of dimen-
sion 2, corresponding to the smallest non-trivial symmetry algebra. In this note we
concentrate on the important case b = ¢ = 0 of a driftless diffusion. Our results read-
ily extend beyond this case taking on however a more complicated and less intuitive
form. Although we do not classify driftless diffusions with two dimensional symmetry
group, we also provide in this note, for the first time in the time-dependent case, an
elegant form for the "master equation” (see (34)) and the latter is a significant step
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towards finding new classes of driftless diffusions with two dimensional symmetry
group and towards unifying previous special cases.

1. MAIN RESULTS

It is natural to ask the following questions:

o Question : Characterize the diffusion coefficients g(z,t) for which the corre-
sponding equation can be reduced to canonical form (16) for A = 0 or for
A = 0 by a point transformation.

Important examples, such as the case g(z,t) = #'*#, 3 € R, z > 0 that plays a central
role in mathematical finance, are mappable to the four dimensional class and are at
the same time degenerate diffusions. Introducing the Lie-Bluman transformation
(LBT), a special Lie equivalence transformation that can be used to transform (13)
to canonical form (15)
|
y=Y(z,t) = de’ +((t) change of independent variable, (17)
o g\&,
Yy 13, .
v = wexp Y, + 5 change of dependent variable, (18)
¢ g
where §(y,t) = g(Y '(z,t),t) and ((t) is an arbitrary function of ¢, (19)

we observe that when applying LBT to a diffusion degenerate at zero (for instance
CEV processes mentioned above) there are issues of non-integrability for values of
B > 0. That is why below we will introduce a slight modification of the Lie-Bluman
methodology that is better suited to deal with such degeneracies. Note also that
although LBT can be used to transform a diffusion equation with a diffusion coefficient
in a certain class into canonical form (15) with a particular potential Z associated
to a given symmetry class, this does not exclude that there may be a larger class
of diffusion coefficients that may be put into the same canonical form by a different
equivalence transformation. We are now in a position to state our main results. We
begin with a definition whose purpose is to split up the domain on which the diffusion
is being considered into several maximal subdomains in which LBT can be applied.
The following definition is flexible enough to account for most applications found in
practice. If the diffusion coefficient is pathological enough, the definition needs to be
generalized to include time dependent centers and countably infinite coverings.

Definition 3. Let I = (I,7) C R be an open (possibly infinite or semi-infinite)
interval. Let Lu = u; — %gQ(x, t)uze = 0 be a diffusion on the interval 1. Assume that
g(x,t) > 0 is continuous on I. Define iteratively a finite covering U;[l;,r;] = Ul = 1
of I with collection of centers m; as follows (with the convention that [l;,r;] = (I, 7]

if l; =1 and [l;,r;] = [l;,r) if r; = r hereafter):
e Choose m; where g(my,t) =0 and define Iy, ry and then Ry, R{ by
T dx/ x dw/

l{y=inf zel: >—-00 , rp=sup x€l:
mi g(x/7t) mi g(a’:/?t)

< +00
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_ gy " da!
Ry = ——, R{ = —.
m 9(2',1) m 9(2'1)

e Having defined m;, RE and I; for i < iy define mi,1 by picking mi,1 €
I\ U2, 1; with g(miy41,t) > 0 and proceed as before.

Definition 4. We say that Lu = 0 is a moderately degenerate diffusion if the l;, r;
and m;’s can be chosen independently of time and if the covering is finite.

Proposition 3. Let Lu = 0 be a moderately degenerate diffusion as in Defini-
tion 4 with associated natural covering C = {I; = [l;;r;] : i = 1,--- ,n}. Let
HO(y,t) = [} 39y, t)dy' + m;, where g9 satisfies §V(Y D (x,t),t) = g(x,t) and
y =Y (x,t)= I 1,7t) dx' + DY(t). For each I; € C,

g(x

(1) a necessary and sufficient criterion for a moderately degenerate driftless diffu-
sion to be reducible to a four dimensional canonical form is that there exist a
ND =0, coefficients AD, BO_ @ DO with DO — 24O DO = BO gych that
HY satisfies the partial differential equation

1 . _ i

H, — éHyy + 5(1)Hy =0, for ye (Ri aR:r) \ {D( )(t)}> (20)
subject to the conditions (with l; < m; <r;)

H(D(i) + Ri_,t) _ li7H(D(i),t) — mi,H(D(i) + R;r,t) =7,

where 3% = —(log ozéi)) and where oz(;) satisfies the equation
1 2@ ) ) .
_Z .~ (%) 2 (%) (%) -
 — S0y + PENIGIDIE + AV )y + BY (t)y+CY(t) a=0 (21)

fory € (R, R\ {DW(t)}. Note that the product of a solution of (20) and
a solution of (21), i.e. o\ := HOaY) also satisfies (21) when y = DD (t),
hence HW is the ratio of two solutions of (21).

(2) a necessary and sufficient criterion for a moderately degenerate driftless dif-
fusion to be reducible to a siz dimensional canonical form is that H® satisfies
the partial differential equation

Hy— SHyy + 00H, =0, fory € (R7, B\ (DY (1)) (22)
subject to the conditions
H(DY + R, t)=1;, H(DY t) = m;, HDY + RS, t) = r;
where BV = —(log a¥), and o satisfies the equation
1

oy — Sy + (AD(#)y? + BO(t)y + C(t)) a = 0. (23)

Here AW B9 and C% are arbitrary time dependent Junctions. The general

i)
solution of equation (22) can be expressed as the ratio % of two arbitrary

solutions agi) and ag) of equation (23) where B9 in (22) is given by B =

—(logad),.
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We shall restrict ourselves to any of the subintervals I € C in the following therefore
the dependence of the index ¢ will be suppressed for notational simplicity.

Remark 1. Having determined the solution H(y,t) one obtams the diﬁusion coeffi-
cient § = H,, in the (implicit) y variable, notes that H(y,t) fD gy, t)dy +m so

y=Y(z,t) < x = H(y,t), i.e. one inverts the now known functwn H(y,t) and then
sets g(x,t) = g(Y(x,t),t). The additional conditions on the endpoints and center of
the I; interval ensure that such a process is a self-consistent one. In some cases the
resulting H will be a weak solution (appropriately defined) of the equation throughout
the entire interval but this will not generally be the case. We also remark that, if the
conditions on g(z,t) are strengthened to g € C* then by construction , R; = —oo
except possibly for the leftmost subinterval and R} = 400 except possibly for the
rightmost subinterval.

Remark 2. In the theory of the Schroedinger equations and reduction to Liouville
form a key role is played by the equation {z,r} = 2J(r) where {z,r} is the Schwarzian
derivative. A classical theorem due to Schwarz [9] says that the solution of this equa-
tion can be expressed as the ratio of two independent solutions of V" (t) + J(r)y = 0.
As far as we can tell this observation (constructive procedure), in the context of para-
bolic equations with time dependent coefficients, appears to be new even in the context
of reducibility to the heat equation. A related remark, generalizing results in Albanese
et al [1] to the time dependent case, was made by Albanese [3]. Lastly note that the
relation between (22) and (23) holds independently of the particular potential chosen
and so may prove to be valuable in the case of 2D symmetry group as well.

Proposition 4. (Time independent case) In the special case in which g(x,t) is time
independent, Proposition 3 can be put in the following form. Let v =log(g),.

(1) A necessary and sufficient condition for a moderately degenerate driftless dif-
fusion with time independent diffusion coefficient to have a four dimensional
symmetry group is that

1, A
— = ——"—— + A(ly—-D)*+C,
Y2 Ty Dy v=D)
where A =0, A,C and D are constants.

(2) A necessary and sufficient condition for a moderately degenerate driftless dif-
fusion with time independent diffusion coefficient to have a siz dimensional
symmetry group s that

1
vy—§v2:Ay2+By+C’,

where A and B and C are constants.

The diffusion coefficient as a function of x, ¢ can then be reconstructed in the same
way as described in Remark 1 above.

Discussion Note that Proposition 3 allows the construction of a rich class of
solvable driftless diffusions. This richness is characterized by the freedom to choose
the time dependent parameters A, B, C, D in (21) and (23) as well as by the freedom
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in the choice of initial condition o? and aj of the solutions in (21) and (23). (An
illustration is given in Proposition 5.) In the case of the reduction to the heat equation,
closely related results to the above have been obtained by Bluman [4]. In the case of
time independent g, there are related results by Albanese and Campolieti [2].

Proposition 5. Let J = (0,00), A > —%, k = YIS gnd of, i = 1,2, be positive
integrable functions defined on J and
ye é’y
onfy. 1) = YT VEesn —5 al(e)d
0
y2
ye @ < Ly £
o) = T T & e -5 ad(e)de,
0

where L, and IC,; are the modified Bessel functions of first and second kind of order
k respectively. Define

(1) _ JoS T (%) ﬁe—%a%)df
Oég(@/,i) OO]C (g) \/_e 2ta2 f

t
Then we have, for allt > 0, H(0+,t) = 0, H(co ) = 00, my = 0 and for the
parameters in the potential A= B=C =D =0,\ > —= and H,(y,t) >0 fory e J.
Note that the change of variable v = H(y,t) t ansforms the positive half line J onto
itself. Define g by H, and note that

Hy,t) | [ Toer (56) €265 00()de L e K (%)53/2e-§a0<5>d5
t oo To (%) VEe wms I K (K) VEe 5 () de

Hence, according to Proposition 3, we obtain a class of diffusion coefficients g(z,t)
(parametrized by the initial conditions oY and oY) on the positive half line, which
can be transformed to the canonical form (16) for the equations of four dimensional
symmetry group, by expressing § in the original variables, i.e. by letting g(x,t) =
g(H (x,1),1).

H(y,t) =

gy, t) =

Recently Spichak and Stognii [15] have given a complete answer in a complementary
setting concerning forward Kolmogorov equations with ¢rivial principal part (diffusion
coefficient equal %) and arbitrary time dependent drift: Find all drift coefficients b
for diffusions of the form £~/27b=bry = 9,y — Tu,, — (b(z,t)u), = 0, which can be
reduced by point transformations to the form (16) for A = 0 and for A = 0. They
have established the following proposition

Proposition 6. (Spichak and Stognii) The class of operators of the form £L=1/%=b=bs
admitting a four-dimensional algebra of invariance is described by the condition

1 A
by + §bm + bb, = G HOP + F(t)x + G(t), (24)

where A = 0 and where H(t), F(t), G(t) are arbitrary functions restricted only by the
condition G = H" — FH.
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In their paper, Spichak and Stognii start with the general forward equation u; —
(at)ze — (bu), = 0 and “reduce” this more general equation to that with a = 3
and arbitrary b by appealing to a random time change, due to Dynkin. Thus the
role of the original diffusion coefficient in the reducibility is not detectable in their
approach. Moreover, since stochastic time changes cannot, to our knowledge, be
recast as point or equivalence transformations, Spichak and Stognii’s results cannot
easily be adapted to obtain a criterion of the kind presented in the present paper and
regarding reducibility criteria on the diffusion coefficient. In the case of reducibility
to the heat equation general criteria were given by Bluman [4]. However, in his
approach, the decoupling into H equation in y variable and generalization of the
Schwarz procedure does not explicitly appear .

2. IDEA OF PROOFS OF MAIN RESULTS

In the proof of the main results there is an interaction between the following ingre-
dients

e LBT (17)-(18) is a key ingredient in establishing the sufficiency part of Propo-
sition 3.

e The Lie-Ovsiannikov equivalence transformation (LOT) defined below (see
(26)). This is needed to establish the necessity of our criterion in Proposition
3. The key property thereof that is exploited is that the Lie-Ovsiannikov
transformations are the most general transformations that map an equation
in Lie canonical form back into the same form (with a, in general, different
potential). Combining this with LBT leads to a simple proof of necessity.

Proposition 7. Given two diffusions in canonical form

1 1 _
u = Uy + Z(ty)u=0(x),  ur = Sugy + Z(t,5)u = 0 () (25)

there exists a special class of point transformation which map (*) to (**):

a

t=d*(t)dt, y=a(t)y+0b(t), u=uexp <2a

y* + gy + c) , (26)
where a, b and c are three arbitrary functions of t, transforms

ut—%uyy—l—Z(t,y)u:O to at—%agngZa:O (27)
in the new variables. The potentials Z and Z are related by

_ ai — 242 ab—2ab o  b?
CLQZ:Z+TQQ+—2y+C————
a a a

The importance of the latter transformation is illustrated by the right up and down
arrows in diagram 1.
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2

Corollary 1. (Lie-Ouvsiannikov) In the special case where Z(t,j) = 2, the most

general Z(t,y) equivalent to it is of the form

A ai —24a> , ab—2ab ,+a+i)2
— _————— _C — —
(y+2)? 22 7 2 7 a

where a(t),b(t), c(t) are arbitrary functions.

<

(28)

Corollary 2. In the special case where Z(t,7) = z;%, the most general Z(t,y) equiv-
alent to it is of the form

(y—i;\)(t)?) + A(t)y* + B(t)y + C(t), (29)

where
B(t) = D — 2AD, (30)
but A, B,C, D are otherwise arbitrary.

Remark 3. Corollary 1 is proved in [14]. Corollary 2 appears to be new. It explains
the appearance of restriction (30) in Proposition 3.

The strategy we will use in order to give a complete characterization of all diffusion
coefficients that can be mapped by some arbitrary Lie equivalence transformation
(ie. LET but not necessarily LBT) to the canonical form (16) is to exploit the above
ingredients in a way illustrated by the following diagram.

Driftless diffusion LBT R VD 0‘
with diffusion coefficient ¢ I

A

U = Uy + [@T—D(t»?
+A(t)y* + B(t)y + C(t)Ju=0

Diagram 1
Outline of the proof of Proposition 3.
Part I: Sufficiency The proof of sufficiency is done by applying the following argu-
ment subinterval by subinterval, hence we shall suppress the dependence of the index
7 in the following for notational simplicity. To establish the sufficiency of conditions
(20)-(21) for any subinterval I € C, we need to show that whenever these conditions
are satisfied, it is possible to find a point transformation that maps the equation (11)
to an equation of the form (21) for v = e/Pu. This is shown by using the LBT to
map the original equation to the equation
Yy

1 1- 1-
Ut——Uyy—i- 562—§6y+8t

3d =0
5 )ﬁyv ,

D(t
where 3 = y; + %%’. A key step is to re-express [ in the (y,t) variables as B =
Hy—1

H—iHyy where H = | g(t) g+ m. In order for the potential term to equal the target
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potential term (29), we need to enforce the condition
1~ 1~ v
P oSBra By
2 2™ D(t) (y — D)?

Now, note that (31) is an inhomogeneous viscous Burger’s equation for . Using the
Hopf-Cole transformation 3 = —log(«), is transformed to (21) for a.

+ A(t)y* + B(t)y + C(t). (31)

Part II: Necessity To show necessity one can argue as follows: If the original
driftless diffusion has a four dimensional symmetry group, any equivalence transfor-
mation that reduces it to canonical form, will necessarily reduce it to a canonical form
with potential (29). This is due to the fact that equivalence transformations preserve
the order of the symmetry group and equations in canonical form which have four
dimensional symmetry group necessarily have a potential of precisely the form (29).

Example 1. Singular diffusion. Feller [8] considered the (singular) diffusion equa-
tion of the form

up — (a2U) gy + ((bx + c)u)y, =0 (32)
on the half line {0 < x < oo}, where a,b,c are constants, a > 0. Note that (32) is a
moderately degenerate diffusion with I = (0,00). By applying the change of variables
(17) and (18), (32) is transformed to the following canonical form in Proposition 4.
1 1 ¢ 1 c 3 1 v, b
a a

Ut_§vyy 5 _5 ?—ng +% U:O,

2

where y = fox \/;(TIdx’ = \/%z, y € (0,00). Hence the fundamental solution given

in [8] (see Lemma 9) can be derived by reversing the transformation (modulo the
consideration of the boundary conditions). In the cases that c = § or ¢ = 37"“, (32) is
sixz dimensional and hence can be further transformed to the heat equation by LOT.

Example 2. Time dependent CEV process. A shifted time dependent CEV
process generalizing processes widely used in mathematical finance of the form

m—%ﬁ@ﬂS+a@W%w—(Nﬂ—d@xs+a®ﬁ@+ruzo (33)

when reduced to canonical form by an LBT transformation is easily seen to have a
potential of the form (29) with D =0 and B = 0. Thus its fundamental solution can
be expressed in closed form providing an extension and easy proof of a result obtained
recently by Lo and Hui [12]. Though (33) is not driftless unless r = d it can be treated
by trivial modifications of the results in Proposition 3.

Master Equation for symmetry group

X = 7(t)0 + &(2, )0, + ¢, u, 1), ¢ = uf(z,t)
is, as usual, the infinitesimal generator of the symmetry group. It is easily shown that

¢ has the form Ttét)g(x, t)G(x, t)—g(z, t)Gy(z, t)7(t)+c(t) where G(z,t) = [* g(;,’t) dx’.
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One then shows that the master equation for the determination of the symmetry group
is of the form:

1
9(P1e — qz)c — cu + g(Pse — @s52)T + 9(P3t + D5 — Q32) T + §G7_ttt =0,

where ¢; = 5¢°p;, and

:gﬂ_& :_1 :_iG
2! 5 7 D2 g D4 29
1lgG 1Gy 1 1g.
= TS 5 P n zzG VR
bs 2 g * 2 g +4g +4 g
G G 1g, 1
bs = - + gt t+_& - _g:vat'

g ¢ 2g 2

This generalizes the results of Cicogna and Vitali (see equation 14, p. 454 in [7] and

[6]) to the time dependent case. Next one studies the master equation ﬁxt = ﬁm and
finds after a considerable amount of computation and manipulation that it can be
cast into the following elegant form

c(U, = a[B(D(t),)]) = (y — D)eu + (Uy + D'U, — D" (y — D) + D"D')r
y

- D 3 D)2 — D)?
+ TUy+U—§D”(y—D)+% n+%rm=2(t) (34)

where U = %@ — %By + O fly)(t) Bdy as in (31), 8= —HﬁH—iHyy as in Proposition 3 and
Y(t) is an arbitrary function of ¢. This simple form of the masters equation appears
to be new even in the time independent case. Since in the case of two dimensional
symmetry there is no all inclusive form for the solvable cases of the canonical potential
our hope is that this new form of the master equation can be exploited in future work
in determining new classes of solvable two dimensional driftless diffusions.

Acknowledgements We wish to thank Jean Damien Arterit for his assistance in
preparing the French version of this note.
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