Intro to Sensors

Overview

- Sensors?
- Commonly Detectable Phenomenon
- Physical Principles How Sensors Work?
- Need for Sensors
- Choosing a Sensor
- Examples

Sensors?

- American National Standards Institute
 - A device which provides a usable output in response to a specified measurand

- A sensor acquires a physical quantity and converts it into a signal suitable for processing (e.g. optical, electrical, mechanical)
- Nowadays common sensors convert measurement of physical phenomena into an electrical signal
- Active element of a sensor is called a transducer

Transducer?

A device which converts one form of energy to another

When input is a physical quantity and output electrical \rightarrow Sensor

When input is electrical and output a physical quantity \rightarrow Actuator

Sensors

Physical parameter L Electrical Output Actuators Electrical Input Physical Output <u>e.g. Piezoelectric</u>: Force -> voltage Voltage-> Force => Ultrasound!

Microphone, Loud Speaker

Commonly Detectable Phenomena

- •Biological
- •Chemical
- •Electric
- •Electromagnetic
- •Heat/Temperature
- •Magnetic
- •Mechanical motion (displacement, velocity, acceleration, etc.)
- •Optical
- •Radioactivity

Common Conversion Methods

•Physical

-thermo-electric, thermo-elastic, thermo-magnetic, thermo-optic

-photo-electric, photo-elastic, photo-magnetic,

-electro-elastic, electro-magnetic

-magneto-electric

•Chemical

-chemical transport, physical transformation, electro-chemicalBiological

-biological transformation, physical transformation

Commonly Measured Quantities

Stimulus	Quantity	
Acoustic	Wave (amplitude, phase, polarization), Spectrum, Wave Velocity	
Biological & Chemical	Fluid Concentrations (Gas or Liquid)	
Electric	Charge, Voltage, Current, Electric Field (amplitude, phase, polarization), Conductivity, Permittivity	
Magnetic	Magnetic Field (amplitude, phase, polarization), Flux, Permeability	
Optical	Refractive Index, Reflectivity, Absorption	
Thermal	Temperature, Flux, Specific Heat, Thermal Conductivity	
Mechanical	Position, Velocity, Acceleration, Force, Strain, Stress, Pressure, Torque	

Physical Principles: Examples

• Amperes's Law

A current carrying conductor in a magnetic field experiences a force (e.g. galvanometer)

Curie-Weiss Law

- There is a transition temperature at which ferromagnetic materials exhibit paramagnetic behavior

• Faraday's Law of Induction

A coil resist a change in magnetic field by generating an opposing voltage/current (e.g. transformer)

Photoconductive Effect

- When light strikes certain semiconductor materials, the resistance of the material decreases (e.g. photoresistor)

Choosing a Sensor

Environmental Factors	Economic Factors	Sensor Characteristics
Temperature range Humidity effects Corrosion Size Overrange protection Susceptibility to EM interferences Ruggedness Power consumption	Cost Availability Lifetime	Sensitivity Range Stability Repeatability Linearity Error Response time Frequency response
Self-test capability		1 / 1

Need for Sensors

- Sensors are pervasive. They embedded in our bodies, automobiles, airplanes, cellular telephones, radios, chemical plants, industrial plants and countless other applications.
- Without the use of sensors, there would be no automation !!
 - Imagine having to manually fill Poland Spring bottles

Motion Sensors

- Monitor location of various parts in a system
 - absolute/relative position
 - angular/relative displacement
 - proximity
 - acceleration
- Principle of operation
 - Magnetic, resistive, capacitance, inductive, eddy current, etc.

Potentiometer

Strain Gauge: Motion, Stress, Pressure

Strain gauge is used to measure deflection, stress, pressure, etc.

The resistance of the sensing element changes with applied strain

A Wheatstone bridge is used to measure small changes in the strain gauge resistance

Temperature Sensor: Bimetallic Strip

• Bimetallic Strip

 $L = L_0[1 + \beta(T - T_0)]$

- Application
 - Thermostat (makes or breaks electrical connection with deflection)

Temperature Sensor: RTD

• Resistance temperature device (RTD)

 $R = R_0[1 + \alpha(T - T_0)]$

$$R = R_0 e^{\gamma \left[\frac{1}{T} - \frac{1}{T_0}\right]}$$

Other Temperature Sensors

• Thermistor

$$R \propto \exp\left(\frac{E_g}{2kT}\right)$$

• Thermocouple: Seeback effect to transform a temperature difference to a voltage difference

Capacitance Transducers—I

• Recall, capacitance of a parallel plate capacitor is:

- A: overlapping area of plates (m^2)
- d: distance between the two plates of the capacitor (m)
- $-\varepsilon_0$: permittivity of air or free space 8.85pF/m
- $-\varepsilon_r$: dielectric constant

capacitor

- •The following variations can be utilized to make capacitance-based sensors.
 - -Change distance between the parallel electrodes.
 - -Change the overlapping area of the parallel electrodes.
 - -Change the dielectric constant.

Accelerometer

- Accelerometers are used to measure acceleration along one or more axis and are relatively insensitive to orthogonal directions
- Applications
 - Vibrations, blasts, impacts, shock waves
 - Air bags, washing machines, heart monitors, car alarms
- Mathematical description is beyond the scope of this presentation.

Light Sensor

- Light sensors are used in cameras, infrared detectors, and ambient lighting applications
- Sensor is composed of photoconductor such as a photoresistor, photodiode, or phototransistor

Photoresistors

- Light sensitive variable resistors.
- Its resistance depends on the intensity of light incident upon it.
 - Under dark condition, resistance is quite high (M Ω : called dark resistance).
 - Under bright condition, resistance is lowered (few hundred Ω).
- Response time:
 - When a photoresistor is exposed to light, it takes a few milliseconds, before it lowers its resistance.
 - When a photoresistor experiences removal of light, it may take a few seconds to return to its dark resistance.
- Photoresisotrs exhibit a nonlinear characteristics for incident optical illumination versus the resulting resistance. $\log_{10} R = \alpha - \beta \log_{10} P$

Symbol

Magnetic Field Sensor

 Magnetic Field sensors are used for power steering, security, and current measurements on transmission lines

• Hall voltage is proportional to magnetic field

Ultrasonic Sensor

- Ultrasonic sensors are used for position measurements
- Sound waves emitted are in the range of 2-13 MHz
- Sound Navigation And Ranging (SONAR)
- Radio Dection And Ranging (RADAR) – ELECTROMAGNETIC WAVES !!

Photogate

- Photogates are used in counting applications (e.g. finding period of period motion)
- Infrared transmitter and receiver at opposite ends of the sensor

