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Principles of Electromechanical Energy 
Conversion

• Why do we study this?
– Electromechanical energy conversion theory is the 

cornerstone for the analysis of electromechanical motion 
devices.

– The theory allows us to express the electromagnetic force 
or torque in terms of the device variables such as the 
currents and the displacement of the mechanical system.

– Since numerous types of electromechanical devices are 
used in motion systems, it is desirable to establish methods 
of analysis which may be applied to a variety of 
electromechanical devices rather than just electric 
machines.
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• Plan
– Establish analytically the relationships which can be used 

to express the electromagnetic force or torque.

– Develop a general set of formulas which are applicable to 
all electromechanical systems with a single mechanical 
input. 

– Detailed analysis of:

• Elementary electromagnet

• Elementary single-phase reluctance machine

• Windings in relative motion
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Lumped Parameters vs. Distributed Parameters

• If the physical size of a device is small compared to 
the wavelength associated with the signal 
propagation, the device may be considered lumped 
and a lumped (network) model employed.

• Consider the electrical portion of an audio system:
– 20 to 20,000 Hz is the audio range

v

f
λ =

λ= wavelength (distance/cycle)
v = velocity of wave propagation (distance/second) 
f = signal frequency (Hz)

186,000 miles/second
9.3 miles/cycle

20,000 cycles/second
λ = =



Actuators & Sensors in Mechatronics
Electromechanical Motion Fundamentals

Kevin Craig
90

Conservative Force Field

• A force field acting on an object is called 
conservative if the work done in moving the object 
from one point to another is independent of the path 
joining the two points.

1 2 3
ˆ ˆ ˆF Fi F j F k= + +

r

C

F dr is independent of path if and only if  F 0 or F⋅ ∇× = = ∇φ∫
uur rr r

( )

( )
( )

( )

( )
( )2 2 2 2 2 2

1 1 1 1 1 1

1 2 3

x ,y ,z x ,y ,z

2 2 2 1 1 1x ,y ,z x ,y ,z

F dr     is an exact differential

Fdx F dy F dz d      where (x, y,z)

F dr d x , y , z x , y , z

⋅
+ + = φ φ

⋅ = φ = φ − φ∫ ∫

uurr

uurr
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Energy Balance Relationships

• Electromechanical System
– Comprises

• Electric system

• Mechanical system

• Means whereby the electric and mechanical systems can interact

– Interactions can take place through any and all 
electromagnetic and electrostatic fields which are common 
to both systems, and energy is transferred as a result of this 
interaction.

– Both electrostatic and electromagnetic coupling fields may 
exist simultaneously and the system may have any number 
of electric and mechanical subsystems.
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• Electromechanical System in Simplified Form:

– Neglect electromagnetic radiation

– Assume that the electric system operates at a frequency 
sufficiently low so that the electric system may be 
considered as a lumped-parameter system

• Energy Distribution

– WE = total energy supplied by the electric source (+)

– WM = total energy supplied by the mechanical source (+)

Mechanical
System

Electric
System

Coupling
Field

E e eL eS

M m mL mS

W W W W

W W W W

= + +

= + +
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– WeS = energy stored in the electric or magnetic fields which 
are not coupled with the mechanical system

– WeL = heat loss associated with the electric system, 
excluding the coupling field losses, which occurs due to:

• the resistance of the current-carrying conductors

• the energy dissipated in the form of heat owing to hysteresis, eddy 
currents, and dielectric losses external to the coupling field

– We = energy transferred to the coupling field by the electric 
system

– WmS = energy stored in the moving member and the 
compliances of the mechanical system

– WmL = energy loss of the mechanical system in the form of 
heat due to friction

– Wm = energy transferred to the coupling field by the 
mechanical system
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• WF = Wf + WfL = total energy transferred to the 
coupling field
– Wf = energy stored in the coupling field

– WfL = energy dissipated in the form of heat due to losses 
within the coupling field (eddy current, hysteresis, or 
dielectric losses)

• Conservation of Energy ( )
( )

f fL E eL eS

M mL mS

f fL e m

W W W W W

W W W

W W W W

+ = − − +

− −

+ = +
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• The actual process of converting electric energy to 
mechanical energy (or vice versa) is independent of:
– The loss of energy in either the electric or the mechanical 

systems (WeL and WmL)

– The energies stored in the electric or magnetic fields which 
are not in common to both systems (WeS)

– The energies stored in the mechanical system (WmS)

• If the losses of the coupling field are neglected, then 
the field is conservative and Wf = We + Wm .

• Consider two examples of elementary 
electromechanical systems
– Magnetic coupling field

– Electric field as a means of transferring energy
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v = voltage of electric source
f = externally-applied mechanical 

force
fe = electromagnetic or 

electrostatic force
r = resistance of the current-

carrying conductor
= inductance of a linear 

(conservative) 
electromagnetic system 
which does not couple 
the mechanical system

M = mass of moveable member
K = spring constant
D = damping coefficient
x0 = zero force or equilibrium 

position of the mechanical 
system (fe = 0, f = 0)

l Electromechanical System with Magnetic Field

Electromechanical System with Electric Field
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f

di
v ri e

dt
= + +l voltage equation that describes the 

electric systems; ef is the voltage drop 
due to the coupling field

( )
2

0 e2

d x dx
f M D K x x f

dt dt
= + + − − Newton’s Law of Motion

( )

( )

E

M

W vi dt

dx
W f dx f dt

dt

=

 = =  
 

∫

∫ ∫

Since power is the time rate of 
energy transfer, this is the total 
energy supplied by the electric 

and mechanical sources

f

di
v ri e

dt
= + +l

( )EW vi dt= ∫

( ) ( )2
E f

eL eS e

di
W r i dt i dt e i dt

dt

W W W

 = + + 
 

= + +

∫ ∫ ∫l
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( )
2

0 e2

d x dx
f M D K x x f

dt dt
= + + − −

( )M

dx
W f dx f dt

dt
 = =  
 ∫ ∫

( ) ( )
22

M 0 e2

d x dx
W M dx D dt K x x dx f dx

dt dt

   = + + − −  
  

∫ ∫ ∫ ∫

WmS
WmL Wm

( ) ( )f e m f eW W W e i dt f dx= + = −∫ ∫ total energy transferred to 
the coupling field

Σ
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• These equations may be readily extended to include 
an electromechanical system with any number of 
electrical and mechanical inputs and any number of 
coupling fields.

• We will consider devices with only one mechanical 
input, but with possibly multiple electric inputs. In all 
cases, however, the multiple electric inputs have a 
common coupling field.
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J K

f ej mk
j 1 k 1

W W W
= =

= +∑ ∑

J J

ej fj j
j 1 j 1

W e i dt
= =

=∑ ∑∫

K K

mk ek k
k 1 k 1

W f dx
= =

= −∑ ∑∫

Total energy supplied to the 
coupling field

Total energy supplied to 
the coupling field from the 

electric inputs

Total energy supplied to 
the coupling field from the 

mechanical inputs

J

f fj j e
j 1

J

f fj j e
j 1

W e i dt f dx

dW e i dt f dx

=

=

= −

= −

∑∫ ∫

∑

With one mechanical input 
and multiple electric inputs, 
the energy supplied to the 

coupling field, in both 
integral and differential form



Actuators & Sensors in Mechatronics
Electromechanical Motion Fundamentals

Kevin Craig
101

Energy in Coupling Field

• We need to derive an expression for the energy stored 
in the coupling field before we can solve for the 
electromagnetic force fe.

• We will neglect all losses associated with the electric 
or magnetic coupling field, whereupon the field is 
assumed to be conservative and the energy stored 
therein is a function of the state of the electrical and 
mechanical variables and not the manner in which the 
variables reached that state.

• This assumption is not as restrictive as it might first 
appear.
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– The ferromagnetic material is selected and arranged in 
laminations so as to minimize the hysteresis and eddy 
current losses.

– Nearly all of the energy stored in the coupling field is 
stored in the air gap of the electromechanical device.  Air is 
a conservative medium and all of the energy stored therein 
can be returned to the electric or mechanical systems.

• We will take advantage of the conservative field 
assumption in developing a mathematical expression 
for the field energy.  We will fix mathematically the 
position of the mechanical system associated with the 
coupling field and then excite the electric system with 
the displacement of the mechanical system held fixed.
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• During the excitation of the electric inputs, dx = 0, 
hence, Wm is zero even though electromagnetic and 
electrostatic forces occur.

• Therefore, with the displacement held fixed, the 
energy stored in the coupling field during the 
excitation of the electric inputs is equal to the energy 
supplied to the coupling field by the electric inputs.

• With dx = 0, the energy supplied from the electric 
system is:

J

f fj j
j 1

W e i dt
=

= ∑∫

J

f fj j e
j 1

W e i dt f dx
=

= −∑∫ ∫
0
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• For a singly excited electromagnetic system:

( )

f

f

d
e

dt

W i d    with dx 0

λ
=

= λ =∫
( )fW i d= λ∫

Graph
Stored energy and coenergy in 

a magnetic field of a singly 
excited electromagnetic 

device

Area represents energy stored 
in the field at the instant 
when λ = λa and i = ia.

( )cW di= λ∫
Area is called 

coenergy

c fi W Wλ = +

For a linear magnetic system:
Curve is a straight line and

f c

1
W W i

2
= = λ
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• The λi relationship need not be linear, it need only be 
single-valued, a property which is characteristic to a 
conservative or lossless field.

• Also, since the coupling field is conservative, the 
energy stored in the field with λ = λa and i = ia is 
independent of the excursion of the electrical and 
mechanical variables before reaching this state.

• The displacement x defines completely the influence 
of the mechanical system upon the coupling field; 
however, since λ and i are related, only one is needed 
in addition to x in order to describe the state of the 
electromechanical system.



Actuators & Sensors in Mechatronics
Electromechanical Motion Fundamentals

Kevin Craig
106

• If i and x are selected as the independent variables, it 
is convenient to express the field energy and the flux 
linkages as ( )

( )
f fW W i,x

i, x

=

λ = λ

( ) ( )

( )

i, x i ,x
d di dx

i x
i, x

d di   with dx = 0
i

∂λ ∂λ
λ = +

∂ ∂
∂λ

λ =
∂

( ) ( ) ( )i

f 0

i, x , x
W i d i di d

i

∂λ ∂λ ξ
= λ = = ξ ξ

∂ ∂ξ∫ ∫ ∫

Energy stored 
in the field of a 
singly excited 

system
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• The coenergy in terms of i and x may be evaluated as

• For a linear electromagnetic system, the λi plots are 
straightline relationships.  Thus, for the singly excited 
magnetically linear system,                        , where 
L(x) is the inductance.

• Let’s evaluate Wf(i,x).

( ) ( ) ( )
i

c 0
W i, x i, x di , x d= λ = λ ξ ξ∫ ∫

( ) ( )i, x L x iλ =

( )

( )

( ) ( ) ( )
i 2

f 0

i, x
d di   with dx = 0

i
d =L x di

1
W i,x L x d L x i

2

∂λ
λ =

∂
λ

= ξ ξ =∫
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• The field energy is a state function and the expression 
describing the field energy in terms of the state 
variables is valid regardless of the variations in the 
system variables.

• Wf expresses the field energy regardless of the 
variations in L(x) and i. The fixing of the mechanical 
system so as to obtain an expression for the field 
energy is a mathematical convenience and not a 
restriction upon the result.

( ) ( ) ( )
i 2

f 0

1
W i,x L x d L x i

2
= ξ ξ =∫
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• In the case of a multiexcited electromagnetic system, 
an expression for the field energy may be obtained by 
evaluating the following relation with dx = 0:

• Since the coupling field is considered conservative, 
this expression may be evaluated independent of the 
order in which the flux linkages or currents are 
brought to their final values.

• Let’s consider a doubly excited electric system with 
one mechanical input.

J

f j j
j 1

W i d
=

= λ∑∫

( ) ( ) ( )f 1 2 1 1 1 2 2 2 1 2W i ,i , x i d i , i , x i d i , i , x      with dx 0 = λ + λ = ∫
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• The result is:

• The first integral results from the first step of the 
evaluation with i1 as the variable of integration and 
with i2 = 0 and di2 = 0.  The second integral comes 
from the second step of the evaluation with i1 equal to 
its final value (di1 = 0) and i2 as the variable of 
integration. The order of allowing the currents to 
reach their final state is irrelevant.

( ) ( )

( ) ( )

1

2

i 1
f 1 2 0

i 1 1 2 1
10

, 0, x
W i ,i , x d

i , , x i , , x
i d

∂λ ξ
= ξ ξ +

∂ξ

 ∂λ ξ ∂λ ξ
+ ξ ξ ∂ξ ∂ξ 

∫

∫
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• Let’s now evaluate the energy stored in a 
magnetically linear electromechanical system with 
two electrical inputs and one mechanical input.

• The self-inductances L11(x) and L22(x) include the 
leakage inductances.

• With the mechanical displacement held constant (dx 
= 0):

( ) ( ) ( )
( ) ( ) ( )

1 1 2 11 1 12 2

2 1 2 21 1 22 2

i , i , x L x i L x i

i , i , x L x i L x i

λ = +

λ = +

( ) ( ) ( )
( ) ( ) ( )

1 1 2 11 1 12 2

2 1 2 21 1 22 2

d i , i , x L x di L x di

d i , i , x L x di L x di

λ = +

λ = +
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• Substitution into:

• Yields:

( ) ( )

( ) ( )

1

2

i 1
f 1 2 0

i 1 1 2 1
10

, 0, x
W i ,i , x d

i , , x i , , x
i d

∂λ ξ
= ξ ξ +

∂ξ

 ∂λ ξ ∂λ ξ
+ ξ ξ ∂ξ ∂ξ 

∫

∫

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2i i

f 1 2 11 1 12 220 0

2 2
11 1 12 1 2 22 2

W i ,i , x L x d i L x L x d

1 1
L x i L x i i L x i

2 2

 = ξ ξ + + ξ ξ 

= + +

∫ ∫
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• It follows that the total field energy of a linear 
electromagnetic system with J electric inputs may be 
expressed as:

( )
J J

f 1 j pq p q
p 1 q 1

1
W i , , i , x L i i

2 = =

= ∑∑…
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Electromagnetic and Electrostatic Forces

• Energy Balance Equation:

• To obtain an expression for fe, it is first necessary to 
express Wf and then take its total derivative. The total 
differential of the field energy is required here.

J

f fj j e
j 1

J

f fj j e
j 1

J

e fj j f
j 1

W e i dt f dx

dW e i dt f dx

f dx e i dt dW

=

=

=

= −

= −

= −

∑∫ ∫

∑

∑
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• The force or torque in any electromechanical system 
may be evaluated by employing:

• We will derive the force equations for electro-
mechanical systems with one mechanical input and J
electrical inputs.

• For an electromagnetic system:

• Select ij and x as independent variables:

f e mdW dW dW= +

J

e j j f
j 1

f dx i d dW
=

= λ −∑

( )
( )

f f

j j

W W i , x

i , x

=

λ = λ

r
r( ) ( )

( ) ( )

J
f f

f j
j 1 j

J
j j

j n
n 1 n

W i , x W i , x
dW di dx

i x

i , x i , x
d di dx

i x

=

=

 ∂ ∂
 = +

∂ ∂ 
 
 ∂λ ∂λ
 λ = +

∂ ∂ 
 

∑

∑

r r

r r
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• The summation index n is used so as to avoid 
confusion with the subscript j since each dλj must be 
evaluated for changes in all currents to account for 
mutual coupling between electric systems.

• Substitution:

( ) ( )

( ) ( )

J
f f

f j
j 1 j

J
j j

j n
n 1 n

W i , x W i , x
dW di dx

i x

i , x i , x
d di dx

i x

=

=

 ∂ ∂
 = +

∂ ∂ 
 
 ∂λ ∂λ
 λ = +

∂ ∂ 
 

∑

∑

r r

r r
J

e j j f
j 1

f dx i d dW
=

= λ −∑

into
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• Result:

( ) ( ) ( )

( ) ( )

J J
j

e j n
j 1 n 1 n

J
f f

j
j 1 j

j i , x i ,x
f i , x dx i di dx

i x

W i , x W i , x
di dx

i x

= =

=

  ∂λ ∂λ  = + 
∂ ∂    

 ∂ ∂
 − +

∂ ∂ 
 

∑ ∑

∑

r r
r

r r

( ) ( ) ( )

( ) ( )

J
j f

e j
j 1

J J
j f

j n j
j 1 n 1 n j

i , x W i , x
f i , x dx i dx

x x

i , x W i , x
i di di

i i

=

= =

  ∂λ ∂  = − 
∂ ∂    

  ∂λ ∂  + − ∂ ∂    

∑

∑ ∑

r r
r

r r
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• This equation is satisfied provided that:

• The first equation can be used to evaluate the force on 
the mechanical system with i and x selected as 
independent variables.

( ) ( ) ( )

( ) ( )

J
j f

e j
j 1

J J
j f

j n j
j 1 n 1 n j

i , x W i , x
f i , x i

x x

i , x W i ,x
0 i di di

i i

=

= =

 ∂λ ∂
 = −

∂ ∂ 
 
  ∂λ ∂  = − ∂ ∂    

∑

∑ ∑

r r
r

r r
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• We can incorporate an expression for coenergy and 
obtain a second force equation:

• Since i and x are independent variables, the partial 
derivative with respect to x is:

• Substitution:

J

c j j f
j 1

W i W
=

= λ −∑

( ) ( ) ( )J
c j f

j
j 1

W i , x i , x W i , x
i

x x x=

 ∂ ∂λ ∂
 = −

∂ ∂ ∂ 
 

∑
r r r

( ) ( ) ( ) ( )J
j f c

e j
j 1

i , x W i , x W i , x
f i , x i

x x x=

 ∂λ ∂ ∂
 = − =

∂ ∂ ∂ 
 

∑
r r r

r
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• Note:
– Positive fe and positive dx are in the same direction

– If the magnetic system is linear, Wc = Wf.

• Summary:

( ) ( ) ( )

( ) ( )

J
j f

e j
j 1

c

e

i , x W i , x
f i , x i

x x

W i , x
f i , x

x

=

 ∂λ ∂
 = −

∂ ∂ 
 

∂
=

∂

∑
r r

r

r
r

( ) ( ) ( )

( ) ( )

J
j f

e j
j 1

c

e

i , W i,
T i , i

W i ,
T i ,

=

 ∂λ θ ∂ θ
 θ = −

∂θ ∂θ 
 

∂ θ
θ =

∂θ

∑
r r

r

r
r

fe Te

x θ
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• By a similar procedure, force equations may be derived 
with flux linkages λ1, …, λj of the J windings and x as 
independent variables.  The relations, given without 
proof, are:

( ) ( ) ( )

( ) ( )

J
j c

e j
j 1

f

e

i , x W , x
f , x

x x

W , x
f , x

x

=

 ∂ λ ∂ λ
 λ = − λ +

∂ ∂ 
 

∂ λ
λ = −

∂

∑
r r

r

r
r

( ) ( ) ( )

( ) ( )

J
j c

e j
j 1

f

e

i , W ,
T ,

W ,
T ,

=

 ∂ λ θ ∂ λ θ
 λ θ = − λ +

∂θ ∂θ 
 

∂ λ θ
λ θ = −

∂θ

∑
r r

r

r
r
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• One may prefer to determine the electromagnetic 
force or torque by starting with the relationship

rather than by selecting a formula.

• Example:
– Given: 

– Find fe(i,x)

f e mdW dW dW= +

( ) 21 a x i λ = + 
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Elementary Electromagnet

• The system consists of:
– stationary core with a winding of N turns

– block of magnetic material is free to slide relative to the 
stationary member

x = x(t)
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d
v ri

dt

λ
= + voltage equation that describes the electric system

m

m

N

 leakage flux

 magnetizing flux 

λ = φ
φ = φ + φ
φ =

φ =

l

l
(the magnetizing flux is common to 

both stationary and rotating members) 

flux linkages

m
m

Ni

Ni

φ =
ℜ

φ =
ℜ

l
l

If the magnetic system is considered to be 
linear (saturation neglected), then, as in the 
case of stationary coupled circuits, we can 
express the fluxes in terms of reluctances.
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( )

2 2

m

m

N N
i

L L i

 
λ = + ℜ ℜ 

= +
l

l

flux linkages

m

L  leakage inductance

L  magnetizing inductance

=

=
l

m i g2ℜ = ℜ + ℜ reluctance of the magnetizing path

total reluctance of the magnetic material 
of the stationary and movable members

reluctance of one of the air gaps

iℜ

gℜ

i
i

ri 0 i

g
0 g

A

x

A

ℜ =
µ µ

ℜ =
µ

l
Assume that the cross-sectional areas of 
the stationary and movable members are 

equal and of the same material
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g iA A= This may be somewhat of an oversimplification, 
but it is sufficient for our purposes.

m i g

i

0 i ri

2

1
2x

A

ℜ = ℜ + ℜ

 
= + µ µ 

l

2

m

i

0 i ri

N
L

1
2x

A

=
 

+ µ µ 

l

Assume that the leakage inductance 
is constant.

The magnetizing inductance is 
clearly a function of displacement.

x = x(t) and Lm = Lm(x)

When dealing with linear magnetic circuits wherein mechanical 
motion is not present, as in the case of a transformer, the change 
of flux linkages with respect to time was simply L(di/dt). This is 

not the case here.
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[ ]m(i,x) L(x)i L L (x) i

d (i,x) di dx

dt i dt x dt

λ = = +

λ ∂λ ∂λ
= +

∂ ∂

l
The inductance is a 

function of x(t).

[ ] m
m

di dL (x) dx
v ri L L (x) i

dt dx dt
= + + +l

The voltage equation is 
a nonlinear differential 

equation.

( )
2

m

i

0 i ri

N
L x

1
2x

A

=
 

+ µ µ 

l Let’s look at the magnetizing 
inductance again.

2
0 i

i
0

ri

N A
k

2

k
2

µ
=

=
µ
lm

0

k
L (x)

k x
=

+

2
0 ri i

m
0 i

m

N Ak
L (0)

k

k
L (x)      for x > 0

x

µ µ
= =

≅

l
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Electromagnet 

Detailed diagram of electromagnet 
for further analysis
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( ) ( )

m

m

k
L (x)      for x 0

x
k

L x L L x L      for x 0
x

≅ >

≅ + = + >l l

[ ]m(i,x) L(x)i L L (x) iλ = = +l

The system is magnetically linear: ( ) ( ) ( ) 2
f c

1
W i,x W i, x L x i

2
= =

( ) ( ) ( )

( ) ( )

J
j f

e j
j 1

c

e

i , x W i , x
f i , x i

x x

W i , x
f i , x

x

=

 ∂λ ∂
 = −

∂ ∂ 
 

∂
=

∂

∑
r r

r

r
r

( ) ( )2
e

2

2

L x1
f i, x i

2 x

ki

2x

∂
=

∂

= −

Use this approximation
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• The force fe is always negative; it pulls the moving 
member to the stationary member. In other words, an 
electromagnetic force is set up so as to minimize the 
reluctance (maximize the inductance) of the magnetic 
system.

• Equations of motion:

f

di
v ri e

dt
= + +l

( )
2

0 e2

d x dx
f M D K x x f

dt dt
= + + − −

v ri=

( )0 ef K x x f= − −

Steady-State Operation
(if v and f are constant)
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Steady-State Operation
of an

Electromagnet

( )
( )

( )

0 e

e 0

2

02

f K x x f

f f K x x

ki
f K x x

2x

= − −

− = − −

 
− − = − − 

 
Parameters:
r = 10 Ω
K = 2667 N/m
x0 = 3 mm
k = 6.283E-5 H m
v = 5 V
i = 0.5 A

Stable Operation: points 1 and 2
Unstable Operation: points 1´ and 2´

(f = 0)

(f = 4 N)
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Single-Phase Reluctance Machine

• The machine consists of:
– stationary core with a

winding of N turns

– moveable member which

rotates

( ) ( )

r

r

t

r r r0

 angular displacement

 angular velocity

d 0

θ =

ω =

θ = ω ξ ξ + θ∫
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d
v ri

dt

λ
= +

m

m

 leakage flux

 magnetizing flux 

φ = φ + φ

φ =

φ =

l

l

voltage equation

( )mL L iλ = +l

It is convenient to express the flux 
linkages as the product of the sum of the 
leakage inductance and the magnetizing 

inductance and the current in the winding.

r

m r

L  constant (independent of )

L  periodic function of 

= θ

= θ
l
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( )

( )

m m r

2

m
m

2

m

m

L L

N
L (0)

0

N
L

2
2

= θ

=
ℜ

π  =  π   ℜ  
 

m

m

 is maximum

L  is minimum

ℜ

m

m

 is minimum

L  is maximum

ℜ

The magnetizing inductance varies between maximum and 
minimum positive values twice per revolution of the rotating 

member.
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Assume that this variation may 
be adequately approximated 

by a sinusoidal function.

( ) ( )m r A B rL L L cos 2θ = − θ

( )m A B

m A B

A B

A

L 0 L L

L L L
2

L L

L  average value

= −

π  = + 
 

>
=

( ) ( )
( )

r m r

A B r

L L L

L L L cos 2

θ = + θ

= + − θ
l

l

[ ] m r r
m r

r

di dL ( ) d
v ri L L ( ) i

dt d dt

θ θ
= + + θ +

θl voltage equation
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• This elementary two-pole single-phase reluctance 
machine is shown in a slightly different form. 
Winding 1 is now winding as and the stator has been 
changed to depict more accurately the configuration 
common for this device.

( )

( ) ( )

as
as s as

as asas as

asas s A B r

t

r r r0

d
v r i

dt
L i

L L L L cos 2

d 0

λ
= +

λ =

= + − θ

θ = ω ξ ξ + θ∫
l

rs = resistance of as winding
Lasas = self-inductance of as winding sL leakage inductance=l
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• Electromagnetic torque:
– Magnetic system is linear, hence Wf = Wc.

( ) ( ) ( )

( ) ( )

J
j f

e j
j 1

c

e

i , W i,
T i , i

W i ,
T i ,

=

 ∂λ θ ∂ θ
 θ = −

∂θ ∂θ 
 

∂ θ
θ =

∂θ

∑
r r

r

r
r

( ) ( )( ) 2
c as r s A B r as

1
W i , L L L cos 2 i

2
θ = + − θl

( ) ( )2
e as r B as rT i , L i sin 2θ = θ

Valid for both transient and steady-state operation



Actuators & Sensors in Mechatronics
Electromechanical Motion Fundamentals

Kevin Craig
138

• Consider steady-state operation: ias is constant

Electromagnetic torque versus angular displacement of a 
single-phase reluctance machine with constant stator current

( )e r

2
B as

T K sin 2

K L i

= θ

=

stable operating point unstable operating point
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• Although the operation of a single-phase reluctance 
machine with a constant current is impracticable, it 
provides a basic understanding of reluctance torque, 
which is the operating principle of variable-reluctance 
stepper motors.

• In its simplest form, a variable-reluctance stepper 
motor consists of three cascaded, single-phase 
reluctance motors with rotors on a common shaft and 
arranged so that their minimum reluctance paths are 
displaced from each other.
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Windings in Relative Motion

• The rotational device shown will be used to illustrate 
windings in relative motion.

Winding 1: N1 turns on stator
Winding 2: N2 turns on rotor

end view cross-sectional view

Assume that the turns are 
concentrated in one position.

Air-gap size is 
exaggerated.
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1
1 1 1

2
2 2 2

d
v r i

dt
d

v r i
dt

λ
= +

λ
= +

voltage equations

1 11 i 12 2

2 21 i 22 2

L i L i

L i L i

λ = +

λ = +
The magnetic system is assumed linear.

11 1 m1

2 2
1 1

1 m

22 2 m2

2 2
2 2

2 m

L L L

N N

L L L

N N

= +

= +
ℜ ℜ

= +

= +
ℜ ℜ

l

l

l

l

The self-inductances  L11 and L22 are 
constants and may be expressed in 
terms of leakage and magnetizing 

inductances.

is the reluctance of the complete 
magnetic path of ϕm1 and ϕm2 , which 
is through the rotor and stator iron and 

twice across the air gap.

mℜ
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Let’s now consider L12.

( ) ( )

r

r

t

r r r0

 angular displacement

 angular velocity

d 0

θ =

ω =

θ = ω ξ ξ + θ∫
When θr is zero, then the coupling between 

windings 1 and 2 is maximum. The magnetic 
system of winding 1 aids that of winding 2 
with positive currents assumed. Hence the 

mutual inductance is positive.

( ) 1 2
12

m

N N
L 0 =

ℜ

When θr is π/2, the windings are orthogonal. 
The mutual coupling is zero.

12L 0
2

π  = 
 
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Assume that the mutual 
inductance may be adequately 

predicted by: 

( ) ( )12 r sr r

1 2
sr

m

L L cos

N N
L

θ = θ

=
ℜ

Lsr is the amplitude of the 
sinusoidal mutual inductance 
between the stator and rotor 

windings.

1
1 1 1

2
2 2 2

d
v r i

dt
d

v r i
dt

λ
= +

λ
= +

In writing the voltage equations, the 
total derivative of the flux linkages is 

required.

( )
( )

1 11 1 sr r 2

2 22 2 sr r 1

L i L cos i

L i L cos i

λ = + θ

λ = + θ

1 2
1 1 1 11 sr r 2 r sr r

2 1
2 2 2 22 sr r 1 r sr r

di di
v r i L L cos i L sin

dt dt
di di

v r i L L cos i L sin
dt dt

= + + θ − ω θ

= + + θ − ω θ
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1 1 1 1

2 2 2 2

1 m1 sr r as1

sr r 2 m2 bs2

v r 0 i d

v 0 r i dt

L L L cos i

L cos L L i

λ       
= +       λ       

+ θλ     
=      θ +λ     

l

l

( ) ( ) ( )

( ) ( )

J
j f

e j
j 1

c

e

i , W i,
T i , i

W i ,
T i ,

=

 ∂λ θ ∂ θ
 θ = −

∂θ ∂θ 
 

∂ θ
θ =

∂θ

∑
r r

r

r
r

( ) ( )2 2
f 1 2 r 11 1 12 1 2 22 2 c 1 2 r

1 1
W i ,i , L i L i i L i W i ,i ,

2 2
θ = + + = θ

Since the magnetic system is assumed to be linear:

( )e 1 2 r 1 2 sr rT i ,i , i i L sinθ = − θ
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• Consider the case where i1 and i2 are both positive 
and constant: e r

1 2 sr

T K sin

K i i L

= − θ

=

Electromagnetic torque versus angular displacement with constant winding currents

stable operation

unstable operation
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• Although operation with constant winding currents is 
somewhat impracticable, it does illustrate the 
principle of positioning of stepper motors with a 
permanent-magnet rotor which, in many respects, is 
analogous to holding i2 constant on the elementary 
device considered here.


