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Root Locus Analysis & Design

• A designer would like:
– To know if the system is absolutely stable and

the degree of stability.

– To predict a system’s performance by an 
analysis that does NOT require the actual 
solution of the differential equations.

– The analysis to indicate readily the manner or 
method by which this system must be adjusted 
or compensated to produce the desired 
performance characteristics.
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• Two Methods are available:
– Root-Locus Approach
– Frequency-Response Approach

• Root Locus Approach
– Basic characteristic of the transient response of 

a closed-loop system is closely related to the 
location of the closed-loop poles.

– If the system has a variable loop gain, then the 
location of the closed-loop poles depends on the 
value of the loop gain chosen.
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– It is important to know how the closed-loop 
poles move in the s plane as the loop gain is 
varied.

– From a Design Viewpoint:
• Simple gain adjustment may move the closed-loop 

poles to desired locations.  The design problem then 
becomes the selection of an appropriate gain value.

• If gain adjustment alone does not yield a desired 
result, addition of a compensator to the system is 
necessary.

– The closed-loop poles are the roots of the 
closed-loop system characteristic equation.
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– The Root Locus Plot is a plot of the roots of the 
characteristic equation of the closed-loop system
for all values of a system parameter, usually the 
gain; however, any other variable of the open-
loop transfer function may be used.

– By using this method, the designer can predict 
the effects on the location of the closed-loop 
poles of varying the gain value OR adding 
open-loop poles and/or open-loop zeros.

– A designer MUST know how to generate the 
root loci of the closed-loop system BOTH by 
hand and with a computer (e.g., MatLab).
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– Experience in sketching the root loci by hand is 
invaluable for interpreting computer-generated 
root loci, as well as for getting a rough idea of 
the root loci very quickly.
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• Underlying Principle:
– Poles of the closed-loop transfer function are 

related to the zeros and poles of the open-loop 
transfer function and also to the gain.

– The values of s that make the open-loop transfer 
function equal to –1 must satisfy the 
characteristic equation of the closed-loop 
system.

– The root-locus plot clearly shows the 
contributions of each open-loop pole and zero to 
the locations of the closed-loop poles.
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– The root-locus plot also shows the manner in 
which the open-loop poles and zeros should be 
modified so that the response meets system 
performance specifications.
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• Example:
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Problem:
Determine the roots of 
the characteristic 
equation for all values 
of K and plot these 
roots in the s plane.

1,2s 1 1 K= − ± −

Roots of the 
characteristic equation 

are given by:

Note:
s = -2 and s = 0 are the 

open-loop poles

Root-Locus
Plot
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– For 0 < K < 1, the roots are real and lie on the 
real axis.  For K > 1, the roots are complex.

– Once the root-locus plot has been obtained, it is 
possible to determine the variation in system 
performance with respect to a variation in K.
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– As K is increased from K = 1, we observe:
• A decrease in the damping ratio ζ.  This increases 

the overshoot of the time response.

• An increase in the undamped natural frequency ωn. 
• An increase in the damped natural frequency ωd.
• No effect on the rate of decay σ.
• No matter how much the gain is increased in this 

simple linear second-order system, the system can 
never become unstable.
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Constant Parameter Curves on the S Plane
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Time-Response Specifications vs. Pole-Location Specifications
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• General effects of the addition of poles:
– pull root locus to the right
– lower system’s relative stability

– slow down the settling of the response

• Compare root locus plots of:

( ) ( )( )( )
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+ + + + +
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• General effects of the addition of zeros:
– pull root locus to the left
– makes system more stable

– speed up the settling of the response

• Compare root locus plots of:

1 (s 6)
(s 4)(s 2)(s 1) (s 4)(s 2)(s 1)
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• Root-Locus Plots: Angle & Magnitude 
Conditions
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– The characteristic equation of the closed-loop 
system is:

– Here we assume that Gc(s)G(s)H(s) is a ratio of 
polynomials in s.

– Gc(s)G(s)H(s) is a complex quantity:
• Angle Condition

• Magnitude Condition

( ) ( ) ( )
( ) ( ) ( )

c

c

1 G s G s H s 0
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+ =

= −
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– The values of s that fulfill both the angle and 
magnitude conditions are the roots of the 
characteristic equation, or the closed-loop poles.

– A plot of the points of the complex plane 
satisfying the angle condition alone is the root 
locus.

– The roots of the characteristic equation (the 
closed-loop poles) corresponding to a given 
value of the gain can be determined from the 
magnitude condition.
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– Gc(s)G(s)H(s) often involves a gain parameter 
K and the characteristic equation may be written 
as:

– The root loci for the system are the loci of the 
closed-loop poles as the gain K is varied from 
zero to infinity.

– To begin sketching the root loci we must know 
the location of the poles and zeros of 
Gc(s)G(s)H(s).
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– Consider:
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– Since the open-loop complex-conjugate poles 
and complex-conjugate zeros, if any, are always 
located symmetrically about the real axis, the 
root loci are always symmetrical with respect to 
the real axis.
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Generalized
Block
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• Procedure for Applying the Root-Locus 
Method:
– Derive the open-loop transfer function 

Gc(s)G(s)H(s).
– Factor the numerator and denominator of 

Gc(s)G(s)H(s).

– Plot zeros and poles of Gc(s)G(s)H(s) in the s
plane.

– By use of computer or geometrical shortcuts, 
determine the locus that describes the roots of 
the closed-loop system characteristic equation:

( ) ( ) ( )c1 G s G s H s 0+ =
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– If the gain K of the open-loop system is 
predetermined, the location of the exact roots of 
the closed-loop system characteristic equation 
are immediately known.  If the location of the 
roots is specified, the required value of K can be 
determined.

– Determine the system’s time response by taking 
the inverse Laplace Transform of C(s) or by 
computer simulation.

– If the response does not meet the desired 
specifications, determine the shape that the root 
locus must have to meet these specifications.



Mechatronics
Root Locus Analysis and Design

K. Craig
30

– Synthesize the compensator that must be 
inserted into the system, if other than gain 
adjustment is required, to make the required 
modification on the original locus.  This process 
is called compensation.

– Note: When the open-loop transfer function is 
in the form shown, with the coefficients of s all 
equal to 1, then K is defined as the loop 
sensitivity.
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• Useful Construction Rules for Negative Feedback
– The number of branches of the root locus is equal to the 

number of poles of the open-loop transfer function.
– For positive values of K, the root locus exists on those 

portions of the real axis for which the total number of 
real poles and zeros to the right is an odd number.

– The root locus starts (K = 0) at the open-loop poles and 
terminates (K = ± ∞) at the open-loop zeros or at 
infinity.

– The angles of the asymptotes of the root locus that end 
at infinity are determined by: ( )1 2k 180

n m
      k 0, 1, 2, ...

°+
γ =

−
=

n = number of finite open-loop poles
m = number of finite open-loop zeros
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– The real-axis intercept of the asymptotes is give by:

– It is important to note that the asymptotes show the 
behavior of the root loci for              .  A root locus 
branch may lie on one side of the corresponding 
asymptote or may cross the corresponding asymptote 
from one side to the other.

( ) ( )
a

sum of poles sum of zeros

n m

−
σ =

−

n = number of finite open-loop poles
m = number of finite open-loop zeros

s 1>>
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– The points where the root loci intersect the iω axis can 
be found by letting s = iω in the characteristic equation, 
equating both the real part and imaginary part to zero, 
and solving for ω and K.  The values of ω thus found 
give the frequencies at which the root loci cross the 
imaginary axis. The K value corresponding to each 
crossing frequency gives the gain at the crossing point.

– The value of K corresponding to any point s on a root 
locus can be obtained using the magnitude condition or:

product of lengths between point s to poles
K

product of lengths between point s to zeros
=
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Open-Loop
Pole-Zero Configurations

and the
Corresponding Root Loci
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• Comments on Root-Locus Plots
– A slight change in the pole-zero configuration may 

cause significant changes in the root-locus 
configurations.

– Cancellation of Poles of G(s) with zeros of H(s)
• Note that if the denominator of G(s) and the numerator 

of H(s) involve common factors then the corresponding 
open-loop poles and zeros will cancel each other, 
reducing the degree of the characteristic equation by 
one or more. 

• The cancelled pole of G(s)H(s) is a closed-loop pole of 
the system and this must be added to the closed-loop 
poles obtained from the root-locus plot of G(s)H(s).
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• Conditionally-Stable Systems
– Consider the following system
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– This system is stable only for limited ranges of 
K: 0 < K < 12.5 and 56 < K < 164.

– The system becomes unstable for 12.5 < K < 56 
and 164 < K.

– If K assumes a value corresponding to unstable 
operation, the system may break down or may 
become nonlinear due to a saturation 
nonlinearity that may exist.

– Such a system is called conditionally stable and 
it is not desirable since if the gain drops beyond 
the critical value for some reason, the system 
becomes unstable.
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– Conditional stability may be eliminated by 
adding proper compensation.
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• Nonminimum-Phase Systems
– If all the poles and zeros of a system lie in the 

LHP, then the system is called minimum phase.

– If at least one pole or zero lies in the RHP, then 
the system is called nonminimum phase.

– The term nonminimum phase comes from the 
phase-shift characteristics of such a system 
when subjected to sinusoidal inputs.

– Consider the open-loop transfer function:
( )
( )

K 1 2s
G(s)H(s)

s 4s 1

−
=

+
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• Systems with Time Delay
– Any delay in measuring, in controller action, in 

actuator operation, in computer computation, 
and the like, is called transport delay or dead 
time, and it always reduces the stability of a 
system and limits the achievable response time 
of the system.

– The input x(t) and the output y(t) of a dead time 
element are related by y(t) = x(t – τdt) where τdt
is dead time.

– The Laplace transfer function 

of a dead time is given by:
dtsY(s)

e
X(s)

−τ=
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• Dead-Time Approximations
– The simplest dead-time approximation can be obtained 

by taking the first two terms of the Taylor series 
expansion of the Laplace transfer function of a dead-
time element, τdt.
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– The accuracy of this approximation depends on the dead 
time being sufficiently small relative to the rate of 
change of the slope of qi(t).  If qi(t) were a ramp 
(constant slope), the approximation would be perfect for 
any value of τdt.  When the slope of qi(t) varies rapidly, 
only small τdt's will give a good approximation.

– A frequency-response viewpoint gives a more general 
accuracy criterion; if the amplitude ratio and the phase of 
the approximation are sufficiently close to the exact 
frequency response curves of    for the range of 
frequencies present in qi(t), then the approximation is 
valid.  

dtse−τ
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– The Pade' approximants provide a family of 
approximations of increasing accuracy (and 
complexity), the simplest two being:

– In some cases, a very crude approximation given by a 
first-order lag is acceptable:

( ) ( )
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2
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• Nonlinear Systems
– Every real control system is nonlinear and we 

use linear approximations to the real models.

– There is one important category of nonlinear 
systems for which some significant analysis can 
be done: systems in which the nonlinearity has 
no dynamics and is well approximated as a gain 
that varies as the size of its input signal varies.

– The behavior of systems containing such a 
nonlinearity can be quantitatively described by 
considering the nonlinear element as a varying, 
signal-dependent gain.
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Nonlinear Elements with No Dynamics

(a) Saturation
(b) Relay
(c) Relay with Dead Zone
(d) Gain with Dead Zone
(e) Pre-loaded Spring or 

Coulomb plus Viscous 
Friction

(f) Quantization
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– As an example, consider the saturation element. All 
actuators saturate at some level; if they did not, their 
output would increase to infinity, which is physically 
impossible.

– For the saturation element, it is clear that for input 
signals with magnitudes < a, the nonlinearity is linear 
with the gain N/a.  However, for signals > a, the output 
size is bounded by N, while the input size can get much 
larger than a, so once the input exceeds a, the ratio of 
output to input goes down.

Gain K

N/a

a input  magni tude

General Shape of the 
Effective Gain of 

Saturation

N
K

a
=

N
K

input
=
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– An important aspect of control system design is 
sizing the actuator, which means picking the 
size, weight, power required, cost, and 
saturation level of the device.

– Generally, higher saturation levels require 
bigger, heavier, and more costly actuators.

– The key factor that enters into the sizing is the 
effect of the saturation on the control system’s 
performance.
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– Observations
• As long as the signal entering the saturation remains less 

than 0.4, the system will be linear and should behave 
according to the roots at ζ = 0.5.  

• However, notice that as the input gets larger, the response 
has more and more overshoot and slower and slower 
recovery.

• This can be explained by noting that larger and larger 
input signals correspond to smaller and smaller effective 
gain K. 

• From the root-locus plot, we see that as K decreases, the 
closed-loop poles move closer to the origin and have a 
smaller damping ζ.  

• This results in the longer rise and settling times, increased 
overshoot, and greater oscillatory response.
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– As another example, consider the block diagram 
below.

Step
Saturation

s   +2s+12

s   3

Plant

output

Output

K

Gain
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gains but unstable for 

smaller gains
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– Observations
• For K = 2, which corresponds to ζ = 0.5 on the root 

locus, the system shows responses consistent with ζ
= 0.5 for small signals.

• As the signal strength is increased, the response 
becomes less well damped.

• As the signal strength is increased even more, the 
response becomes unstable.
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Step
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1
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– As a final example, consider the following 
block diagram.
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– Observations
• This system is typical of electromechanical control 

problems where the designer perhaps at first is not 
aware of the resonant mode corresponding to the 
denominator term s2 + 0.2s + 1 (ω = 1, ζ = 0.1).

• A gain of K = 0.5 is enough to force the roots of the 
resonant mode into the RHP.  At this gain our 
analysis predicts a system that is initially unstable, 
but becomes stable as the gain decreases. 

• Thus we see that the response of the system with 
saturation builds up due to the instability until the 
magnitude is sufficiently large that the effective gain 
is lowered to K = 0.2 and then stops growing!
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• The error builds up to a fixed amplitude and then 
starts to oscillate.  The oscillations have a frequency 
of 1 rad/sec and hold constant amplitude at any DC 
equilibrium value (for the three different step inputs).

• The response always approaches a periodic solution 
of fixed amplitude known as a limit cycle, so-called 
because the response is cyclic and is approached in 
the limit as time grows large.

• In order to prevent the limit cycle, the root locus has 
to be modified by compensation so that no branches 
cross into the RHP.  One common method to do this 
for a lightly-damped oscillatory mode is to place 
compensation zeros near the poles, but at a slightly 
lower frequency.



Mechatronics
Root Locus Analysis and Design

K. Craig
60

Compensation: General

• SISO Linear Time-Invariant Control Systems

• Performance Specifications:
– speed of response
– relative stability
– steady-state accuracy

• State the performance specifications precisely to yield 
an optimal control system design for the given 
purpose.
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• System Compensation:
– Set the gain

• This is the first step in adjusting the system for satisfactory 
performance.  In many practical cases, however, the adjustment 
of gain alone may not provide sufficient alteration of the system 
behavior to meet the given specifications. Increasing the gain 
value will improve the steady-state behavior but will result in 
poor stability or even instability.

– Redesign the system
• Modify the structure or incorporate additional devices or 

components to alter the overall behavior so that the system will
behave as desired. Such a redesign or addition of a suitable 
device is called compensation and the device inserted into the 
system for the purpose of satisfying the specifications is called 
a compensator.
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• Series vs. Feedback Compensation
– Whether the compensator is in the feedforward path or 

the feedback path, the open-loop transfer function and 
closed-loop poles are identical.  Therefore, they both 
have the same root-locus and Bode plots, so the stability 
properties are similar.

– The closed-loop zeros are different, however, so the 
steady-state errors are different.

– Because feedback reduces the effects of parameter 
variations with respect to elements on the forward path, 
the series configuration has better sensitivity properties 
and has traditionally been more popular.
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– The location of a feedback compensator depends on the 
complexity of the basic system, the accessibility of the 
insertion points, the form of the feedback signal, the 
signal with which it is being compared, and the desired 
improvement.

– The problem boils down to a suitable design of a series 
or feedback compensator. The choice between series 
and feedback compensation depends on the nature of the 
signals in the system, the power levels at various points, 
available components, the designer’s experience, 
economic considerations, etc.
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– Series compensation, in general, may be simpler, however 
it frequently requires additional amplifiers to increase the 
gain and/or provide isolation. To avoid power dissipation, 
the series compensator is inserted at the lowest energy 
point in the feedforward path.  

– In general, the number of components required in feedback 
compensation is less than in series compensation, provided 
a suitable signal is available, because energy transfer is 
from a high power level to a low power level.
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• Compensators:
– physical devices: electronic, pneumatic, hydraulic, 

mechanical
– lead, lag, lead-lag

• Assure absolute stability of the closed-loop system.
• Model for control system design: Design Model

• Model with nonlinearities, loading effects, other 
parasitic effects, to evaluate control system design: 
Truth Model

• By trial and error, the final system must meet 
performance specifications and be reliable and 
economical.
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• Assume here the plant is given and unalterable.

• Insert compensator to compensate for the 
undesirable and unalterable characteristics of the 
plant.

• Continuous-time compensators are considered.

• Series compensators are considered.
• Root-Locus Method: graphical method for 

determining the locations of all closed-loop poles 
from knowledge of the locations of the open-loop 
poles and zeros as some parameter is varied. 
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• If simple gain adjustment doesn’t meet the 
performance specifications, reshape the root loci of 
the system by the insertion of a suitable 
compensator so that a pair of dominant closed-loop 
poles can be placed at the desired location.

• Dominant Complex-Conjugate Poles
– The other poles must be far to the left of the dominant 

poles, so that the transients due to these other poles are 
small in amplitude and die out rapidly.

– Any other pole which is not far to the left of the 
dominant complex-conjugate poles must be near a zero 
so that the magnitude of the transient term due to that 
pole is small.
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• Reshaping the Root Locus:  the purpose of 
reshaping the root locus generally falls into one of 
the following categories.
– A)

• System is stable; Transient response is satisfactory; Steady-state 
error is too large.

• Here the gain must be increased to reduce the steady-state error 
without appreciably reducing system stability.

– B)
• System is stable; Transient response is unsatisfactory; Steady-

state response is satisfactory.
• Root locus must be reshaped so that it is moved farther to the 

left, away from the imaginary axis.
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– C)
• System is stable; Transient response is unsatisfactory; Steady-

state error is unsatisfactory.

• Root locus must be moved to the left and gain must be 
increased.

– D)
• System is unstable for all values of gain.
• Root locus must be reshaped so that part of each branch falls in

the LHP, thereby making the system stable.

• Compensation of a system by the introduction of 
poles and zeros is used to improve the operating 
performance.
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Lead Compensation

• Root-locus approach to design is very powerful 
when the specifications are given in terms of time-
domain quantities.

• If the original system is either unstable for all 
values of gain or is stable but has undesirable 
transient-response characteristics, reshaping the 
root locus is necessary in the broad region of the 
imaginary axis and the origin in order that the 
dominant closed-loop poles be at desired locations 
in the complex plane.
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• Lead Compensation is an approximate version of PD 
(proportional + derivative) control. PD control has 
the following characteristics:
– Introduction of an additional zero in the forward transfer 

function reshapes the root locus so that it is moved farther 
to the left of the imaginary axis.

– The signal M(s) is now proportional to both the magnitude 
and rate of change of E(s).

– The system reacts not only to the magnitude of E(s) but 
also to its rate of change.  If E(s) is changing rapidly, then 
M(s) is large and the system responds faster.  The net result 
is to speed up the response of the system.

( ) ( ) ( )P DM s K K s E s= +
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– Derivative action amplifies any spurious signal or noise 
that may be present and so severely decreases signal-to-
noise ratio.  The noise amplification may saturate 
electronic amplifiers so that the system does not operate 
properly.

– However, PD control is often achieved with a sensor 
that can directly measure the derivative of the output, 
e.g., tachometer, which measures velocity.  In this case, 
the derivative term is usually placed in a minor feedback 
loop around the plant.

– In the feedforward path, the derivative term in the PD 
controller usually contains a pole to filter out high-
frequency noise, which is exactly what a lead 
compensator is.
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• Digital Implementation of Continuous Controllers
– The nature of the computer in a computer-controlled 

system is such that it can work with only one controlled 
variable at a time. Because of this, having sampled a 
particular value (obtained its current value), the 
computer usually must initiate an appropriate action or 
correction quickly and then move on to the next 
controlled variable.  Thus, although a given variable is 
continuous in time, the computer has knowledge of its 
value only at discrete points of time.  

– In general, the control computer performs the following 
tasks:

• Obtains a sample value of the process output cn
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• Calculates the error en from the relationship en = rn – cn where rn
is the reference or desired value stored in the computer

• Computes the proper value for the manipulated process input 
mn

• Outputs mn to the appropriate control element

• Continues with the next controlled variable

– A control algorithm must be provided so that the 
computer can calculate values for the manipulated 
variable.  Because the current error value en and stored 
values of previous errors and control outputs are 
available, a useful form for control algorithms is:

n n 1 0 n 1 n 1 2 n 2m m K e K e K e− − −− = + +
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– This is a linear, constant-coefficient, difference equation 
where the subscript n indicates the present value, 
subscript n-1 indicates a value one sample period 
earlier, subscript n-2 indicates a value two sample 
periods earlier, and so on.  

– The proportional-integral-derivative (PID) controller is 
the most widely used controller in use today.  It can 
stabilize a system, increase the speed of response of a 
system, and reduce steady-state errors of a system.  Its 
continuous transfer function in terms of the differential 
operator D is:

( ) ( )2I
P D D P I

m K 1
D K K D K D K D K

e D D
= + + = + +
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– The differential equation corresponding to this transfer 
function is:

– To convert this differential equation to an equivalent 
difference equation we approximate the derivatives by 
finite differences.  Of the various schemes possible, the 
simplest uses the following expressions, where T
represents the time between samples (the sample period):

2

D P I2

dm d e de
K K K e

dt dt dt
= + +

n n n 1

n n 1
2

n n n 1 n 2
2 2

de e e
dt T

de de
d e e 2e edt dt
dt T T

−

−

− −

−
≈

− − +
≈ ≈
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– Applying this to the differential equation for the PID 
controller results in the following difference equation:

– This is of the form:

– This difference equation is programmed into the computer 
once the values of KP, KI, and KD are determined from 
control system analysis and design techniques.

D D D
n n 1 P I n P n 1 n 2

D D D
n n 1 P I n P n 1 n 2

K 2K K
m m K K T e K e e

T T T

K 2K K
m m K K T e K e e

T T T

− − −

− − −

     = + + + − + +     
     
     − = + + − + +     
     

n n 1 0 n 1 n 1 2 n 2m m K e K e K e− − −− = + +
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• Sample rate T should be faster than 20 times the 
closed-loop system bandwidth in order to assure 
that the digital controller will match the 
performance of the continuous controller.
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• Digital Implementation of the  Lead or Lag 
Controller

[ ] [ ]

( )

n n 1 n n 1
n n

n n 1 n n 1

m(s) s a
K

e(s) s b

s b m(s) K s a e(s)

dm de
bm K ae

dt dt

m m e e
bm K ae

T T

K 1 aT1 K
m m e e

1 bT 1 bT 1 bT

− −

− −

+
=

+

+ = +

 + = +  
− −   + = +      

+
= + −

+ + +
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• Lead Compensation:

– increases relative stability

– may increase steady-state error
– appreciably improves transient response
– may accentuate high-frequency noise effects

• Lead Compensator:

• Minimum value of α (usually 0.05) is limited by 
the physical construction of the compensator. 

( )c c c

1
sTs 1 TG s K K           (0 <  <1)

1Ts 1 s
T

++
= α = α

α + +
α
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Lead Compensator Design Procedure

• From performance specifications determine the 
desired location for the dominant closed-loop 
complex-conjugate poles (e.g., s = s1,2). 

• Can gain adjustment alone satisfy specifications? If 
not, calculate the angle deficiency:

Is φc + or - ? too large?
• Assume lead compensator Gc(s) is:

c 1180 (2k 1) G(s )φ = ± + − ∠o

( )c c c

1
sTs 1 TG s K K           (0 <  <1)

1Ts 1 s
T

++
= α = α

α + +
α



Mechatronics
Root Locus Analysis and Design

K. Craig
84

– α and T are determined from the angle deficiency.  Kc
is determined from the requirement of the open-loop 
gain.

• Locate the pole and zero of the compensator so 
that the lead compensator will contribute the 
necessary angle φc.  If no other requirements are 
imposed on the system, try to make the value for 
α as large as possible, as it leads to a smaller 
steady-state error.

1 1
c 1 c 1

p z

1 Im(s ) 1 Im(s )
p Re(s )           z Re(s )

T tan( ) T tan( )
= − = − = − = −

α θ θ

c c
1 p z(s )                    

2 2
φ − φ φ + φ

φ = ∠ θ = θ =
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• Determine the open-loop gain of the compensated 
system from the magnitude criterion:

c 1 1 1G (s )G(s )H(s ) 1.0=
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Graphical Approach for Locating Lead Compensator Pole and Zero

Design Point
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• Check to see if all specifications have been met. 
Iterate if necessary. If steady-state error 
requirements are not met, cascade a lag 
compensator or alter the lead compensator to a 
lag-lead compensator.

• Are dominant closed-loop poles really dominant?  
The closed-loop poles other than the dominant 
ones modify the response obtained from the 
dominant closed-loop poles alone; the amount of 
modification depends on the location of these 
remaining closed-loop poles.  Also, closed-loop 
zeros affect the response if they are located near 
the origin.
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• Observations
– Lead compensation is the approximate version of 

proportional-derivative control: Kp + Kds.  The trouble 
with using PD control, which has only a zero and no 
pole, is that the physical realization would contain a 
differentiator that would greatly amplify the inevitable 
high-frequency noise present from the sensor signal.

– The effect of the zero and the action of the compensator 
will not be greatly reduced if we add a high-frequency 
pole.  

– Selecting the exact values of the pole and zero is done 
by trial and error.  In general the zero is placed so as to 
satisfy the rise-time or settling time requirements, and 
the pole is located at a distance 3 to 20 times the value 
of the zero location.
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– The choice of pole location is a compromise between 
the conflicting effects of noise suppression and 
compensation effectiveness.

– If the pole is too close to the zero, than the root locus 
moves back too far towards its uncompensated shape 
and the zero is not successful in doing its job.

– When the pole is too far to the left, the magnification of 
noise at the output of the compensator is too great, and 
the actuator will be overheated by noise energy.
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Lag Compensation

• If the original system exhibits satisfactory stability 
and transient-response characteristics but 
unsatisfactory steady-state characteristics, the low-
frequency gain, which affects the steady-state 
error, must be increased without appreciably 
changing the transient-response characteristics, 
i.e., without appreciably changing the root loci.

• In order to increase the steady-state error constant 
(reduce the steady-state error), the equivalent of 
another integration at near-zero frequency is 
indicated. (Similar to PI Control)
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• Lag Compensation is the approximate version of PI 
(proportional + integral) control.  PI control has the 
following characteristics:

– PI control eliminates steady-state error by increasing the 
system type without appreciably changing the dominant 
roots of the characteristic equation.

– m(t)  continues to increase as long as an error e(t) is 
present.  Eventually m(t) becomes large enough to produce 
c(t) = r(t).  Error e(t) then = 0.

– Constant KI (generally very small) and the overall gain of 
the system must be selected to produce satisfactory roots 
of the characteristic equation.

– The pole at the origin tends to destabilize the system.

( ) ( )I
P

K
M s K E s

s
 = + 
 
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• The improvement is thus made by a pole near s = 
0, but usually we include a zero nearby so that the 
pole-zero pair does not significantly interfere with 
the dynamic response of the overall system as 
determined by the lead compensation.

• Thus we need an expression for Gc(s) that will 
yield a significant gain at s = 0 to raise the steady-
state error constant and that is nearly unity (no 
effect) at higher frequencies where dynamic 
response is determined.

• A lag compensator, placed in cascade with the 
given feedforward transfer function, will 
accomplish this. 
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• The angle contribution of the lag compensator 
must be limited to a small amount (e.g., 5°).

• The pole and zero are placed relatively close 
together and near the origin of the s plane.  Then 
the closed-loop poles of the compensated system 
will be shifted only slightly from their original 
locations.  Hence, the transient-response 
characteristics will be changed only slightly.

• There will be a closed-loop root very near the lag-
compensation zero.  This root will correspond to a 
very slowly decaying transient, which has a small 
magnitude because the zero will almost cancel the 
pole in the transfer function.
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• Still, the decay is so slow that this term may 
seriously influence the settling time.  Because of 
this effect it is important to place the lag pole-zero 
combination at as high a frequency as possible 
without causing major shifts in the dominant root 
locations.

• Also notice that the transfer function from a plant 
disturbance D(s) to the system error E(s) will not 
have a zero, and thus disturbance transients can be 
very long in duration in a system with lag 
compensation.
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• Consider the Lag Compensator:

– If we place the zero and pole of the compensator very 
close to each other, then at s = s1, where s1 is one of the 
dominant closed-loop poles, the magnitudes of the 
numerator and denominator are almost equal:

– This implies that if we set the gain of the compensator 
Kc = 1, then the transient-response characteristics will 
not be altered. 

1 1

1 1
s s

T T
+ ≈ +

β

( )c c c

1
sTs 1 TG s K K           (  > 1)

1Ts 1 s
T

++
= β = β

β + +
β
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– The overall gain of the compensator is then β.  So the 
overall gain of the open-loop transfer function can be 
increased by the factor β, where β > 1.

– If the pole and zero are placed very close to the origin, 
then the value of β can be made large provided physical 
realization of the compensator is possible.

– The value of  T must be large, but its exact value is not 
critical.  However, it should not be too large in order to 
avoid difficulties in realizing the phase-lag compensator 
by physical components.

– An increase in the gain means a reduction in the steady-
state error.
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• Review of Steady-State Error

– Assume H(s) = 1 and D(s) = 0.  The error is then E(s) 
which equals R(s) – C(s).

+ -
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c
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– Step Input: R(s) = 1/s

– Ramp Input: R(s) = 1/s2

ss
s 0 s 0

c c p

1
1 1se (t) lims lim

1 G (s)G(s) 1 G (s)G(s) 1 K→ →
= = =

+ + +
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• Lag Compensation
– improves steady-state accuracy
– increases transient-response time
– suppresses the effects of high-frequency noise
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Lag Compensator Design Procedure
• Draw the root-locus plot for G(s)H(s) and based on 

the performance specifications determine the 
desired location for the dominant closed-loop 
complex-conjugate poles (e.g., s = s1,2).

• Assume lag compensator Gc(s) is:

• Evaluate the static error constant specified and 
determine the amount of increase needed to meet 
specifications.

( )c c c

1
sTs 1 TG s K K           (  > 1)

1Ts 1 s
T

++
= β = β

β + +
β
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• Locate the pole and zero of the lag compensator 
between 0 and 1 that produce the necessary 
increase in the error constant without appreciably 
altering the root loci.

• Draw the root locus for the compensated system. 
Locate the desired dominant closed-loop poles 
based on the transient-response specifications.

• Determine the open-loop gain of the compensated 
system from the magnitude criterion and adjust the 
gain Kc of the compensator so that the dominant 
closed-loop poles lie at the desired location.

c 1 1 1G (s )G(s )H(s ) 1.0=
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Lead-Lag Compensator

• If improvements in both transient and steady-state 
response are desired, then both a lead and a lag 
compensator may be used simultaneously.

• It is economical to use a single lead-lag 
compensator rather than separate ones.

1 21 2
c c c

1 2

1 2

1 1
s s

T TT s 1 T s 1
G (s) K K

T T s 1 1s 1 s s
T T

    + +     β + +   = =   γ β +   γ  + + +  γ   β  1.0

1.0

β >
γ >
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• Lead/Lag compensation is an approximate version 
of PID (proportional + integral + derivative) 
control.  The PID controller has the following 
form:

( ) ( )I
P D

K
M s K K s E s

s
 = + + 
 
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o 4 6 1 3 1 2 2

i 3 5 1 1 2 4 2

E (s) R R (R R )C s 1 R C s 1
E (s) R R R C s 1 (R R )C s 1

   + + +
=    + + +   

Lead and Lag 
Electronic Compensator
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Lead / Lag Compensator Design 
Procedure

• Design process is a combination of the design of the 
lead compensator and that of the lag compensator.

• Determine the desired location for the dominant 
closed-loop complex-conjugate poles (e.g., s = s1,2).

• Using G(s)H(s), determine the angle deficiency φc if 
the dominant closed-loop poles are to be at the 
desired location. The phase-lead portion of the 
compensator must contribute this angle.

c 1180 (2k 1) G(s )φ = ± + − ∠o
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• Choose T1 and γ from the requirement: 

• Determine the value of Kc from the magnitude 
condition:

• Determine the value of β to satisfy the steady-state 
error requirement, if specified.

1
1

c

1
1

1
s

T

s
T

+
∠ = φ

γ+

1
1

c 1 1

1
1

1
s

T
K G(s )H(s ) 1.0

s
T

+
=

γ
+
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• Using the value of β determined, choose the value of 
T2 such that

• Example: 

Desired performance specifications:

Lead/Lag Compensator:

1
2 2

1
2 2

1 1
s s

T T
1          5 0

1 1
s s

T T

+ +
≈ − < ∠ <

+ +
β β

o o

4
G(s)

s(s 0.5)
=

+

n 5 rad/sec               0.5

unit-ramp-input steady-state error < 0.0125 

ω = ζ =

c

s 0.5 s 0.2
G (s) 6.26

s 5.02 s 0.01247
+ +  =   + +  


