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Mechatronics is the 
synergistic

combination of 
mechanical 
engineering, 

electronics, controls 
engineering, and 

computers, all 
integrated through the 

design process.

What is Mechatronics?
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Cost

System
Complexity

Electro-Mechanical Designs
Type 1:

Electronics,
Computers, &
Controls Add

Additional
Operations

Type 2:
Electronics,

Computers, &
Controls Impart

Additional
Functions

Type 3:
Electronics,

Computers, &
Controls

Provide System
Synergy

Type 3
Designs are

Mechatronic
Systems
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Design

Manufacture

Design

Manufacture

Design

Manufacture

Design

Manufacture

Electrical Mechanical Control Computer

“Over the Wall” State
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Concurrent Engineering

Electrical Mechanical Control Computer

Design
+

Manufacture

Design
+

Manufacture

Design
+

Manufacture

Design
+

Manufacture
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Mechatronics

Design
+

Manufacture

Electrical Mechanical Control Computer
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The Design Challenge

The cost-effective incorporation of 
electronics, computers, and control 
elements in mechanical systems 

requires a new approach to design.

The modern engineer must draw
on the synergy of
Mechatronics.
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Difficulties in Mechatronic Design

• Requires System Perspective

• System Interactions Are Important

• Requires System Modeling

• Control Systems Go Unstable
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Balance: The Key to Success

The Mechatronic System Design Process

Modeling
&

Analysis

Experimental 
Validation

&
Hardware 

Implementation

Computer Simulation Without Experimental Verification 
Is At Best Questionable, And At Worst Useless!
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Balance in Mechatronics is the Key!

• modeling (physical and mathematical), analysis (closed-
form and numerical simulation), and control design
(analog and digital) of dynamic physical systems

• experimental validation of models and analysis (for 
computer simulation without experimental verification is at 
best questionable, and at worst useless!) and 
understanding the key issues in hardware implementation
of designs 

The essential characteristic of a mechatronics engineer and 
the key to success in mechatronics is a balance between the 

following sets of skills:
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Dynamic System Investigation

Physical
System

Experimental
Analysis

Comparison
Mathematical

Analysis

Mathematical
Model

Physical
Model
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P h y s i c a l

S y s t e m

P h y s i c a l

M o d e l

M a t h

M o d e l

M o d e l

P a r a m e t e r
I D

A c t u a l
D y n a m i c

B e h a v i o r

C o m p a r e
P r e d i c t e d
D y n a m i c

B e h a v i o r

M a k e
D e s i g n

D e c i s i o n s

D e s i g n

C o m p l e t e

Measurements,
Calculations,

Manufacturer 's Specifications

Assumptions

and
Engineering Judgement

Physical  Laws

Experimental
Analysis

Equation Solut ion:

Analytical
and Numerical

Solution

Model  Adequate ,
Performance Adequate

Model  Adequate ,

Performance Inadequate

Modify
 or

 Augment

Model  Inadequate:

Modify

D y n a m i c  S y s t e m  I n v e s t i g a t i o n

Which Parameters to Identify?

What  Tests  to  Perform?
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Mechatronics is NOT
Concurrent Engineering

CONCURRENT ENGINEERING
Bridges Design and Manufacturing.

Electrical, Mechanical, Control and Computer Engineers 
Operate in Separate Environments. 

(vertical integration)

MECHATRONICS
Integration of Electrical, Mechanical, Control, and Computer 

Engineering Knowledge
in Both Design and Manufacturing.
(horizontal & vertical integration)
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ELECTROMECHANICS
Design of prime movers: a.c. motors, d.c. motors, solenoids.   

Design of generators.   Control of motors: commutation 
of d.c. motors, startup of a.c. motors.

MECHATRONICS
The synergistic combination of actuators, sensors, control 

systems, and computers in the design process.

Mechatronics is NOT 
Electromechanics
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Mechatronics draws heavily on the concepts of control 
systems only because they provide a coherent 

framework for system analysis.

Controls are an integral component to any mechatronic 
design and not an afterthought add-on.

However, open-loop and feedforward control structures 
are as valid as feedback ones for design solutions.

Mechatronics is MORE than just 
Control Systems
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Benefits of Mechatronics

• Shorter Development Cycles

• Lower Costs

• Increased Quality

• Increased Reliability

• Increased Performance

• Increased Benefits to Customers

Mechatronics is spawning a new breed of 
intelligent components and systems that combine 
an optimum blend of all available technologies.
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The Realm of Mechatronics

• High Speed

• High Precision

• High Efficiency

• Highly Robust

• Micro-Miniature



Mechatronics
Introduction

K. Craig
18

Mechatronic Design Concepts

• Direct Drive Mechanisms

• Simple Mechanics

• System Complexity

• Accuracy and Speed from Controls

• Efficiency and Reliability from Electronics

• Functionality from Microcomputers

Think System !
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Mechatronics Engineer

• Leader in the initiation and integration of design

• Interdisciplinary knowledge of various 
techniques

• Ability to master the entire design process from 
concept to manufacturing

• Ability to use the knowledge resources of other 
people and the particular blend of technologies 
which provide the most optimal design solution
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Mechatronic Areas of Study

• Mechatronic system design principles

• Modeling, analysis, and control (continuous and discrete) 
of dynamic physical systems

• Analog and digital control electronics

• Control sensors and actuators

• Interfacing sensors, actuators, and microcontrollers

• Real-time programming for control

• Advanced topics, e.g.,

- fuzzy logic control

- smart materials as sensors and actuators 
- magnetic bearings



Mechatronics
Introduction

K. Craig
21

Challenge to Industry

• Control Design and Implementation is still the domain of 
the specialist.

• Controls and Electronics are still viewed as afterthought 
add-ons.

• Electronics and Computers are considered costly additions 
to mechanical designs.

• Few engineers perform any kind of modeling.

• Mathematics is a subject not viewed as enhancing one’s 
engineering skills but as an obstacle to avoid.

• Few engineers can balance the modeling\analysis and 
hardware implementation essential for Mechatronics.
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Industry’s Choices

• Train the engineers you have in the 
mechatronics approach to design.

• Give them the tools to be successful:
• Knowledge: modeling, analysis, controls

• Hardware: sensors, actuators, instrumentation, real-time 
control, microcontrollers

• Software for Simulation and Control Design, e.g.,  
Matlab / Simulink, Electronics Workbench

• Give them the time to use these tools!
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Have this happen to your 
engineers! 

OR
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Industry’s Bottom Line

Train your engineers in a
Mechatronics approach to design.

Give them the tools and the time to
design with synergy and 

integration.
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RPI
Mechatronics

Teaching
Laboratory

RPI Mechatronics
Courses:

Graduate & Undergraduate
100 students / year

School of Engineering
Capstone Design Courses 

and Student Projects
500 students / year

RSVP
Distance Learning:

High Schools
Professionals

K-12  Student & Teacher
Programs in 

Mechatronics
RPI Center for Pre-
College Initiatives

Portal to Industry:
Professional Engineers

Mentoring
Professors and Students

at RPI

Math, Science, Engineering
Integration

Across the RPI Curriculum
NSF Project LINKS

PDI Program

Preparation and Distribution of  Educational Materials:
Tutorials for Undergrads, HS Students, Professionals

by
Videotapes, CD’s, Web Sites, Publications

Introduction to 
Engineering Design
Sophomore Course
1000 students / year

Mechatronics at RPI
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Mechatronics Demonstrations

• Spring-Pendulum Dynamic System
• Inverted-Pendulum Dynamic System:

Rotary and Arm-Driven
• Two-Mass, Three-Spring Dynamic System
• Electrodynamic Vibration Exciter
• High-Speed, Micron-Level Positioning System

with Variable Coulomb Friction
• Ball-on-Plate Balancing System
• Hydraulically-Balanced Beam System
• Ball-on-Beam Balancing System
• Drive-Train Friction/Backlash/Compliance Testbed



Mechatronics
Introduction

K. Craig
27

Spring-Pendulum Dynamic System

m

l + r

θ

k
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Spring Pendulum
Dynamic System

t

time

theta

theta position

u^2

square

0.333

spring length
unstretched

(meters)

sin(u)

sin

r

r position

95.21

k/m
k=172.8  N/m
m=1.815 kg

u^(-1)

inverse

9.81

gravity (m/s^2)

cos(u)

cos

Sum2

Sum 

Sum

Product    

Product   

Product  

Product 

Product

1/s

Integrate 
r acc

1/s

Integrate
theta vel

1/s

Integrate
theta acc

1/s

Integrate
r vel

2

Gain

5.710/1.815

Ft=5.71 N
m=1.815 kg

Clock

Mathematical Modeling and 
Analysis of Spring-
Pendulum System

( ) 2
tmr m l r kr F mg cos( ) 0

(l r) 2r gsin( ) 0

− + θ + + − θ =

+ θ + θ + θ =

&&&
&& &&
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Simulation Results: Initial Conditions theta=0.021 rad, r=0.115 m

Dynamic Response of Spring-Pendulum 
System
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Inverted-Pendulum 
Dynamic System:

Rotary and Arm-Driven

• Brushed DC Motor
• Two Optical Encoders (2000 

cpr)
• PWM Servo-Amplifier
• Power Supply
• Pendulum Balancing Control
• Pendulum Swing-Up Control
• Classical, State-Space, and 

Fuzzy Logic Control
• Converts between Rotary and 

Arm-Driven Systems 
• dSpace Real-Time Control 

Implementation
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Multi-Mass, Multi-Spring Dynamic System
• Brushed DC Motor with Tachometer
• Optical Encoder with 2000 cpr
• Two Infrared Position Sensors
• Free and Forced Vibrations
• System Behavior below, at, and above resonance
• Dynamic Vibration Absorber
• Physical Significance of Transfer Function Poles and Zeros
• Colocated and Non-colocated Control
• dSpace Real-Time Control Implementation
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44.5N Electrodynamic Vibration Exciter
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Physical Model of Vibration Shaker
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High-Speed, Micron-Level Positioning System 
with Variable Coulomb Friction

• Actuators:
• Brushed DC Motor
• Brushless DC Motor
• Stepper Motor with     

microstepping
• 80,000 and 144,000 cpr 

Optical Encoders
• Coulomb Friction Device
• Variable Inertia
• Direct or Belt Drive
• MatLab Modeling and 

Control Design 
Environment

• dSpace Real-Time Control 
Implementation 
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Ball-on-Plate Balancing System

• Two Brushed DC Motors
• Two Optical Encoders 

(4000 cpr)
• Touch-screen Resistive 

Ball-Position Sensor 
• Two PWM Servo-

Amplifiers
• Two Power Supplies
• Disturbance Rejection
• Ball Position Command 

Tracking, e.g.,  line, circle, 
figure eight

• dSpace Real-Time Control 
Implementation
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Hydraulically-Balanced
Beam System

• System Converts between 
Open-Loop Stable and 
Open-Loop Unstable 
Configurations

• Two Gear Pumps
• Two Pressure Sensors at 

Tank Bases to Determine 
Liquid Height

• Potentiometer for Beam 
Angle

• Two PWM Servo-
Amplifiers

• Two Power Supplies
• Disturbance Rejection
• Position and Velocity 

Command Tracking
• Linear and Nonlinear 

Control Techniques
• dSpace Real-Time Control 

Implementation
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Ball-on-Beam
Balancing System

• Brushed DC Motor
• Beam Sensors: 

Optical Encoder, 
Tachometer, 
Potentiometer

• Ball Sensors: 
Ultrasonic, 
Potentiometer, 
Phototransistor

• PWM Servo-
Amplifier

• Power Supply
• Disturbance 

Rejection
• Ball Position 

Command Tracking
• dSpace Real-Time 

Control 
Implementation
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Testbed to Study the Effects of 
Gear Backlash, Drive-Shaft 

Compliance, Coulomb Friction 
& Variable Inertia on Accurate 

Positioning

Drive-Train 
Friction/Backlash/Compliance 

Testbed
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Mechatronic System Case Studies

• Thermal System Closed-Loop Temperature 
Computer Control

• Pneumatic System Closed-Loop Position 
Computer Control 

• Stepper Motor Open-Loop and Closed-Loop 
Computer Position Control

• DC Motor Closed-Loop Speed Control
• Analog Control
• Digital Control with Embedded Microcontroller

• Magnetic Levitation System

• MR Fluid Rotary Damper System
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Two-Person Mechatronics
Laboratory Station

• Pentium Computer 
with MATLAB, 
Electronics 
Workbench, and 
Working Model

• Function Generator
• Digital Oscilloscope
• Multimeter
• Powered Protoboard
• Microcontroller
• Assorted analog / 

digital sensors, 
actuators and 
components
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Blue Earth Micro 485 Specifications

Blue Earth Micro 485 Specifications
Feature Specification

Microprocessor Intel 8051 running at 12 MHz
Digital I/O 27 Bi-directional TTL compatible pins

Analog Inputs 4 12-bit 0-5 volt A/D converter channels
Serial Communication RS-422, RS-232

RAM 128K, battery-backed for retention after power down
ROM 32K, contains on-board Basic and Monitor
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Thermal System Closed-Loop 
Temperature Control

• aluminum plate
• thin-film resistive heater
• ceramic insulation
• conduction and convection 

heat transfer
• AD590 temperature sensor
• microcontroller
• on-off closed-loop control

with relay
• support analog electronics
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Pneumatic System Closed-Loop Position 
Control

• 3/4” bore, double-acting, non-
rotating air cylinder

• linear potentiometer to measure 
mass position

• 30 psig air supply
• two flow-control valves
• two 1/8”ported, 3-way, spring-

return, two-position
solenoid valves

• Darlington switches to 
energize solenoids

• microcontroller
• on-off, modified on-off, PWM

closed-loop control
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Schematic of Pneumatic Servomechanism

A BPis ton M a s s

Microcont ro l le r

w i th  12-B i t

A / D  C o n v e r t e r

 P o w e r

Supp ly

L i nea r  Po ten t i ome te r

4 - Inch  S t roke

Ac tua to r

3 /4  Inch  Bore ,  Doub le -Ac t ing ,

Non-Ro ta t ing  A i r  Cy l i nder

Manua l  F low  Con t ro l  Va l ves

1 /8  Inch  Por ted ,  3 -Way ,  Spr ing -Re tu rn ,

 Two-Pos i t ion ,  So leno id  Va lves

 Supply  A i r

5  Vol ts

Va lve  A Va lve  B
Dar l i ng ton

Sw i t ches

30 ps ig

P i s t o n  S h a f t

C h a m b e r  1
C h a m b e r  2

Pneumatic  Posit ioning Closed-Loop Control  System
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Stepper Motor 
Open-Loop and Closed-Loop Control

• stepper motor
• optical encoder
• microcontroller
• electronics to interface the

microcontroller to the
motor and encoder

• full-step and half-step   
operation

• control via a Quad-Darlington 
IC

• control via a step-motor-driver 
IC

• programming in Basic or C
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Stepper Motor Open-Loop 
and Closed-Loop Control

Stepper Motor System 
Design:

Ink-Jet Printer 
Application
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DC Motor Closed-Loop Speed Control

• Permanent-magnet brushed 
DC motor

• integral analog tachometer
• aluminum disk load inertia
• PWM power amplifier
• 24-volt, 4-amp power supply
• analog control design and

implementation:
lead, lag, lead-lag
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Microcontrol Motor-Speed-Control Testbed
• Two embedded microcontrollers 

from MicroChip Inc. configured 
for: 3 channel 8-bit analog / 
digital (A/D) acquisition , 10-bit 
pulse-width-modulated (PWM) 
drive, serial communication to 
PC, general purpose digital I/O 

• High power H-bridge for output 
stage of pulse-width-modulated  
(PWM) driver (for d.c. motors) 

• Hex keypad for data entry 

• Liquid crystal display (LCD) 
for data display 

• Analog electronics (op amps) for 
measuring tachometer and input 
reference signal
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Magnetic Levitation System

• Magnetically-levitated 1/2”-
diameter steel ball

• electromagnet actuator: 1/4”
steel screw with 
3000 turns of 26-
gauge wire

• gap sensor: infra-red diode
emitter and
phototransistor
detector

• TIP-31, NPN, bipolar transistor
as a current amplifier

• ±15 volt, +5 volt power supply
• analog lead controller design

and implementation
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Schematic Of
Magnetic Levitation System

Controllers 

& Power 

Amplif ier

Objec t

Electromagnet

I R  L E D

Phototransis tor

Device Schematic
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Mechanical System Digital Speed Control 
using DC Motor with MR Fluid Brake

• MR Fluid Rotary
Damper

• Brushed DC Motor 
with Gearbox

• Motor Tachometer
• Shaft Potentiometer 
• Current Controller
• PWM Power Amplifier
• 24-Volt, 4-Amp Power 

Supply
• AC/DC Adapter
• Pulley / Arm Attached  

to MR Fluid 
Brake

• Microcontroller with 
D/A Converter
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All these systems are
industrially relevant and require 

a complete dynamic system 
investigation with a balance 

between modeling / analysis and 
hardware implementation.

Only a Mechatronics 
engineer can accomplish 

this!
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Mechatronics
Exercise Examples

• Analog Electronics: Time Response, 
Frequency Response, Loading Effects

• Dynamic System Modeling and Analysis: 
Space Station Solar Alpha Rotary Joint

• Modeling, Analysis, and Control of an 
Electrohydraulic Valve-Controlled 
Servomechanism
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Analog Electronics:
Loading Effects
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Space Station Solar Alpha Rotary Joint: 
Physical System and Physical Model
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Solar Alpha Rotary Joint 
Mathematical Model
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Electrohydraulic Valve-Controlled
Servomechanism
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Xc dot Pcr

Pcl
Xc

Qcr

Qcl

ELECTROHYDRAULIC VALVE-CONTROLLED SERVOMECHANISM

Xv - Xc Positive

Xv - Xc Negative

Xv Step Command

input

To Workspace6

Pcr

To Workspace5

Pcl

To Workspace4

Qcr

To Workspace3

Qcl

To Workspace2

Xc

To Workspace1

time

To Workspace

Pcl

Pcr

Xc

Xc dot

Mass

Pcl

Xv - Xc Pos

Xv - Xc Neg
Pcr

Qcl

Qcr

Flow

Xc
Qcl

Qcr

Xc dot

Pcl

Pcr

Cylinder

Xv Command 

Xc 

Xv - Xc Positive 

Xv - Xc Negative 

Controller

Clock

Nonlinear Model
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C x C p
V
M

dp

dt
K p p A

dx

dtx v p p cl p
B

cl p
pl cl p cr p p

C p
, ,

,
, ,

,− − − − =c h c h0

− − − + − = −C x C p
V
M

dp

dt
K p p A

dx

dtx v p p cr p
B

cr p
pl cl p cr p p

C p
, ,

,
, ,

,c h c h0

p p A B
dx

dt
f M

d x

dtcl p cr p p
C p

U p
C p

, ,
,

,
,− − + =c h

2

2

Linear Mathematical Model
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Pcl

Pcr

Xc

ELECTROHYDRAULIC VALVE-CONTROLLED SERVOMECHANISM (LINEAR)Xv Step Command

input_l

To Workspace6 Qcr_l

To Workspace5

Qcl_l

To Workspace4

Xc_l

To Workspace3

Pcr_l

To Workspace2

Pcl_l

To Workspace1

time_l

To Workspace Sum8

Sum7

Sum6

Sum5

Sum4

Sum3

Sum2

Sum1

Sum

1/s

Integrator3

1/s

Integrator2

1/s

Integrator1

1/s

Integrator

Ap

Gain9

Cx

Gain8

Cp

Gain7

Cp

Gain6

Kpl

Gain5

Ap

Gain4

MB/Vo

Gain3

MB/Vo

Gain2

B

Gain1

1/M

Gain

0

Disturbance
fu

500

Constant1

Clock

Linear Model
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V s M K C

C M

K

C

A s

C
K

C

V s M K C

C M

A s

C
A A Ms Bs

x

x

f

B pl p

x B

pl

x

p

x

pl

x

B pl p

x B

p

x

p p

v

v

U

0

0

2

+ + −

− − +

− +

L

N

MMMMMMM

O

Q

PPPPPPP

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

c h

c h
  

p

p

x

cl

cr

C

Take the Laplace Transform of these linear equations and 
derive six useful transfer functions relating the two inputs, xv

and fU, to the three outputs, pcl, pcr, and xC.
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x
x

s
K

s
s s

C

v

n n

a f =
+ +

F
HG

I
KJ

2

2

2
1

ω
ζ

ω

K
C A

A B C K

M A B C K

MV

B
M M
V

K
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V
C

M M
V

A B C K

x p

p p pl

n

B p p pl

B
pl

B
p

B
p p pl

=
+ +

=
+ +

=
+
F
HG

I
KJ +

F
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I
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+ +

2

2 2

2 2

2

2 2 2

2

2

0

0 0

0

2

c h
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ω

ζ

One of these transfer functions is:

where


