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ABSTRACT
Positional ranking functions, widely used in web search en-
gines, improve result quality by exploiting the positions of
the query terms within documents. However, it is well known
that positional indexes demand large amounts of extra space,
typically about three times the space of a basic nonpositional
index. Textual data, on the other hand, is needed to pro-
duce text snippets. In this paper, we study time-space trade-
offs for search engines with positional ranking functions and
text snippet generation. We consider both index-based and
non-index based alternatives for positional data. We aim to
answer the question of whether one should index positional
data or not.

We show that there is a wide range of practical time-space
trade-offs. Moreover, we show that both position and tex-
tual data can be stored using about 71% of the space used
by traditional positional indexes, with a minor increase in
query time. This yields considerable space savings and out-
performs, both in space and time, recent alternatives from
the literature. We also propose several efficient compressed
text representations for snippet generation, which are able
to use about half of the space of current state-of-the-art al-
ternatives with little impact in query processing time.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.4 [Systems]: Textual databases
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1. INTRODUCTION
Web search has become an important part of day-to-day

life, affecting even the way in which people think and re-
member things [35]. Indeed, web search engines are one
of the most important tools that give access to the huge
amount of information stored in the web. The success of
a web search engine mostly depends on its efficiency and
the quality of its ranking function. To achieve efficient pro-
cessing of queries, search engines use highly optimized data
structures, including inverted indexes [6, 10, 25]. State-of-
the-art ranking functions, on the other hand, combine simple
term-based ranking schemes such as BM25 [10], link-based
methods such as Pagerank [7] or Hits [24], and up to several
hundred other features derived from documents and search
query logs.

Recent work has focused on positional ranking functions
[32, 27, 36, 28, 33, 40, 10] that improve result quality by con-
sidering the positions of the query terms in the documents.
Thus, documents where the query terms occur close to each
other might be ranked higher, as this could indicate that
the document is highly relevant for the query. To support
such positional ranking, the search engine must have access
to the position data. This is commonly done by building an
index for all term positions within documents, called a posi-
tional index. The goal is to obtain an index that is efficient
in terms of both index size and access time.

As shown in [32], positional ranking can be carried out in
two phases. First, a simple term-based ranking scheme (such
as BM25) defined over a Boolean filter is used to determine
a set of high-scoring documents, say, the top 200 documents.
In the second phase, the term positions are used to rerank
these documents by refining their score values. (Additional
third or fourth phases may be used to do further rerank-
ing according to hundreds of additional features [38], but



this is orthogonal to our work.) Once the final set of top-
scoring documents has been determined (say, the top 10), it
is necessary to generate appropriate text snippets, typically
text surrounding the term occurrences, to return as part of
the result page. This requires access to the actual text in
the indexed web pages. It is well known [40, 21] that stor-
ing position data requires a considerable amount of space,
typically about 3 to 5 times the space of an inverted in-
dex storing only document identifiers and term frequencies.
Furthermore, storing the documents for snippet generation
requires significant additional space.

This paper focuses on alternative approaches to perform-
ing the above two-step document ranking process and the
query snippet-generation phase. The aim is to optimize both
space and query processing time. One important feature
of position data is that it only needs to be accessed for a
limited number of promising documents, say a few dozens
or hundreds of documents. This access pattern differs from
that for document identifiers and term frequencies, which are
accessed more frequently, making access speed much more
important. For position data, on the other hand, we could
consider somewhat slower but smarter alternative represen-
tations without losing too much efficiency at query time [40].

In this paper, we push this idea further and consider not
storing the position data (i.e, the positional index) at all.
Instead, we compute positions on the fly from a compressed
representation of the text collection. We will study two
alternative approaches to compressing the text collection:
(1) wavelet trees [23], which are succinct data structures
from the combinatorial pattern matching community, and
(2) compressed document representations that support fast
extraction of arbitrary documents. It has been shown that,
compared to positional indexes, web-scale texts can often be
compressed in much less space [21]. More importantly, these
representations can be used for both positional reranking
and snippet generation. One concern is how these alterna-
tives impact query processing speed, and thus we will study
the resulting trade-offs between running time and space re-
quirement.

Thus, to index or not to index position data, that is the
research question that we hope to answer in this paper. To
our knowledge, such alternative approaches for implement-
ing positional ranking functions have not been rigorously
compared before. Our main result is that we can store all
the information needed for query processing (i.e., document
identifiers, term frequencies, position data, and text) us-
ing space close to that of state-of-the-art positional indexes
(which only store position data and thus cannot be used for
snippet creation), with only a minor increase in query pro-
cessing time. Thus, we provide new alternatives for practical
compression of position and text data, outperforming recent
approaches in [34].

Following current practice in search engines [21, 14], we
assume a scenario where there is enough space to maintain
index data structures completely in main memory, in com-
pressed form. In this scenario, large text collections are
usually partitioned over a number of nodes in a cluster, such
that each partition fits into the memory of its node. This
paper focuses on how to organize data within each partition,
as also assumed in previous work such as [21, 14].

2. BACKGROUND AND RELATED WORK
Let D = {D1, . . . , DN} be a document collection of size N ,

where each document is represented as a sequence Di[1..ni]
of ni terms from a vocabulary Σ = {1, . . . , V }. Notice that
every term is represented by an integer, hence the documents
are just arrays of integers. We also identify each document
Di with a unique document identifier (docID) i. Given a
term t ∈ Σ and a document Di ∈ D, the in-document posi-
tions of t in Di is the set {j|Di [j] = t}.

Throughout this paper, we assume that all term separa-
tors (like spaces, ‘,’, ‘;’, ‘.’, etc.) have been removed from
the text. Also, we assume that all terms in the vocabulary
have been represented in a case-insensitive way. This is in
order to facilitate the search operations that we need to carry
out over the documents in order to compute (on the fly) the
positions of a given query term. To be able to retrieve the
original text (with separators and the original case) one can
use the presentation layer introduced by Fariña et al. [17,
Section 4]. This also supports removing stopwords and the
use of stemming, among other vocabulary techniques. This
extra layer requires extra space on top of that of the com-
pressed text, as well as extra time to obtain the original
text. However, this scheme must be used on all the alterna-
tives that we consider in this paper, and thus we disregard
the overhead introduced by the presentation layer and focus
only on the low-level details of compression (but keeping in
mind that the original text can still be retrieved).

2.1 Inverted Index Compression
The efficiency of query processing in search engines re-

lies on inverted indexes. These data structures store a set
of inverted lists I1, . . . , IV , which are accessed through a
vocabulary table. The list It maintains a posting for each
document containing the term t ∈ Σ. Usually, a posting in
an inverted list consists of a docID, a term frequency, and
the in-document positions of the term. (In real systems,
the docIDs, term frequencies and in-document positions are
often stored separately.) Indexes whose postings store in-
document positions are called positional inverted indexes.

We assume that an inverted list It is divided into blocks
of 128 documents each — the particular choice of 128 docu-
ments per block is an implementation issue. Given a block
of It, the term-position data for all the documents in that
block are stored in a separate block of variable size. The
inverted lists of the query terms are used to produce the re-
sult for the query. Since the query results are usually large,
the result set must be ranked by relevance.

For large document collections, the data stored in inverted
indexes requires considerable amounts of space. Hence, the
indexes must be compressed. To support efficient query pro-
cessing (such as DAAT [10], WAND [9] or BMW OR [15])
and effective compression in the inverted lists, we sort them
by increasing docID. Let dt[1..|It|] denote the sorted list of
docIDs for the inverted list It. Then, we replace dt[1] with
dt[1]− 1, and dt[i] with dt[i]− dt[i− 1]− 1 for i = 2, . . . , |It|.
In the case of frequencies, every fi is replaced with fi − 1,
since fi > 0 always holds. For the positions, each pi,j is re-
placed with pi,j − pi,j−1− 1. Then these values are encoded
with integer compression schemes that take advantage of the
resulting smaller integers.

There has been a lot of progress on compressing docIDs
and frequencies, with many compression methods available
[41, 10]. Some of them achieve, in general, a very good
compression ratio, but at the expense of a lower decom-
pression speed [10], for example Elias γ and δ encodings



[16], or Golomb/Rice parametric encodings [22], interpola-
tive encoding [30]. Other methods achieve a (slightly) lower
compression ratio, though with much higher decompression
speed, for example VByte [39], S9 [3], and PForDelta [42],
among others [10]. The best compression method depends
on the scenario at hand.

2.2 Positional Indexes
Unfortunately, the scenario is not the same for compress-

ing term positions, which is a problem where it has been
difficult to make much progress. For instance, previous work
[40] concludes that term positions in the documents do not
follow simple distributions that could be used to improve
compression (as is the case of, for instance, docIDs and fre-
quencies). As a result, a positional index is about 3 to 5
times larger than a docID/frequency index, and becomes a
bottleneck in index compression. Another important conclu-
sion from [40] is that we may only have to access a limited
amount of position data per query, and thus it might be
preferable to use a method that compresses well even if its
speed is slightly lower.

Positions in inverted indexes are used mainly in two appli-
cations, phrase searching and positional ranking schemes. In
this paper we study positional ranking, where the positions
of the query terms within the documents are used to improve
the performance of a standard ranking such as BM25. The
rationale is that documents where the query terms appear
close together could be more relevant for the query, so they
should get a better score. Although we focus only on po-
sitional ranking functions, the compression schemes used in
this paper allow for phrase searching as well. This scenario
is left for future work.

A recent work on positional indexing is that of Shan et
al [34]. They propose to use the flat position indexes [11,
14] as an alternative of positional inverted indexes. The
result is that docIDs, term frequencies and position data can
be stored in space close to that of positional inverted lists,
yielding a reduction of space usage. However, this index does
not store the text, which makes it less suitable in scenarios
where text snippets must be generated.

2.3 Snippet Generation
Besides providing a ranking of the most relevant docu-

ments for a query, search engines must show query snippets
and support accessing the “in-cache” version of the docu-
ments. Each snippet shows a portion of the result document,
in order to help the user judge its likely relevance before ac-
cessing it. Turpin et al. [37] introduce a method to compress
the text collection and support fast text extraction to gener-
ate snippets. However, to achieve fast extraction, they must
use a compression scheme that uses more space than usual
compressors. In a more recent work, Ferragina and Manzini
[21] study how to store very large text collections in com-
pressed form, such that the documents can be accessed when
needed, and show how different compressors behave in such
a scenario. One of their main concerns was how compres-
sors can capture redundancies that arise very far apart in
very long texts. Their results show that such large texts can
often be compressed to just 5% of their original size.

2.4 Compressed Text Self-Indexes
Succinct or compressed data structures use as little space

as possible to support operations as efficiently as possible.

Thus, large data sets (like graphs, trees, and text collections)
can be manipulated in main memory, avoiding the secondary
storage. In particular, we are interested in compressed data
structures for text sequences. A compressed self-index is a
data structure that represents a text in compressed space,
supports indexed search capabilities on the text, and is able
to obtain any text substring efficiently [31]. It can be seen
as compression tools with indexed search capabilities.

Given a sequence T [1..n] over an alphabet Σ = {1, . . . , V },
we define operation rankc(T, i), for c ∈ Σ, as the number of
occurrences of c in T [1..i]. Operation selectc(T, j) is defined
as the position of the j-th occurrence of c in T . A wavelet
tree [23] (WT for short) is a succinct data structure that sup-
ports rank and select operations, among many virtues [19].

A WT representing a text T is a balanced binary search tree
where each node v represents a contiguous interval Σv =
[i..j] of the sorted set Σ. The tree root represents the whole
vocabulary. Σv is divided at node v into two subsets, such
that the left child vl of v represents Σvl = [i.. i+j

2
], and the

right child vr represents Σvr = [ i+j

2
+ 1..j]. Each tree leaf

represents a single vocabulary term. Hence, there are V

leaves and the tree has height O(log V ). For simplicity, in
the following we assume that V is a power of two.

Let T v be the subsequence of T formed by the symbols
in Σv . Hence, T root = T . Node v stores a bit sequence Bv

such that Bv[l] = 1 if T v[l] ∈ Σvr , and Bv[l] = 0 otherwise.
Given a WT node v of depth i, Bv[j] = 1 iff the i-th most-
significant bit in the encoding of T v[j] is 1. In this way,
given a term c ∈ Σ, the corresponding leaf in the tree can
be found by using the binary encoding of c. Every node v

stores Bv augmented with a data structure for rank/select
over bit sequences [31]. The number of bits of the vectors
Bv stored at each tree level sum up to n, and including the
data structure every level requires n + o(n) bits. Thus, the
overall space is n log V + o(n log V ) bits [23, 31].

Since a WT replaces the text it represents, we must be able
to retrieve T [i], for 1 ≤ i ≤ n. The idea is to navigate the
tree from the root to the leaf corresponding to the unknown
T [i]. To do so, we start from the root, and check if Broot[i] =
0. If so, the leaf of T [i] is contained in the left subtree vl

of the root. Hence, we move to vl looking for the symbol at
position rank0(B

root, i). Otherwise, we move to vr looking
for the symbol at position rank1(B

root, i). This process is
repeated recursively, until we reach the leaf of T [i], and runs
in O(log V ) time as we can implement the rank operation
on bit vectors in constant time. To compute rankc(T, i), for
any c ∈ Σ, we proceed mostly as before, using the binary
encoding of c to find the corresponding tree leaf. On the
other hand, to support selectc(T, j), for any c ∈ Σ, we must
navigate the upward path from the leaf corresponding to
term c. Both operations can be implemented in O(log V )
time; see [31] for details.

The space required by a WT is, in practice, about 1.1–1.2
times the space of the text [12]. In our application to IR,
this would produce an index larger than the text itself, which
is excessive. To achieve compression, we can generate the
Huffman codes for the terms in Σ (this is a word-oriented
Huffman coding [29]) and use these codes to determine the
corresponding tree leaf for each term. Hence, the tree is not
balanced anymore, but has a Huffman tree shape [12] such
that frequent terms will be closer to the tree root than less
frequent ones. This achieves a total space of n(H0(T )+1)+
o(n(H0(T )+1)) bits, where H0(T ) ≤ log V is the zero-order



empirical entropy of T [26]. In practice, the space is about
0.6 to 0.7 times the text size [12]. However, notice that we
have no good worst-case bounds for the operations, as the
length of the longest Huffman code assigned to a symbol
could be O(V ).

2.5 Self-Indexes for IR Applications
There have been some recent attempts to apply alterna-

tive indexing techniques, such as self-indexes, in large-scale
IR systems. In particular, we mention the work by Bris-
aboa et al. [8] and Arroyuelo et al. [5, 4]. The former [8]
concludes that WT are competitive when compared with an
inverted index for finding all the occurrences of a given query
term within a single text. The latter [5, 4] extends [8] by
supporting more IR-like operations on a WT. The result is
that a WT can represent a document collection using n(H0

(T ) + 1) + o(n(H0(T ) + 1)) bits while supporting all the
functionality of an inverted index. The experimental results
in [5] compare with an inverted index storing just docIDs,
which of course yields a smaller index. However, WTs also
store extra information, such as the term frequencies and,
most important for us here, the compressed text and thus
the term-position data.

Recent work [21] also tried to use (among other alterna-
tives) a compressed self-index to compress web-scale texts, in
order to allow decompression of arbitrary documents. Their
conclusion is that compressed self-indexes still need a lot
of progress in order to be competitive with standard com-
pression tools, both in compression ratio and decompression
speed. A contribution of our present work is a compressed
self-index that is able to store web-scale texts and is compet-
itive with the best state-of-the-art compressors. We think
that this is a step forward in closing the gap between theory
and practice in this area [20].

3. CONTRIBUTIONS
In this paper we study what are the best ways to orga-

nize in-document positions and textual data, in order to
efficiently support positional ranking and snippet genera-
tion in text search engines. One of our main conclusions is
that some compressed representations of the textual data —
which are needed to support snippet generation — can also
be used to efficiently obtain the term positions needed by
positional ranking methods. Therefore, no positional index
is needed in many cases, thus saving considerable space at
little cost in terms of running time.

Our main contributions can be summarized as follows:

1. A study of several trade-offs for compressing position
data. Rather than storing a positional index, we pro-
pose to compute the term positions from a compressed
representation of the text. We explore and propose
several compression alternatives. Our results signifi-
cantly enhance current trade-offs between running time
and memory space usage, enabling in this way more de-
sign choices for web search engines. One of our most
interesting results is that both position and textual
data can be stored in about 71% the space of current
positional inverted indexes.

2. A study of several alternatives for compressing textual
data, extending the alternatives studied in previous
work [21]. In particular, we show that using the scheme

in [37] (to compress text and support efficient snippet
generation) before using a standard compressor yields
good time-space trade-offs, extending the alternatives
introduced in [18]. It is important to note that vari-
ants of the scheme in [37] have been adopted by some
commercial search engines, which makes our results of
practical interest.

3. We propose several improvements over wavelet trees
[23], in order to make them competitive for represent-
ing document collections. We show how to improve the
compression ratio by compressing the sequence associ-
ated to every node of the tree with standard compres-
sors. The result is a practical web-scale compressed
self-index that is competitive with the best state-of-
the-art compressors.

4. COMPRESSING TERM-POSITION AND
TEXTUAL DATA

Compressing in-document positions, i.e., the positions
where each term occur within a document, has been recog-
nized as a difficult task [40, 21]. Indeed, positions have be-
come a bottleneck for compression compared to docIDs and
frequencies. Moreover, recent work shows that the textual
data can be compressed better than positions [21]. There
are two main reasons for this. First, positions have a differ-
ent distribution than docIDs and frequencies [40]. Second,
since positions are stored separately for each term (recall
Section 2.1), the local context for terms that is exploited by
text compression schemes is not available in the positional
inverted lists. Usually, positions require about 3 to 5 times
the space of an inverted index storing docIDs and frequen-
cies. Thus, efficient compression of in-document positions is
an important challenge.

Positional inverted indexes are the standard solution to
this problem [25, 10, 6]. In particular, [40] shows a detailed
study of alternative ways to compress positional inverted in-
dexes. However, it is not clear that using the methods in [40]
is the best one can do. Notice that the in-document position
data can be obtained (at query time) by searching for the
query terms in the documents — a simple scan of the doc-
ument suffices. Since textual data can be compressed much
better than positions, this could decrease the space usage of
positions. However, the question is how this impacts query
performance. We investigate this issue in this paper. We as-
sume that positions are used to support positional ranking
as described in [10, 40].

Another important issue in web search engines is the abil-
ity to generate snippets for the query results that allow users
to decide which of the result documents they should visit.
In this context, snippets have been shown to improve the ef-
fectiveness of search engines. To provide snippets, a search
engine must store a (simplified) version of the documents
in the collection. In the case of web search engines, this
means the entire textual web, which requires a considerable
amount of resources. Thus, the textual data must be com-
pressed [21].

4.1 Basic Query Processing Steps for Positional
Ranking and Snippet Extraction

From now on we assume a search engine where positional
ranking is used to score documents, and where snippets must



be generated for the top-scoring documents. Thus, solving
a query involves the following steps:

1. Query Processing Step: Given a user query, use an
inverted index to get the top-k1 documents according
to some standard ranking function (e.g., BM25).

2. Positional Ranking Step: Given the top-k1 docu-
ments from the previous step, get the positions of the
query terms within these documents. Then rerank the
results using a positional ranking functions [10, 40].

3. Snippet Generation Step: After the re-ranking of
previous step, get snippets of length s for the top-k2

documents, for a given k2 ≤ k1.

For instance, k1 = 200 (as in [40]) and k2 = 10 (as in most
commercial search engines) are typical values for them. We
assume s = 10 in this paper. The different values for these
parameters should be chosen according to the trade-off be-
tween query time and search effectiveness that we want to
achieve. Step 2 is usually supported by a positional inverted
index [25, 10, 40]. Step 3 is supported by compressing the
document collection and supporting the extraction of arbi-
trary documents. Our focus here is on alternative ways to
implement the last two steps.

4.2 The Baseline: Positional Inverted Lists and
Compressed Textual Data

This section describes and evaluates baseline approaches
to support term positions indexing and snippet extraction.

4.2.1 Positional Inverted Lists
Positional inverted lists (PILs, for short) are the standard

approach for indexing in-document position data in search
engines [25, 10, 6]. In particular, we assume the represen-
tation explained in Section 2.1. To obtain position data
at query time, given the docIDs of the top-k1 results for
a given query, we identify the PIL blocks containing the
desired positional index entries. Then these blocks are fully
decompressed, and the corresponding positions are obtained.
A drawback here is that we need to decompress the entire
PIL block, even if we only need a single entry in it. Thus, we
might end up decompressing, in the worst case, k1 blocks in
each of the inverted lists involved in the query. Afterwards,
these positions are used to rerank the top-k1 documents, as
in [40].

The access pattern for position data is much sparser than
that for docIDs and frequencies, since positions must be ob-
tained only for the top-k1 documents. Thus, just a few po-
sitions are decompressed from the PIL in each query. Given
this sparse access pattern and the high space requirement of
positions (as discussed above), it is better to use compression
methods with a good compression ratio, like Golomb/Rice
compression. These are slower to decompress, yet the fact
that only a few positions are decompressed should not im-
pact in the overall query running time.

4.2.2 Compressed Textual Data
To compress the text collection and support decompress-

ing arbitrary documents, a simple alternative that is used by
several state-of-the-art search engines — for instance Lucene
[13] — is to divide the whole collection into smaller text
blocks, which are then compressed separately. The block

size offers a time-space trade-off: larger blocks yield bet-
ter compression, although decompression time is increased.
Given the popularity [13, 21] and simplicity of this approach,
we use it as the baseline for the compressed text.

4.2.3 Baseline Experiments

Experimental Setup.
We show now experiments for the baseline approaches.

For this we use an HP ProLiant DL380 G7 (589152-001)
server, with a Quadcore Intel(R) Xeon(R) CPU E5620 @
2.40GHz processor, with 128KB of L1 cache, 1MB of L2
cache, 2MB of L3 cache, and 96GB of RAM, running version
2.6.34.8-68.fc13.i686.PAE of Linux kernel.

We use the TREC GOV2 collection, with about 25.2 mil-
lion documents and about 32.86 million terms in the vocab-
ulary. We work just with the text content of the collection
(that is, we ignore the html code from the documents). This
requires about 127GB in ASCII format. When we represent
the terms as integers, the resulting text uses 91,634 MB.
We use a subset of 10,000 random queries from the query
log provided with the TREC GOV2 collection. All meth-
ods were implemented using C++, and compiled with g++

4.4.5, with the full optimization flag -O5.

Experiments for Step 1.
In Table 1 we show the average query time (in millisec-

onds per query) for the initial query processing step (Step
1 of Section 4.1). We show results for two types of queries:
traditional AND queries (using DAAT query processing and
BM25 ranking) and the BMW OR approach from [15], which
is one of the most efficient current solutions for disjunctive
queries (using a two-layer approach, which yields slightly
faster query times [15]). The index for docIDs and frequen-
cies required 9,739 MB of space, using PForDelta compres-
sion for docIDs and S16 for frequencies. Notice that the

Table 1: Experimental results for the initial query
processing step (Step 1) for AND and OR queries.

top-k1 DAAT AND (ms/q) BMW OR [15] (ms/q)

50 14.75 35.70
100 14.77 43.39
150 14.80 47.90
200 14.81 51.74
300 14.81 58.19

query time for AND is almost constant (within two decimal
digits) with respect to k1. The process to obtain the top-
k1 documents uses a heap (of size k1). However, operating
the heap takes negligible time, compared to the decompres-
sion of docIDs and the DAAT process. BMW OR, on the
other hand, is an early-termination technique, and thus k1

impacts the query time.

Experiments for Step 2.
In Table 2 (first two rows) we show experimental results

for obtaining positions with the baseline PILs, using two
compression schemes: Rice and S16, which offer the most
interesting trade-offs [40]. We also show query times for
different values of k1, namely 50, 100, 150, 200 and 300 (the
experiments in [40] only use k1 = 200). As we can see, Rice



requires only about 90% the space of S16, but takes twice as
much time. Comparing the query times of Step 2 for Rice
and S16 with the query times of Step 1 in Table 1, we can
see that position extraction is a small fraction of the overall
time. Hence, we can use Rice to compress PILs and obtain a
better space usage with only a minor increase in query time.
For Rice, PILs use 2.91 times the space of the inverted index
that stores docIDs and frequencies. For S16, this number is
3.22.

Experiments for Step 3.
Table 3 shows experimental results for the baseline for

compressed textual data. Just as in [21], we divide the text
into blocks of 0.2MB, 0.5MB or 1.0MB, and compress each
block using different standard text compression tools. In
particular, we show results for lzma (which gives very good
results in [21]) and Google’s snappy compressor [1], which is
an LZ77 compressor that is optimized for speed rather than
compression ratio. These two compressors offer the most
interesting trade-offs among the alternatives we tried. As it
can be seen, lzma achieves much better compression ratios
than snappy. The compressed space achieved for the whole
text is 8,133 MB for lzma and 27,388 MB for snappy.

The differences in extraction time are also considerable,
with snappy being much faster. Note that [21] reports a
decompression speed of about 35MB/sec for lzma. However,
to obtain a given document we must first decompress the
entire block that contains it. Hence, most of the 35MB per
second do not correspond to any useful data. In other words,
this does not measure effective decompression speed for our
scenario, and thus we report per-query times rather than
MB/s for both methods.

4.3 Computing Positions and Snippets from
the Compressed Document Collection

We explore next the alternative of obtaining position data
directly from the compressed text. This implies that in Step
2 of the query process, k1 documents must be decompressed,
rather than only k2 in Step 3, as in the baseline.

Using Standard Text Compressors.
Our first approach is to obtain positions using the base-

line for generating snippets from Section 4.2.2. In rows 3
and 4 of Table 2 we show the time-space trade-offs for this
approach, using lzma and snappy compressors, and blocks
of size 0.2 MB. We conclude that using lzma we can store
positions and text in about half the space of PIL(the latter
just storing positions). However, this approach is two or-
ders of magnitude slower than the positional index. If we
use snappy instead, we obtain an index that is 21.86% larger
than PIL (Rice), and running times to obtain positions that
are about an order of magnitude slower (this might be ac-
ceptable in some cases). In the following, we try to improve
on both of these techniques.

Zero-order Compressors with Fast Text Extraction.
An alternative to compressing the text that could sup-

port faster position lookups is the approach from Turpin
et al. [37]. The idea is to first sort the vocabulary accord-
ing to the term frequencies, and then assign term identifiers
according to this order. In this way, the term identifier 0

corresponds to the most frequent term in the collection, 1

to the second most frequent term, and so on. The document
collection is then represented as a single sequence of iden-
tifiers, where each term identifier is encoded using VByte
[2]. Note that the 128 most frequent terms in the collec-
tion are thus encoded in a single byte. Actually, [37] uses a
move-to-front strategy to store the encodings: the first time
a term appears in a document, it is encoded with the origi-
nal code assigned as before; the remaining appearances are
represented as an offset to the previous occurrence of the
term. We also use this approach in our experiments.

By using an integer compression scheme (such as VByte)
for the text, we are able to decompress any text portion
very efficiently (no text blocks are needed this time). Table
2 shows the resulting trade-offs for this alternative (see the
row for “VByte”). Notice that we improve the query time
significantly, making it competitive with PILs. The higher
space usage is a concern, but note that we also represent the
text within this space, not just the position data as in PILs.
We also tried other compression schemes, such as PForDelta
and S9, obtaining poorer compression ratios and similar de-
compression speed. The only method that improved the
compression ratio is VNibble, a variant of VByte that rep-
resents any integer with a variable number of nibbles (i.e.,
half bytes). As in VByte, one bit of each nibble is used as
a continuation bit, so only 3 bits of each nibble are used to
represent the number. The results of Table 2 show space
savings of about 10% over VByte. Also, notice that we are
now able to use space close to that of snappy (with blocks
of 0.2 MB), yet with a better query time.

The fast query time is due to two facts. First, methods
like VByte and VNibble are able to decompress hundred
of million integers (which in our case correspond to terms)
per second [41]. Second, VByte and VNibble are able to
decompress just the desired documents, without negative
impact on compressed size. However, this is basically zero-
order compression, and hence we are still far from the space
usage of, for instance, lzma. We address this next.

Natural-Language Compression Boosters.
To obtain higher-order compression, we propose to use

a so-called natural-language compression booster [18]. The
idea is to use first a zero-order compressor on the text, then
this compressed text is further compressed using some stan-
dard compression scheme. It has been shown that this can
yield better compression ratios than just just using a stan-
dard compression scheme [18] (especially for smaller block
sizes). In our case, we propose using Turpin et al’s approach
[37] as booster (using VByte and VNibble as we explained
above) on the sequence of term identifiers, rather than Word
Huffman or End-Tagged as in [18]. Our experiments indi-
cate that the former are faster and use only slightly more
space than the latter.

In Table 2 we show the trade-offs for this approach (see
the rows for approach “Compression Boosters”). We show
results for blocks of size 0.001, 0.01, 0.05, and 0.2 MB of
VByte and VNibble compressed text. Overall, the reduction
in space usage (compared to the original VByte approach)
is considerable. Compared to lzma (0.2 MB), the result is
a reduction in space usage of 16.68% (12,486 MB vs 14,987
MB), but at the cost of twice the running time as the origi-
nal lzma. When using smaller blocks, however, the time to
obtain positions rapidly improves, while the size does not in-
crease too much. For snappy, on the other hand, we obtain a



Table 2: Experimental results for extracting term-position data (Step 2).

Approach Compression Scheme Space Usage Position extraction time (ms/q)

(MB) k1 = 50 k1 = 100 k1 = 150 k1 = 200 k1 = 300

Positional PIL(Rice) 28,373 1.28 2.22 3.05 3.27 5.57
indexes PIL(S16) 31,338 0.74 1.12 1.43 1.75 2.51

Text lzma (0.2 MB) 14,987 137.60 260.36 375.21 482.09 684.94
compressors snappy (0.2 MB) 34,576 9.47 18.00 25.95 33.49 47.74

Zero-order VByte 38,339 0.95 1.91 2.86 3.81 5.72
Compressors VNibble 34,570 1.86 3.71 5.57 6.75 8.10

Compression VByte + lzma (0.2 MB) 12,486 256.16 484.35 716.41 906.54 1,284.87
Boosters VByte + lzma (0.05 MB) 13,981 70.32 133.18 192.09 246.94 351.71

VByte + lzma (0.01 MB) 16,762 19.26 36.51 52.67 68.00 97.04
VByte + lzma (0.001 MB) 22,340 6.11 11.60 16.80 21.72 31.10

VByte + snappy (0.2 MB) 20,158 9.71 18.86 26.41 34.01 48.69
VByte + snappy (0.05 MB) 20,366 2.36 4.48 6.47 8.36 11.95
VByte + snappy (0.01 MB) 22,086 0.82 1.56 2.25 2.91 4.17
VByte + snappy (0.001 MB) 27,919 0.45 0.86 1.24 1.60 2.30

Compressed WT(7 KB) 40,534 1.94 3.68 5.30 6.85 9.80
self-indexes WT(1 KB) 56,917 0.33 0.62 1.04 1.15 1.75

WT(7 KB) + lzma 19,628 19.25 36.59 52.83 68.36 97.71
WT(1 KB) + lzma 42,359 7.22 13.54 19.44 24.97 35.57

WT(7 KB) + snappy 25,122 14.35 23.76 39.38 51.02 74.56
WT(1 KB) + snappy 46,778 2.07 3.61 5.88 7.32 10.47

Table 3: Experimental results for compressing the document collection (Step 3).

Compressor Block size Space usage Compression Ratio Snippet extraction time (ms/q)

(MB) (MB) k2 = 10 k2 = 30 k2 = 50

lzma 0.2 14,987 16.35 29 84 136
0.5 13,489 14.72 63 181 292
1.0 12,682 13.84 117 335 540

snappy 0.2 34,576 37.73 2 6 9
0.5 34,426 37.57 5 14 23
1.0 34,390 37.53 10 28 46

reduction of 41.69% in space for blocks of size 0.2 MB, with
a very minor increase in query time. When we reduce the
block size to 0.05 MB, the query time improves even more,
and becomes competitive with the time to obtain positions
from PIL (Rice). We note that using more advanced tech-
niques from [40] we could obtain about 21 to 22 GB of space
for PIL, making both techniques competitive in both space
and time. However, VByte + snappy also contains the text
within this space, allowing for use during snippet genera-
tion. Thus, we are able to store both text and positions in
a representation that uses less space than PIL, which stores
only positions.

4.4 A Compressed Self-Index for Positions and
Snippets

Let T be the text obtained from the concatenation (in
arbitrary order) of the documents in the collection. We rep-
resent T with a WT to obtain term positions and text snip-
pets. Given a position i in T , one can easily obtain both the
docID of the document that contains T [i] and the starting

position of a given document j by means of operations rank

and select [5], assuming a table of document lengths.

Byte-Oriented Huffman WT.
Instead of a bit-oriented WT (as the ones explained in Sec-

tion 2.4), we use the byte-oriented representation from [8],
using the Plain Huffman encoder, which is the most efficient
alternative reported in there. The idea is to first assign a
Huffman code to each vocabulary term [29]. Then, we store
the most significant byte of the encoding of each term in ar-
ray Broot. That is, each WT node v stores an array of bytes
Bv, instead of bit arrays as in Section 2.4. Next, each term
in the text is assigned to one of the children of the root,
depending on the first byte in the encodings. Notice that in
this way the WT is 256-ary. See [8] for details.

To support rank and select, we use the simple approach
from [8]. Given a WT node v, we divide the corresponding
byte sequence Bv into superblocks of sb bytes each. For each
superblock we store 256 superblock counters, one for each
possible byte. These counters tell us how many occurrences



of a given byte there are in the text up to the last position
of the previous superblock. Also, each superblock is divided
into blocks of b bytes each. Every such block also stores
256 block counters, similarly as before. The difference is
that the values of these counters are local to the superblock,
hence less bits are used for them. To compute rankc(T, i),
we first compute the superblock j that contains i, and use
the superblock counter for c to count how many c there
are in T up to superblock j − 1. Then we compute the
block i′ that contains i and add (to the previous value) the
block counter for c. Finally, we must count the number
of c within block i′. This is done with a sequential scan
over block i′. This block/superblock structure allows for
time-space trade-offs. In our experiments we use sb = 216.
Hence, superblock counters can be stored in 16 bits each. We
consider b = 1 KB, b = 3 KB and b = 7 KB. Operation select

is implemented by binary searching the superblock/block
counters; thus no extra information is stored for this [8].

To obtain position data assume that, given docID i for a
top-k1 document and a query term t, we want to obtain the
positions of t within Di. A simple solution could be to ex-
tract document Di from the WT, and then search for t within
it (as in Section 4.3). However, the decompression speed of
a WT is much slower than that of the schemes used in Section
4.3, so we must use a more efficient way. An idea is to use op-
eration select to find every occurrence of t within Di, hence
working in time proportional to the number of occurrences
of the term. Let d be the starting position for document
Di in T . Hence, there are r ← rankt(T, d) occurrences of t

before document Di, and the first occurrence of t within Di

is at position j ← selectt(T, r + 1), the second occurrence at
position j′ ← selectt(T, r +2), and so on. Overall, if o is the
number of occurrences of t within Di, then we need 1 rank

and o + 1 selects to find them.
In Table 2 we show the experimental trade-offs for WT, for

the different block sizes tested. As it can be seen, WT (7 KB)
requires space close to (though slightly larger than) that of
the VByte approach. WT (3 KB) and WT (1 KB) obtain better
times, but requiring even more space. Moreover, WT (7 KB)
is slower than PIL (Rice) and uses more space. The WT, on
the other hand, includes the textual data, but still this space
usage could leave it out of competition. Next, we introduce
extra improvements to make them more competitive.

Achieving Higher-Order Compression with the WT.
Basically, WTs are zero-order compressors, which explains

their high space usage. To achieve higher-order compression,
notice that Broot contains the most significant byte of the
Huffman encodings of the original terms. Thus, the original
text structure is at least partially preserved in the structure
of Broot, which might thus be as compressible as the orig-
inal text. A similar behavior can be observed in internal
nodes. Thus, we propose to compress the blocks of Bv in
each WT node v by using some standard compressor.

Table 2 shows results for lzma and snappy, the best com-
pressors we tried. Notice that WT (7 KB) + lzma achieves
19,628 MB, almost half the space used by WT (7 KB). The
time to obtain positions becomes, on the other hand, an
order of magnitude larger. WT (7 KB) + snappy achieves
slightly better times, but using more space. Also, WT (7
KB) + lzma uses slightly less space than VByte + snappy

(0.2 MB), but is somewhat slower. Overall, this significant
reduction in space could make WTcompetitive.

5. EXPERIMENTAL RESULTS
We now show the time-space trade-offs for the overall so-

lution space we explored. We use here the same basic setup
as in Section 4.2.3, with the same parameters (block sizes)
for each alternative. We consider the most competitive in-
dexing alternatives from previous sections for positions and
snippet generation, described in Table 4. All results include
the time and space of the inverted index to carry out Step
1 of the query process, as well as of all structures used in
Steps 2 and 3.

Table 4: Glossary of the indexing schemes used in
Figure 1. All schemes include the inverted index.

Indexing Scheme Description
Scheme 1 WT for positions and text.
Scheme 2 WT compressed with lzma for

positions and text.
Scheme 3 WT compressed with snappy for

positions and text.
Scheme 4 Text compressed with VByte/

VNibble for positions and text.
Scheme 5 VByte compression booster on

snappy for positions and text.
Scheme 6 PIL (Rice) for positions and VByte/

VNibble for text.

Note that only Scheme 6 stores an index for position
data. Figure 1 shows the different trade-offs for DAAT AND
queries with BM25 ranking. Conclusions for OR queries are
similar to that for AND. We only show results for k1 = 200
and k2 ∈ {10, 50}, which are representative of other values
we tested.

As can be seen, Scheme 6, which uses PIL for positions
and Turpin et al [37] for snippets, has one of the fastest
query times among all alternatives, but space usage is high
compared to other methods. This is because this scheme
needs to store positions and text separately. The two points
for Scheme 6 that are plotted correspond to using VByte
(higher space usage) and VNibble.

Scheme 1 also offers a competitive query time (among the
fastest alternatives), but still uses a considerable amount of
space. The time-space trade-offs for the schemes that use
WT are obtained for different block sizes within the WT nodes
(1 to 7 KB). Scheme 2 and Scheme 3 compress the byte
sequences of each WT node (as proposed in Section 4.4). As
can be seen, the space usage is improved significantly, in
some cases by a factor of two. However, query time degrades,
making these alternatives less compelling.

Scheme 4 is very competitive in query time, but again its
space usage is high. Scheme 5 corresponds to the compres-
sion boosters proposed in Section 4.3, and it obtains a very
impressive trade-off. One of the most interesting settings is
for blocks of size 0.05 MB. In this case, the overall space
usage is 1.06 times the space of PIL (Rice), with a query
time 1.21 times higher than Scheme 4 and 1.23 times higher
than Scheme 6 (which uses PIL). For blocks of size 0.01 MB,
Scheme 5 requires 1.12 times the space of PIL (Rice), with
a query time that is 0.96 times the one of Scheme 4, and
0.98 the one of Scheme 6. Thus, using only slightly more
space than PIL (Rice) (recall the results in Table 2), Scheme
5 includes everything needed for query processing: docIDs,
frequencies, term positions, and the text needed to gener-
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Figure 1: Time-space trade-offs for the overall query process for the GOV2 collection, including positional
ranking and snippet generation. The size of each alternative includes the size of inverted index with docIDs
and frequencies, which for the TREC GOV2 collection requires 9,739MB.

ate snippets. This is one of the most important conclusions
in this paper, that “not to index” can be a real alternative
for positional data in practical scenarios. As stated in Sec-
tion 4.3, the space usage of PILs can be reduced to about
21 GB–22 GB for the TREC GOV2 collection [40]. How-
ever, we would still need to add the inverted index and the
compressed text to that space in order to support all query
processing steps.

Finally, the smallest space alternatives we tested (which
are not shown in Figure 1) are the ones that use the inverted
index for query processing and lzma compression for posi-
tions and snippets. This achieves about 22,225 MB of space.
This scheme includes everything needed for query process-
ing, and uses only 78% the space of PIL. However, query
processing time increases significantly, to more than 400 ms
per query. This scheme could be useful in some cases where
the available memory space is very restricted, such that a
larger index would mean going to disk.

A recent alternative [34] proposes to use flat positional in-
dexes [11, 14] to support phrase querying; this index could
also be used for positional ranking. This is basically a po-
sitional index from which docID and frequency information
can also be obtained. The results reported for the GOV2
collection in [34] give an index of size 30,310 MB that in-
cludes docIDs and frequencies, but not the text needed for
snippet generation, making this approach uncompetitive for
our scenario.

6. CONCLUSIONS
From our study we can conclude that there exists a wide

range of practical time-space trade-offs, other than just the
classical positional inverted indexes. We studied several al-
ternatives, trying to answer the question of whether it is
necessary to index position data or not. As one of the most
relevant points in the trade-off, we propose a compressed
document representation based on the approach in [37] com-
bined with Google’s snappy compression [1]. This allows us
to compute position and snippet data using less space than
a standard positional inverted index that only stores posi-
tion data. Even if we include the space used for document
identifiers and term frequencies, this approach uses just 1.12

times the space of a positional inverted index, with the same
or slightly better query time.

This means that in many practical cases, “not to index”
position data may be the most efficient approach. This pro-
vides new practical alternatives for positional index com-
pression, a problem that has been considered difficult to
address in previous work [40, 21]. Finally, we also showed
that compressed self-indexes such as wavelet trees [23] can
be competitive with the best solutions in some scenarios.
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[31] G. Navarro and V. Mäkinen. Compressed full-text
indexes. ACM Computing Surveys, 39(1), 2007.

[32] Y. Rasolofo and J. Savoy. Term proximity scoring for
keyword-based retrieval systems. In Proc. of 25th
European Conference on IR Research, 2003.

[33] R. Schenkel, A. Broschart, S. Hwang, M. Theobald,
and G. Weikum. Efficient text proximity search. In
14th String Processing and Information Retrieval
Symposium, 2007.

[34] D. Shan, W. X. Zhao, J. He, R. Yan, H. Yan, and
X. Li. Efficient phrase querying with flat position
index. In CIKM, pages 2001–2004, 2011.

[35] B. Sparrow, J. Liu, and M. Wegner. Google effects on
memory: Cognitive consequences of having
information at our fingerprints. Science,
333(6043):776–778, 2011.

[36] T. Tao and C. Zhai. An exploration of proximity
measures in information retrieval. In Proc. of 30th
Annual Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, 2007.

[37] A. Turpin, Y. Tsegay, D. Hawking, and H. Williams.
Fast generation of result snippets in web search. In
Proc. of 30th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval,
pages 127–134, 2007.

[38] L. Wang, J. J. Lin, and D. Metzler. A cascade ranking
model for efficient ranked retrieval. In Proc. of 34th
Annual Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 105–114,
2011.

[39] H. Williams and J. Zobel. Compressing integers for
fast file access. Computer Journal, 42(3):193–201,
1999.

[40] H. Yan, S. Ding, and T. Suel. Compressing term
positions in web indexes. In Proc. of 32nd Annual Int.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 147–154, 2009.

[41] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with optimized
document ordering. In WWW, pages 401–410, 2009.
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