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1 IntroductionIt is often the case that a data set cannot be storedor processed in its entirety; only a summarized formis stored. A typical way in which data is summarizedis by means of a histogram. The summarized data canbe used to answer various kinds of queries, in the sameway the original data would have been used. The an-swer obtained is not exact but approximate, and con-tains an error due to the information lost when thedata was summarized. This error can be measured ac-cording to some appropriate metric such as the maxi-mum, average, or mean squared error of the estimate.This basic idea has long been used in a databasecontext to estimate the result sizes of relational opera-tors for the purpose of cost-based query optimization.The objective is to approximate the data distributionof the values in a column, and to use that approxi-mation to make quick estimates of the result size ofqueries involving this column.The same idea has also been used for data analysisand decision support. It has recently been recognizedthat histograms can be used to provide fast approx-imate responses to user queries. Consider an appli-cation that manages a large table containing recordsof telephone calls indicating the length of each call,and that uses this table to answer queries about thestatistics of call duration. We can save much time andspace by summarizing this information in a histogramof frequencies of occurrence for calls with lengths indi�erent ranges, at the cost of some error in the an-swers provided.In this context, the following question arises:(1) Given the types of queries we wish to support anda constraint on the space we may use, what repre-sentation of the data minimizes the expected errorin the answers provided?A complementary formulation is the following:(2) Given the types of queries and a constraint on the



expected error that is acceptable, what represen-tation of the data requires the least space?In the context of histograms, the representation of thedata is obtained by partitioning it into subsets calledbuckets, and the problem becomes that of identifyingthe best placement of the bucket boundaries. (Sec-tion 3 presents a more formal description of these is-sues.)Our Contributions. The bulk of this paper is de-voted to addressing the �rst of the two questions (1)and (2) above, where the form of summarized datarepresentation is a histogram. In Section 4, we presentan algorithm for computing optimal histograms basedon dynamic programming. Our main result is that itis possible to obtain an optimal solution for a broadrange of error metrics in time that is quadratic in thenumber of distinct values of the attribute being consid-ered, and linear in the number of buckets being used.In addition, we present an improved version of this al-gorithm that can compute optimal histograms in a fewminutes for data distributions over tens of thousandsof values. We also present an even faster algorithmthat determines a provably close to optimal histogram,and that combines the dynamic programming-basedapproach with an additional partitioning heuristic.In Section 5, we present the results of a set of ex-periments that compare our algorithms to the previ-ously known heuristics in terms of accuracy and run-ning time.In Section 6, we show how the second question (thedual problem) can be addressed using very similartechniques. We also present an alternative approachthat takes essentially linear time to compute a his-togram that is provably close to optimal.Furthermore, we address a known limitation ofhistograms: Current histogramming techniques donot provide any quality guarantees for individualestimates. This is unlike, say, random-samplingtechniques, which usually provide probabilistic errorbounds on their estimates [OR86]. This problem hasnot been signi�cant until recently because histogramshave mostly been employed within optimizers, wherethere is no need to report the errors. However, this isno longer the case in applications such as approximatequery answering systems and query pro�lers, whichprovide estimates directly to the user.In such applications, the con�dence of a user is crit-ically dependent upon the provision of error bounds(qualities) for the estimates. Individual estimates us-ing histograms may di�er widely in their quality, assome regions of the distribution may be much moredi�cult to represent than others. In that case, queriesinvolving attribute values from these regions may besigni�cantly less accurate than queries accessing other

buckets. If each selectivity estimate was accompaniedby some quality guarantee, then we could successfullyidentify \outliers" in the estimates, and 
ag them asunsuitable for further processing.In Section 7, we propose an enhancement to his-tograms and show how it can be used to provide qual-ity guarantees on selectivity estimates for equality andrange queries. Our experiments indicate that the en-hancement gives signi�cantly better quality guaran-tees for individual queries than the trivial worst-casebound.Though our algorithms are very general and workfor a large class of error metrics, for the sake of con-creteness we present most of our results using a speci�cerror metric, the Sum Squared Error (SSE). This met-ric was chosen because it plays an important role in se-lectivity estimation - it is identical to the V-Optimalityconstraint which has been shown to minimize the av-erage selectivity estimation error for equality-join andselection queries [IP95].In Section 8, we brie
y discuss how our algorithmscan be used to generate optimal histograms for othererror metrics such as the metric arising in the con-text of selectivity estimation for range queries, joinqueries, and metrics that incorporate knowledge aboutthe query workload. Finally, Section 9 o�ers some con-cluding remarks. Due to space constraints, many ofthe proofs and more general forms of our results, aswell as some of the experimental results, could notbe included in this paper; the details can be found in[JKS98, MPS98].2 Related WorkThe problem of approximating a given data distribu-tion has received considerable attention in several sci-enti�c communities. In numerical analysis, the prob-lem has been studied in the context of approximatinga given function in a piecewise fashion by a class ofsimple functions such as polynomials of some �xed de-gree [CdB72]. However, not much attention has beengiven to the number of parameters or amount of spacerequired for the representation. Finding an optimal setof \breakpoints" for a piecewise polynomial (or evenlinear) approximation is believed to be hard due to thecontinuous domain and the non-linearity of the prob-lem space [dB97].In statistics, the problem has been posed in connec-tion with non-parametric density estimation as thatof constructing a histogram of a given data distribu-tion. But again the e�ort has focused on minimizingthe error without taking space constraints into account[GES85].In the database community, the problem has beenstudied in the �eld of query optimization and more



speci�cally in the context of selectivity estimation forrelational operators. Several techniques have been pro-posed [MCS88], including histograms [Koo80, SC84,Ioa93, IP95], sampling [OR86, LNS90, HS92], andparametric techniques. Histograms are the most com-monly used form of statistics in practice (e.g., theyare used in DB2, Oracle, and Microsoft SQL Server)because they incur almost no run-time overhead andare e�ective even with a very small amount of storagespace. Several types of histograms have been proposedand evaluated experimentally in terms of their ac-curacy, including EquiWidth and EquiHeight [Koo80,SC84], MaxDi�, Compressed, End-Biased (EBV), andV-Optimal histograms [IP95, PIHS96]. A formal tax-onomy of histograms was proposed in [PIHS96]. TheV-Optimal histograms have been shown to minimizethe average error for several selectivity estimationproblems [IP95], but no e�cient algorithms for con-structing them have been proposed.We are not aware of prior work on the dual questionof minimizing space given a bound on the acceptableerror, or on generating quality guarantees using his-tograms.3 De�nitions and Problem Formula-tionIn this section we de�ne histograms and formulate thevarious problems studied in this paper.Consider a relation R containing an integer valuedattribute X .1 The value set V of X is the set of val-ues of X that are present in R. For each v 2 V , thefrequency f(v) is the number of tuples t 2 R witht:X = v. We assume that the elements of V havebeen sorted according to some sort parameter (follow-ing [PIHS96]), most commonly according to the nu-meric values of the vi, i.e., V = fvi j 1 � i � Ngwhere i < j i� vi < vj . Given this ordering, and usingfi = f(vi), the frequency vector of X is the orderedset of frequencies F = f f1; f2; : : : ; fN g.A histogram of data distribution X is constructedby partitioning the frequency vector F of X into B(� 1) intervals called buckets, and approximating thefrequencies and values in each bucket in some suc-cinct fashion, as explained further below. The result isan approximate data distribution that can be used inplace of the actual distribution, say, in selectivity esti-mation. Of course, the accuracy of any operation per-formed using the histogram depends on the accuracyof the approximation, which is determined by two fac-tors, the partitioning technique employed for grouping1More general assumptions are possible, and are discussed in[JKS98]. To simplify the presentation, we will assume that Xtakes only integer values.

values into buckets and the approximation techniqueemployed within each bucket.Several techniques for the approximation within abucket have been studied in the literature. The fre-quencies in a bucket are most commonly approximatedby their average. The value domain is approximatedeither by a continuous distribution in the bucket range[Koo80] or by uniformly placingm values in the bucketrange, where m is the total number of distinct valuesof V grouped into that bucket [PIHS96]. The latterapproach has been experimentally shown to be moreaccurate for several estimation problems [PIHS96].The main focus of this paper, however, is on thepartitioning task. We are interested in computing ahistogram of F , i.e., a summary vector H of lengthB << N that approximates F . To do so, we parti-tion F into B non-overlapping intervals Ii, 0 < i � B,and represent each interval Ii by a single summary ele-ment hi (say, the average). We specify a reconstructionfunction, RH that uses H to return for each elementvi in V an estimate of its frequency fi. The simplest,and most widely used, reconstruction function is sim-ply the piecewise constant function: For all values vjwithin bucket Ii, the estimate RH(vj) is set to hi.In order to evaluate the accuracy of a histogram,we specify an error metric E(H) that de�nes the totalerror of the approximation. Typically, E(H) can berepresented as D(F ;RH(V)), the distance (using somedistance metric, D, such as the mean squared error)between the original vector F and its reconstructionRH(V ).We now de�ne the main problem that we considerin this paper.De�nition 1 (Space-bounded histogram prob-lem) : Given a vector F of length N , a limit B onthe length of H, and an error metric E(), �nd the his-togram H that minimizes E(H).The dual problem is as follows.De�nition 2 (Error-bounded histogram prob-lem) : Given a vector F of length N , a limit � onthe rror, and an error metric E(), �nd the histogramH of smallest length for which E(H) is at most �.On of the most natural choices for the bucketapproximation is to choose hi = AV G(bi; ei); i =1; : : : ; B,2 where bi and ei are the end points of the2There are other possible choices for the hi, such as the ge-ometric mean of the bucket frequencies. It may also sometimesbe appropriate to store more than one scalar value per bucket.For instance, one may store the number of cells with non-zerocount along with the average. Much of the discussion in thepaper can be carried over to such variants in a straightforwardmanner.



ith interval andAV G([bi; ei]) = Pbi�k�ei F [k](ei � bi + 1) :Having �xed the choice of the hi, the problem of de-termining H reduces to that of �nding the boundariesof the B buckets.The choice of the error metric is important, sinceit in
uences the boundaries of the buckets that areformed, and determines which properties of the distri-bution under consideration are preserved in the sum-mary vector. Thus, the error metric should be selectedbased on the intended use of the histogram.A common metric for measuring the di�erence be-tween two distributions is the Sum Squared Error(SSE), which is de�ned as follows. For any interval[a; b], SSE([a; b]) = k=bXk=a(F [k]�AV G([a; b]))2The Sum Squared Error is one of the most natural er-ror metrics and the one that we focus on in this paper,though most of our results extend to all decompos-able metrics. The space-bounded histogram with SSEas error metric is known in the literature as the V -Optimal histogram [IP95]. In the following, we refer tothis case as the space-bounded V -Optimal histogram,and to its dual (De�nition 2) as the error-bounded V -Optimal histogram.4 Space-Bounded HistogramsIn this section, we provide algorithms for computingspace-bounded V-Optimal histograms, i.e., algorithmsthat attempt to minimize the error for a given num-ber of buckets B. We propose three algorithms for theproblem, all of which �nd provably optimal or close tooptimal solutions: (1) a basic optimal algorithm basedon dynamic programming, (2) an optimized and moresophisticated version of the basic optimal algorithm,and (3) an approximation algorithm with provable per-formance bounds that is signi�cantly faster than theoptimal algorithms.Before describing the algorithms, we state two im-portant technical lemmas. The proofs are by simplealgebraic manipulation, and are omitted due to spaceconstraints.Lemma 1 For any vector F of length N and any i; jwith 1 � i � j � N , we haveSSE([i; j]) = Xi�k�j F [k]2 � (j � i+ 1) �AV G([i; j])2:

Note that if we de�ne arrays P and PP of length nwith P [i] = P1�k�i F [k] and PP [i] = P1�k�i F [k]2,then we haveXi�k�j F [k]2 = PP [j]� PP [i� 1]and AV G[(i; j)] = P [j]� P [i� 1](j � i+ 1) :This means that after spending O(N) time and O(N)space to compute the pre�x sum arrays P and PP , anySSE([i; j]) can be computed in constant time using theabove lemma.The next lemma is needed for the optimized versionof the basic algorithm, and states a useful monotonic-ity property of the SSE metric.Lemma 2 For any vector F and any i; j; k with 0 �i � k < j � N ,SSE([i; j]) � SSE([i; k]) + SSE([k + 1; j]):4.1 Basic Optimal AlgorithmWe now present an optimal algorithm for comput-ing V-Optimal histograms based on dynamic program-ming. In our description, we focus on computingSSE�, the SSE of the optimal histograms; the corre-sponding bucket boundaries can be obtained by main-taining an additional array that keeps track of thebucket boundaries of the partial solutions evaluatedduring the run of the algorithm. We point out thatthe algorithm is not restricted to the SSE error met-ric, but can be applied to a wide class of error metrics.De�ne SSE�(i; k) to be the minimum SSE for thepre�x vector F [1; i] using at most k buckets. The cru-cial observation underlying the algorithm is thatSSE�(i; k) = min1�j<ifSSE�(j; k� 1)+SSE([j+1; i])g;(1)that is, the solution for k buckets can be reduced tothe case of k � 1 buckets by considering all possibleleft boundaries of the rightmost (kth) bucket.Thus, in order to calculate SSE� = SSE�(N;B),we use dynamic programming and calculateSSE�(i; k) for all 1 � i � N and 1 � k < B, inincreasing order of k, and for any �xed k, in increas-ing order of i. We store all computed values of theSSE�(i; k) in a table. Thus, when a new SSE�(i; k0)is calculated using Equation (1), any SSE�(j; k) thatmay be needed can be retrieved by a table lookup.There are a total of O(N �B) calculations of valuesSSE�(i; k), and each involves looping over O(N) val-ues of j in Equation (1). For each j, we perform a tablelookup for SSE�(j; k), and a call to �nd SSE([j+1; i])that takes constant time by Lemma 1.



Theorem 1 The space-bounded V -Optimal histogramwith B buckets can be computed in O(N2B) time.4.2 Faster Implementation of the Optimal Al-gorithmThe algorithm described above is already quite e�-cient and can compute large histograms on thousandsof elements and hundreds of buckets in a few minutes.We now present a technique that gives another signi�-cant reduction in the running time on most input data.Note that the faster algorithm still guarantees an opti-mum solution, and that on worst-case input data, thealgorithm takes time O(N2B), as before. However,this case seems unlikely to arise in practice. The algo-rithm applies to a wide class of error metrics satisfyingthe monotonicity property of Lemma 2.Consider the implementation of the basic optimalalgorithm from the last subsection. Recall the compu-tation of SSE�(i; k), and note that we have alreadycomputed and stored all entries SSE�(i0; k � 1) withi0 < i. (These are the only entries we need to computeSSE�(i; k).) Suppose the algorithm now computesSSE�(i; k) = min1�j<ifSSE�(j; k� 1)+SSE([j+1; i])g;by iterating j from i � 1 down to 1. Note that as jdecreases, SSE([j +1; i]) monotonically increases dueto Lemma 2. Thus, as soon as we arrive at a j0 suchthat SSE([j0 + 1; i]) > S0, where S0 is the minimumsolution found thus far, we can stop the search, as allother values of j will lead to even larger errors.This termination condition for the inner loop al-ready results in a performance improvement. How-ever, we can take this process much further. Assumethat S0 is some initial (\seed") value that providesan upper bound for SSE�(i; k). Then we can usebinary search to �nd j0, the minimum j such thatSSE([j0 + 1; i]) > S0, and as before, we can concludethat the optimum solution is obtained by some j > j0.Now we observe that SSE�(j; k� 1) monotonicallyincreases as j increases, also due to Lemma 2. Thus,SSE�(j0; k�1) is a lower bound for any SSE�(j; k�1)with j > j0. We can now de�ne S1 = S0�SSE�(j0; k�1), and perform another binary search that �nds j1,the minimum j such that SSE([j+1; i]) > S1, and wecan conclude that the minimum solution is obtainedby some j > j1. In general, we de�neSm = S0 � SSE�(jm�1; k � 1)and repeat this process until jm = jm�1. We then usethis jm as the lower limit for j in the innermost loop,and compute the optimum solution.A good initial value for S0 can be obtained by run-ning the innermost loop of the basic algorithm for

about N=B iterations. As stated before, the worst-case running time is still O(N2B), but we expect thealgorithm to be signi�cantly faster than the basic al-gorithm in most cases.4.3 An Approximation AlgorithmOur third algorithm is a fast approximation schemewith provable performance bounds that leverages thedynamic programming schemes of the previous sub-sections. The overall idea is quite simple: We �rstpartition the array A into ` disjoint chunks, for some`, and then use the algorithm from the previous sub-section to compute a histogram within each chunk.A complication arises from the fact that we have todecide how to allocate buckets to the chunks, such thatwe use exactly B buckets overall. We solve this prob-lem by implementing an additional dynamic program-ming scheme over the number of buckets allocated toeach chunk, which then repeatedly calls the dynamicprogramming algorithm inside each chunk with vary-ing numbers of buckets. The details are non-trivial,and omitted for space constraints. The approximationguarantee and running time of the algorithm can besummarized as follows.Theorem 2 For any integers ` and B, our approx-imation algorithm computes a histogram with B + `buckets and total SSE at most �, where � is the SSEof the optimal histogram on B buckets. Moreover, ifthe ` chunks are chosen to be of equal width, then thealgorithm runs in time O(N2B` ).We implemented this algorithm based on the fastversion of the optimal algorithm from the previoussubsection, with an additional pruning technique ap-plied to the top-level dynamic programming scheme.For the initial partitioning into chunks, we restrict our-selves to equal-sized chunks in this paper. As demon-strated in the next section, we obtain signi�cant speed-ups over the optimal algorithms with only a slight de-crease in the precision of the histogram.5 Experimental ResultsTo assess the performance of various partitioning tech-niques, we conducted a series of experiments which aredescribed in this section. We begin by specifying thedata sets used. Due to space constraints we only givea sample of the most interesting results; more can befound in [JKS98, MPS98].5.1 Experimental TestbedWe describe experiments using the following two realdata sets, extracted from census statistics.



� D1: A density function on the third attribute ofthe SGI adult data set.3 This data set has 732unique values (N = 732).� D2: The hourly wages of people from a censusdata set4, with N = 30200.In addition, in the comparison of the running times,we also generated data according to a randomly per-muted Zipf distribution [Zip49]. The frequency vec-tors of the two real data sets are plotted in Figures 1and 2. Observe that the �rst set is relatively smooth,whereas the second set has a large number of spikes.(The second set has in fact similar properties as a ran-domly permuted Zipf distribution.) As we show in ourexperiments, this di�erence has a signi�cant e�ect onthe relative performance of the di�erent techniques.We studied the accuracy, plotted as the MeanSquared Error SSEN , and the running time, for thefollowing partitioning techniques: (1) The basic op-timal algorithm of Subsection 4.1 (NAIVE DP), (2)the faster optimal algorithm of Subsection 4.2) (DP),and (3) the approximation algorithm of Subsection 4.3(CHUNK). We compared these new algorithms withthe following known techniques:� MHIST - a greedy heuristic that repeatedly se-lects and splits the bucket with the highest SSE.This is the one-dimensional variant of the multi-dimensional MHIST algorithm proposed in [PI97].� MaxDi� - a heuristic that places the bucketboundaries between those B pairs of adjacentvalues that di�er the most in their frequencies[PIHS96].� EquiDepth - a heuristic that partitions the dis-tribution such that the sum of the frequencies ineach bucket is approximately equal [SC84].� EquiWidth - a trivial heuristic that partitions thedistribution into buckets of equal width [Koo80].In the next two subsections we present the runningtimes and accuracies of the various techniques.5.2 Running TimesWe �rst compare the running times of the threenew algorithms based on dynamic programming(NAIVE DP, DP, and CHUNK). For this purpose, weused a randomly permuted Zipf distribution with skewparameter z = 0:85 and varied the number of distinctvalues N . We set the space to 100 buckets and chosethe number of partitions in CHUNK as 20; this means3available at www.kdnuggets.com4available at www.census.gov/DES/www/welcome.html

that the algorithm is guaranteed to do as least as goodas the optimal algorithms with 80 buckets.The results are shown in Figure 3. The limitedrange of input sizes presented already shows a veryclear di�erence in performance between the three algo-rithms. In particular, the fastest algorithm (CHUNK)outperforms the slowest one (NAIVE DP) by abouttwo orders of magnitude. If we increase the inputsize to tens and hundreds of thousands, the runningtime of NAIVE DP quickly rises to several hours, whileCHUNK still runs in seconds or a few minutes. Therunning time for CHUNK can of course be further re-duced by increasing the number of partitions beyond20. In fact we found that increasing the number to50 with 100 buckets results in little decrease in theaccuracy.Next, we compare the running times of the newand old techniques. For this purpose, we �xed thenumber of buckets B at 100 and varied the number ofunique values N from 500 to 20000. The results areshown in Table 1. Note that the times for EquiWidth,EquiDepth, MHIST, and MaxDi� are negligibly small.CHUNK, on the other hand, while fast for small valuesof N , ultimately scales quadratically. As a result, thealgorithm is signi�cantly slower than the heuristics,but is still much faster than the two other dynamicprogramming algorithms. Input Size (N)Algorithm 1000 5000 10000 20000DP 0.56 12.58 51.24 253.6CHUNK 0.21 2.8 9.93 48.1MHIST * 0.02 0.05 0.06MaxDi� * * 0.02 0.03EquiDepth * * * *EquiWidth * * * *Table 1: Running Times in Seconds. An asterisk isused to denote times less than 0:01 seconds.5.3 AccuracyThe Mean Squared Errors (SSE=N) of the di�erenttechniques, as a function of the number of buckets,are presented in Figures 4 and 5. In both cases,CHUNK performs basically as well as DP (which isoptimal). The performance of other techniques variessigni�cantly between the two data sets.Not surprisingly, MHIST performs very well forsmooth data (D1), where it essentially matchesCHUNK and DP, but fails completely on spiked data(D2), where it is as bad as the trivial EquiDepth andEquiWidth heuristics. MaxDi�, on the other hand, es-sentially matches CHUNK and DP on the spiked data(D2), but performs even worse than EquiDepth andEquiWidth on the smooth data. We also observe that
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Figure 4: E�ect of Bucket Spaceon Error (D1 data set) Figure 5: E�ect of Bucket Spaceon Error (D2 data set) Figure 6: E�ect of Data Size (N)on Error (D1 data set)EquiDepth and EquiWidth bene�t from more bucketsfor smooth data (though they are still very inaccurate),but fail to improve for spiked data. Thus, only DP andCHUNK achieve good accuracy on both smooth andspiked data.Figure 6 presents the accuracy of the algorithms ondata set D1, as a function of the number of valuesN , for a �xed number of 30 buckets. The relativeperformance of various techniques remains similar tothe conclusions drawn above on D1. Interestingly, themean squared errors �rst increase and then decreaseas N grows. This is due to the nature of D1: the datais more irregular in the beginning and then tapers o�to a more uniform tail at the end.6 Error Bounded HistogramIn this section, we describe our algorithms for com-puting error-bounded V -Optimal histograms, as de-�ned in Section 3. We present the following results:(1) An algorithm for �nding the optimal histogramthat follows directly from the results in Section 4, (2)a new dynamic programming-based approximation al-gorithm with proven guarantees that is suitable when

� is small, and (3) an approximation algorithm withprovable accuracy bounds that runs in essentially lin-ear time, and that is the main technical result in thissection. As before, our results hold for a wide class oferror metrics, though we focus on the SSE metric.De�nition 3 We say an algorithm is an (�; �)-approximation to the error-bounded V -Optimal his-togram problem with error limit � if it returns a par-tition with total SSE at most �� using at most �B�buckets, where B� is the optimum solution.The Primal Approach. The algorithm is immediategiven the results in Section 4. We run the algorithmfor the space-bounded V -Optimal histogram problem,and terminate once we compute an SSE�(N; k) thatis at most �. Thus,Theorem 3 There exists an O(N2B�) time algorithmto �nd a space-bounded V -Optimal histogram with er-ror at most �, where B� is the optimum solution.The Dual Approach. For simplicity, assume thatthe error metric is integral. (This is not the case for



SSE, and we will also discuss the case of non-integralmetrics.) Our solution is again based on dynamic pro-gramming. We focus only on computing the optimumnumber of buckets B�; it is easy to extend this tocomputing the corresponding placement of the bucketboundaries. De�ne B(�; i) to be the optimum solu-tion to the error-bounded V -Optimal histogram prob-lem on the pre�x A[1; i] with error bound �. We have,B(�; i) = min1�j<ifB(�� SSE([j + 1; i]; j) + 1g:We need to calculate B(�; i) for each 1 � i � N and1 � � � �, and each such term requires O(N) timeusing the recursion above and employing dynamic pro-gramming. When the error metric is possibly non-integral (as with SSE), the range of values that � cantake is large. Thus, we \discretize" the error in stepsof � for some suitable choice of �, and apply the dy-namic programming above for integral error metricswith appropriate rounding to the next multiple of �;the details are omitted. We can show:Theorem 4 There exists a (1+B��� ; 1)-approximationalgorithm for the error-bounded V -Optimal histogramwith parameter � that runs in time O(N2�� ), where B�is the optimal number of buckets.This algorithm has interesting trade-o�s for suitablechoices of �. For example, when � = �=pB� for � < 1,this algorithm takes time O(N2pB�) and achieves anerror of at most O(pB��) with an optimum numberB� of buckets. Thus, the algorithm is faster than theone in Theorem 3, but only gives an approximate so-lution.An Approximation Approach. Our main techni-cal result in this section is a fast approximation al-gorithm for the error-bounded V -Optimal histogramproblem, with guaranteed accuracy. The algorithm isbased on an interesting technical idea in that we usethe solution to the similar problem of minimizing themaximum SSE in any bucket in order to get an ap-proximate solution for the V -Optimal problem of min-imizing the total SSE. This approach works becauseof two observations. Firstly, a solution that minimizesthe maximum SSE in any bucket can be found moree�ciently than a solution to the V -Optimal problem.Secondly, we can prove that the solution for this sim-pler problem can be used to get an approximate solu-tion to our V -Optimal problem. We will �rst formalizethese observations before presenting our algorithm.Lemma 3 Given a partitioning with B buckets and atotal SSE of at most �, there exists a partitioning inwhich the maximum SSE in any bucket is at most �0with B + 2 ��0 buckets.

Proof. We provide an algorithm that converts a par-tition with SSE at most � and B buckets into one withmaximum SSE at most �0. Any bucket with SSE atmost �0 is left unchanged. Using the property of theSSE metric in Lemma 2, it follows that there exist atmost ��0 buckets with an SSE greater than �0. We splitall such buckets in two steps as follows. In the �rststep, we traverse them from left to right and lay downdividers as soon as the SSE of the interval seen thusfar exceeds �0. Clearly, this step introduces at most��0 additional buckets 5. In the second step, we con-sider any bucket that has an SSE greater than �0, andpartition it into two buckets, one containing only therightmost element in the interval (the SSE of this in-terval is zero), and the other containing the rest. Thesecond step introduces at most ��0 additional buckets.Lemma 4 The error-bounded histogram problem witha maximum SSE in any bucket of at most � can besolved in O(minfB� logN;Ng) time after O(N) timepreprocessing, where B� is the optimal solution.Proof. The details are in [MPS98].We now describe our approximation algorithm,which, at the high level, is somewhat non-intuitive. Itsimply consists of determining the smallest B (say B0)such that the optimum solution to the error-boundedhistogram problem with a maximum SSE of at most �Bin any bucket is at most 3B. In order to do this, we re-peatedly use the algorithm in Lemma 4, while perform-ing a binary search for the value B0. Our algorithmreturns the B0 thus found, and the corresponding par-tition, as the solution to the error-bounded V -Optimalhistogram problem. The following can be shown:Theorem 5 The algorithm above is an (3; 3)-approximation algorithm for the error-bounded V -Optimal histogram problem that takes time O(N +B� logB� logN), where B� is the optimum solution.Proof. The running time follows from Lemma 4in a straightforward manner. We claim that thehistogram computed by our algorithm is an (3; 3)-approximation. Consider the optimal partitioning forthe error-bounded V -Optimal histogram problem withSSE at most �. By Lemma 3 with �0 = �=B�, there ex-ists a partition with SSE at most �=B� in any bucketusing at most 3B� buckets. It follows that the B0 ouralgorithm �nds is at most B�, and the solution re-turned has at most 3B� buckets. Any such solutionwith a maximum SSE of at most �=B0 in each buckethas a total SSE of at most 3�. This establishes thetheorem.5The straightforward strategy would repeatedly place di-viders just before the SSE of the interval seen thus far exceeds �0.It is easy to convince oneself that this strategy will only provideguarantees that are much worse than the one we prove here.



7 Quality GuaranteesIn general, the accuracy of a selectivity estimate canvary widely from one query to the next, as the accuracyof the histogram may be di�erent for di�erent partsof the frequency distribution. While previous workseems to have largely ignored this problem, we believethat it is often highly desirable to have the histogramreturn some measure of the accuracy of the estimate.This would be particularly useful for applications thatrequire a high degree of accuracy, e.g., approximatequery processing.For this purpose, we propose to augment histogramswith additional information that gives guaranteed orstatistical bounds (\quality guarantees") on the ac-curacy of a selectivity estimate. Of course, we couldalways return the worst-case error over all queries asour quality guarantee, but our goal is to return a goodbound for each individual query. We present possiblesolutions for equality and range selection queries, andgive experimental results that show the improvementsthey achieve over the worst-case guarantees.7.1 Quality Guarantees for Equality andRange QueriesWe de�ne the quality of a selectivity estimate as anupper bound on its absolute error. Let R be a relationand let fa[k] be the frequency of value k in attributea of R. Let the buckets in the histogram be b1; b2; : : :,in increasing order of the attribute values contained inthem.Equality Selections: The result size of an equalitypredicate a == k is approximated by the average fre-quency fi of the bucket bi containing k. Then theabsolute error of this estimate is ek =j fa[k] � fi j.Let Ei be the maximum error in bucket bi, i.e., Ei =MAXfek j k 2 big. A natural choice is to return Eias the quality guarantee for an estimate of an equalityquery. Note that this requires storing an additionalvalue (Ei) with each bucket.Range Selections: For simplicity, we consider one-sided range predicates of the form a � k, though thescheme can be easily generalized. Let k fall into bucketbi, and let m;M be the smallest and largest attributevalues in bi. Then the estimate of the result size of thequery a � k is given byi�1Xj=1 Sj + (k �m+ 1) � fi;where Sj = jbj j � fj is the sum of the frequencies inbucket bj . We derive an upper bound on the error byobserving that no error at all is incurred for the �rsti � 1 buckets, since they are completely within therange and hence accurately captured by the Sj . An

upper bound for bucket bi can be computed by usingthe equality selection bound Ei for each value in bi,giving a quality guarantee ofMIN(k�m+1;M�k+1) � Ei.Note that this does not require any additional stor-age beyond the Ei already used to bound the equal-ity selection errors. However, we could decide to alsomaintain in each bucket the average absolute error.This average error could be returned as another qual-ity measure, or it could be used in conjunction with theEi values to derive even tighter bounds on the (max-imum, not average) estimation error of range queries,by using Markov's Inequality.In general, by maintaining appropriate types ofstatistics in each bucket, we could derive improved es-timates as well as quality guarantees for various typesof queries. Of course, such extra statistics increase thespace used by the histogram, but this may sometimesbe a worthwhile expense. The best selection of statis-tics depends on the particular space and accuracy re-quirements of the application. If space is very tight,one might just provide 
ags that distinguish \good"from \bad" buckets.7.2 Experimental ResultsWe brie
y discuss the results of our experiments onthe quality guarantees for equality and range selec-tion queries derived above. We compare these boundswith the actual errors in estimating the result sizesof equality and range selections, and with the naiveworst-case bound given by using the maximum errorover all buckets.Figures 7 and 8 compare the three bounds as func-tions of the bucket counts, averaged over all possiblepredicates of the form X == a and X � a, with1 � a � N . The input is a randomly permuted Zipfdistribution with z = 0:8, and the buckets are formedusing a V-Optimal histogram, We observe that thenaive worst-case bound for the error (the upper curve)is signi�cantly higher than the average actual error(the lower curve), and that the bounds derived abovelead to error bounds (the middle curve) that are sig-ni�cantly closer to the actual error.8 Other Applications8.1 Work Load InformationThe quality of a reduced data representation must bemeasured based on known (or expected) query loads.Sometimes, there is no information available regardingthe expected query load, and in this case the best onecan hope to do is to minimize the worst-case error, orthe average error assuming a uniform distribution ofqueries (as our SSE metric has done so far).
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Figure 7: Quality Guarantees: Equality Predicates Figure 8: Quality Guarantees: Range PredicatesHowever, if information is available regarding ex-pected query loads, this must be folded into the errormetric since it can a�ect the resulting optimal his-togram quite signi�cantly. To illustrate this point,consider a synthetic data set drawn from a (truncated)Gaussian distribution and shown in Figure 9(a) alongwith a histogram with 30 buckets, created optimallyusing the SSE metric (Figure 9(b)). Suppose we knowthat outliers are of greatest interest in this data set,and are likely to be queried most often, we could op-timize the histogram for a situation where we expectattribute values to be selected by a query inverselyproportional to the frequency of occurrence of the at-tribute value. For this query mix, a histogram createdoptimally to minimize the weighted mean square errorlooks like Figure 9(c). Observe the di�erence in thetwo histograms.Optimal histograms easily accommodate such infor-mation by weighting the optimization metric. All onehas to do is to factor in the weights during the pre-processing phase when the SSE(i; j) (or any othermetric) function values are calculated. The rest ofthe algorithm remains unchanged (details are avail-able elsewhere [JKS98]). None of the other techniquesaccommodate this and, in fact, no one has addressedthis issue in the existing literature. It is not surpris-ing that no single heuristic can possibly generate his-tograms even remotely similar to both Figures 9(b) and(c), for example.In fact, we know that many data distributions inreal-life are extremely skewed. We also know thataccess patterns to these data are extremely skewed.Therefore, it is important to take this skew into ac-count when choosing histogram boundaries.8.2 Range QueriesThe metrics discussed thus far have focused on theerror in reconstruction of a single point. However,

queries are frequently speci�ed with range selections.Buckets that are completely included in a range intro-duce no error at all. At most one bucket at each endof the range is partially included, and we could havean error in estimating the total count for the valuesin the partial bucket included. In consequence, a pairof adjacent attribute values with counts much higherand much lower than the average for the bucket, maynot introduce much error since the pair of attributevalues together will be included in most range queries{ an error is induced only when one of the attributevalues is included in some range and the neighboringcell is excluded from that range. In comparison, agradual \drift" of frequencies in a bucket could be sig-ni�cant since ranges that include the right end of thebucket would consistently be over- (under-) estimatedwhereas ranges that include the left end of the bucketwould be under- (over-) estimated.If a range query mix is speci�ed, then this mix canbe taken into account in computing the error metric.For each SSE(i; j) (or any other metric) to be eval-uated, determine the boundaries of the range queriesthat lie between i and j. For each of these queries,there is a corresponding error that can be determined(depending on whether the left, right, or both bound-aries of the query range are included) and weightedby the query probability. Once this has been donein the pre-processing step, the DP algorithm can runnormally. The results can be stunningly di�erent thanfor the SSE metric. For example, consider a distribu-tion of an age attribute. Suppose we know that typicalrange queries ask about \even" ranges: i.e. about 30-40 but not about 32-44. In other words, with highprobability range queries have boundaries at valuesthat are multiples of 10. Then an optimal histogramon this data set will also have bucket boundaries onlyat multiple of 10.In the absence of query probability information, one
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(a) Gaussian Data (b) Optimal histogram (c) Optimal histogram with workload infoFigure 9: Incorporating Workload Knowledgecan still observe in general for range queries that in theestimation of result sizes for range queries, the errorin the frequency estimate for cells in any bucket getsweighted by the range extent of the bucket. Follow-ing [PIHS96] an error metric can be constructed whichminimizes the variance of the \area" inside buckets.Details are available elsewhere [JKS98].Experimental Results. We compared the estima-tion accuracy of DP, EquiWidth, EquiDepth, andMaxDi�.The starting point of each query range is uniformlydistributed over the attribute domain, and the end-ing point is uniformly distributed between the startingpoint and the end of the attribute domain.Figures 10(a) and 10(b) present the trends in ac-curacy of the three algorithms for data set D1 as thenumber of buckets increases (Figure 10(a)) and, as thenumber of cells increases (Figure 10(b)).8.3 Join QueriesHistograms are also useful for estimating the resultsize of join queries. It has been argued in [IP95] thatthe error in the estimate of the query result size isminimized when the variance of the counts of frequen-cies in each bucket is minimized. This turns out to bethe same as our SSE metric. We next present sampleexperimental results investigating the accuracy of joinresult size estimation of various types of histograms.More discussion and experimental results are availableelsewhere [JKS98].Experimental Results. The algorithms com-pared are DP, EquiWidth, EquiDepth and End-Biased(EBV). For all the graphs in this subsection dealingwith accuracy of estimation, the standard deviationof the prediction error is used as previously suggested[IP95].Figures 11(a) and 11(b) present the accuracy of thealgorithms for D2 with increasing number of buckets(Figure 11(a)) and, with increasing number of cells(Figure 11(b)). For this data set and for a small num-ber of frequencies, DP is able to predict the join resultsize almost exactly.

9 Concluding RemarksIn this paper, we have studied the problem of comput-ing optimal histograms, which minimize the error fora given amount of space. We have provided severalalgorithms based on dynamic programming that arethe �rst to e�ciently and precisely compute optimalhistograms under a large class of error metrics, includ-ing the well-known V-Optimal histograms, and haveshown that the performance of our algorithms can beimproved by several orders of magnitude through theuse of several nontrivial optimizations. Our experi-ments show that the algorithms obtain signi�cantlybetter accuracy than the known heuristics.We have also studied the dual problem of minimiz-ing the space required to meet a given error bound,and have proposed a way of augmenting histogramsto return quality guarantees for selectivity estimationqueries. Finally, we have extended our techniques toincorporate knowledge of the query work load and toidentify optimal histograms for range and join queries.AcknowledgementsThanks to Stefan Berchtold, Christina Christara, Carl deBoor, Yannis Ioannidis, Flip Korn, Andrew Odlyzko, Niko-laos Sidiropoulos and Sridhar Ramaswamy for valuable dis-cussions and comments on the writeups. We also thank thereviewers for their comments, and Betty Salzberg for over-seeing the preparation of the �nal paper.References[CdB72] S. D. Conte and Carl de Boor. Elementary Nu-merical Analysis: An algorithmic approach. Mc-Graw Hill Publishing Company, 1972.[dB97] Carl de Boor. Personal communication. 1997.[GES85] T. Gasser, J. Engel, and B. Seifert. Non para-metric density estimation. Ann. Stat., Septem-ber 1985.[HS92] P. Haas and A. Swami. Sequential Sampling Pro-cedures for Query Size Estimation. Proceedingsof ACM SIGMOD, San Diego, CA, pages 341{350, June 1992.
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