
Efficient Term Proximity Search with Term-Pair Indexes
Hao Yan1,*, Shuming Shi2, Fan Zhang3,*, Torsten Suel1, Ji-Rong Wen2

1 Polytechnic Institute of New York University

2 Microsoft Research Asia
3 Nankai University, China

hyan@cis.poly.edu, {shumings, jrwen}@microsoft.com, zhangfan555@gmail.com, suel@poly.edu

ABSTRACT
There has been a large amount of research on early termination
techniques in web search and information retrieval. Such
techniques return the top-k documents without scanning and
evaluating the full inverted lists of the query terms. Thus, they can
greatly improve query processing efficiency. However, only a
limited amount of efficient top-k processing work considers the
impact of term proximity, i.e., the distance between term
occurrences in a document, which has recently been integrated
into a number of retrieval models to improve effectiveness.

In this paper, we propose new early termination techniques for
efficient query processing for the case where term proximity is
integrated into the retrieval model. We propose new index
structures based on a term-pair index, and study new document
retrieval strategies on the resulting indexes. We perform a detailed
experimental evaluation on our new techniques and compare them
with the existing approaches. Experimental results on large-scale
data sets show that our techniques can significantly improve the
efficiency of query processing.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process;
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness)

General Terms
Algorithms, Performance, Experimentation

Keywords
Top-k, Term proximity, Document structure, Term-pair index

1. INTRODUCTION
A lot of research in web search and information retrieval has
studied how to improve the efficiency of document retrieval,
using techniques such as massive parallelism, caching, inverted
index compression and early termination. We focus on one

important class of optimizations, early termination techniques
(also called dynamic query pruning techniques), which are widely
used in IR systems and large search engines [31].

To better understand early termination techniques, we first look at
the most basic index structure, the inverted index [31, 37]. An
inverted index consists of many inverted lists, each of which is a
sequence of postings. Each posting contains a document ID
(docID), plus additional information such as the term frequency in
the document, the exact positions of the occurrences, and their
context (e.g., in the title, in anchor text, or in URLs). Typically the
postings in each inverted list are sorted by their docIDs to achieve
good index compression [31]. To process a query, a search engine
could traverse the complete inverted lists for all relevant terms,
calculate relevance scores for all documents in these lists, and
finally return the top-k (e.g., k = 10) documents having the highest
scores. However, such exhaustive evaluation requires significant
computing resources and may greatly increase query response
time.

To overcome this problem, many early termination techniques
have been proposed [1, 2, 5, 10, 13, 17, 21, 24, 30, 31, 34, 35, 36].
The common goal of these is to speed up query processing by
avoiding the processing of all documents in the relevant lists, and
instead evaluating only a small subset. This is usually done by
employing alternative index organizations such that during a
traversal of these structures, the most promising documents (those
likely to have the highest scores) are evaluated first while other
documents may be evaluated later only as needed. Once a certain
amount of documents has been processed, it is often possible to
terminate the query evaluation and return the top-k results,
without even considering the less promising documents.

The features being used to evaluate the documents (i.e., calculate
the document scores) play a crucial role in the efficiency of early
termination techniques, since they determine the best organization
and ordering of the index, and thus the point at which early
termination can occur. Most existing research on early termination
techniques treats a document as a bag of words and evaluates
queries using the following two kinds of features: (a) term-
dependent features, e.g., within-document frequencies [21], or
term-based IR scores or impacts [2]; and (b) term-independent
features, e.g., Pagerank or other static ranks or scores [4, 17, 34]
that measure the overall quality, importance, or popularity of a
document (based on analysis of links, content, query logs, or
traffic data in a preprocessing step). We note that while term-
dependent scores are query-related, they are here only based on
each separate term instead of the whole query, and thus do not
depend on the relative positions or distances between terms within
a document.

* This work was done when Hao Yan and Fan Zhang were interns at Microsoft
Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10...$10.00.

1229

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1871437.1871593&domain=pdf&date_stamp=2010-10-26

However, overall scores may also depend on the distance between
the query terms in the document, called term proximity (TP), such
that terms occurring close to each other often result in a higher
score. In fact, the real search engine [4] has integrated the term
proximity into their ranking system (although the details are not
provided in [4]). In addition, a lot of recent research [7, 8, 15, 26,
28] has shown that retrieval effectiveness can be greatly improved
by integrating term proximity scores into the retrieval model.
Unfortunately, there is much less research on how to improve
query efficiency for such proximity-aware retrieval systems, with
the exception of [24, 35, 36]. In the following, we will refer to
early termination (ET) techniques that consider term proximity
(TP) as TP-ET methods, and refer to those without TP as NTP-ET
methods. We note that while real search engines often integrate
into their overall scoring function a variety of other features
beyond static ranks, term-based IR scores, and query-based term
proximity scores, in this paper we only focus on these three kinds
of scores, which we call SR, IR, and TP scores, respectively.

Thus, the study of TP-ET techniques is interesting and important
due to the importance of term proximity factors in state-of-the-art
ranking functions. However, the index structures and retrieval
strategies of existing NTP-ET techniques cannot be directly
applied to TP-ET methods. The main reason is that each inverted
list is only associated with one particular term and does not
consider any other terms, while the TP score is based on the entire
query and therefore depends on the interaction between several
query terms. Independently ordering each relevant inverted list of
a given query in some order, say by term scores, may result in a
fairly non-monotonic and almost random distribution of the TP
scores that makes early termination impossible for most queries.
Thus, the main challenge for TP-ET methods is how to consider
the impacts of all three kinds of scores to achieve effective early
termination and thus efficient query processing.

In this paper, we study new early termination techniques that
improve retrieval efficiency for the case where term proximity
information is taken into account in the retrieval model. Our goal
is to create a new auxiliary index structure and mechanism that
can be used in IR systems to speed up query processing without
reorganizing their entire structure. In particular, we create an
additional term-pair index for cases where certain pairs of terms
occur close to each other in a document and propose new retrieval
strategies for the resulting indexes. The new index organization
implicitly moves documents with high term proximity scores
towards the front of the query processing pipeline, without
disturbing the normal indexes too much. Thus, the documents
with the highest overall scores are likely to be evaluated first
during query processing, resulting in effective early termination.
Our experimental results show that our methods can achieve
significant improvements in efficiency over existing methods.

2. BACKGROUND AND RELATED WORK
We refer to [31, 37] for basic background on indexing and query
processing in search engines.

2.1 The Ranking Functions
As mentioned in Section 1, we focus on the following three types
of scores: SR, IR and TP scores. Almost none of the existing
research on early termination techniques has studied other
additional types of scores beyond these, though real search
engines may do so. In fact, most ET techniques are based on only
one or two of these. For example, [2, 21] uses only the IR score

while [4, 17, 34] considers both SR and IR scores and [24] studies
both IR and TP scores. There are only a few ET techniques [35,
36] that have integrated all three scores into their ranking
functions. The overall document score for a particular ET method
is often evaluated as a linear weighted sum of all types of scores
considered by it, and the general ranking function for most of the
ET techniques is as follows:

 , · · , · , (2.1)

where S(d, q) is the overall score of the document d with respect
to the query q, SR(d) is the SR score of the d, IR(d, q) and

, are respectively the IR and TP scores of the document d
with regard to the query q, while , , and are three non-
negative parameters (1). Usually all of the SR, IR
and TP scores are normalized into the range [0, 1]. Formula (2.1)
can be adapted in various ways by tuning , , and . For
example, ranking functions for methods that only use SR and IR
scores can be modeled by setting 0.

There has been a lot of research on the calculation of each of the
three types of scores. The SR score could be computed using the
Pagerank method in [4] but could also incorporate various other
measures of document quality or importance. One popular way to
calculate the IR score is the BM25 formula in [23], which has
been widely used in IR systems. However, the calculation of TP
scores is often more complicated. It does not depend only on a
particular term but on the entire query. Many approaches [7, 8, 15,
22, 24, 26, 28, 35, 36] have been proposed to calculate TP scores.
Most methods assume the TP score of a pair of occurrences to be
inversely proportional to the square of their distance within the
document, but the concrete implementations are different from
each other and the ways to combine such pair TP scores into the
document TP score are also different. However, a popular way is
to first slide a window with a certain size w over the document,
and then each time calculate the TP score for a term pair
< , based on only the contributions from the occurrences of

 and within that window. Then all such pair scores are
combined using a weighted sum, to obtain the final document TP
score.

The ranking functions of practical search engines also take into
consideration the document structure and the context of term
occurrences, e.g., whether they are in the title, or in the URL, for
better result quality [4]. Like [4, 35], we distinguish the following
four different contexts (we call them fields) of a web document:
title, URL, anchor (text), and body fields, where the anchor text
refers to the visible, clickable text (in other pages) in a hyperlink
pointing to the page, while the body field refers to the rest of the
web page (anything not in the other three fields).

2.2 Early Termination without TP
Ideally, an early termination technique stops evaluating
documents immediately once the top-k documents have been
discovered. In practice, we cannot immediately tell if a document
we just encountered will be in the final top-k, and thus we have to
continue evaluating new documents until we are sure that no new
document can achieve a higher score than any document in the
current top-k list. In addition, we often require that the k
documents in the result list (achieved by the early termination
techniques) are returned in the same order as without early
termination.

1230

We note that although many early termination methods may relax
the above restriction allowing for approximate top-k results [5, 10,
17, 32] (e.g., the result list contains 99% of the real top-k
documents on average) as long as a certain retrieval precision can
be reached, we only focus on exact top-k query processing, that is,
all top-k results must be returned and in the correct order.

Index Reorganization: Most early termination techniques
reorganize the inverted lists in some way that is ordered by certain
types of scores, such that the most promising documents are
skewed towards the beginning of the lists, and thus evaluated
earlier than other documents. In particular, the method in [21]
does so based on the within-document frequencies (which are
assumed to dominate the IR scores). The method in [4] stores the
postings (hits) of a list into two sets of inverted barrels: one set for
the hit lists that include title or anchor hits and another set for all
hit lists. The method in [2] partitions an inverted list into m
segments in each of which all documents are of the same impact
values (which are essentially quantized IR scores) and sorted by
docIDs. The segments themselves are sorted in descending order
of their impacts. The approach in [17] partitions the documents in
a list into two segments based on their IR scores, and the segment
with the higher scores is evaluated first. All documents within
each segment are sorted in descending order of their SR scores. In
this way, the documents with the highest IR and SR scores are
located either in the top segment or the beginning of the bottom
segment. The very recent research in [34] sorts a list by a
combination of the so-called UBIR score and Pagerank (or static
rank), which are both term-independent information.

Retrieval Strategies: Many evaluation strategies [2, 5, 14, 17, 19,
30, 32, 34, 35, 36, 37] have been proposed in the IR and web
search areas, and they can be roughly divided into the following
three categories: document-at-a-time (DAAT) [5, 14, 17, 30, 32,
35, 36, 37], term-at-a-time (TAAT) [19, 30, 37] and score-at-a-
time (SAAT) [2]. DAAT evaluates a document by considering the
contributions of all query terms, before it deals with the next
document; TAAT evaluates all documents in the inverted list of
one term before it does so for the next term; SAAT is only
suitable for indexes sorted by impacts [2]. While TAAT is widely
used in the traditional IR systems and SAAT can achieve good
performance in certain cases [37], DAAT has been shown to be
able to achieve very good query performance in many cases
especially with certain optimizations [5, 14, 17, 30, 32, 35, 36,
37]. DAAT often requires a smaller run-time memory size while
the other two methods need more memory to maintain
intermediate scores during query processing. Please refer to [2, 5,
37] for a detailed comparison among those strategies.

We note that many retrieval algorithms have also been proposed
in the database area, e.g., Fagin's Algorithm (FA) [11] and the No
Random-Access Algorithm (NRA) [12]. Please refer to [13] for a
survey of these methods.

2.3 Early Termination with TP
There are only a few early termination approaches [24, 35, 36]
(and [4] although the concept of early termination was not
explicitly presented in it) that integrate the TP information into
their retrieval models. They adopt different strategies to overcome
the above problem, where the methods in [4, 35] exploit the
document structure to reduce the upper bound of the unseen
scores, while [24, 36] implicitly move the documents with high
TP scores to the front of the list by creating new phrase indexes or

term pair indexes. In particular, the method in [4] groups the
documents of a list into two sets where one set is actually a subset
of the other one and contain only those hit lists that include title or
anchor hits. That is, they assume that the occurrences in the title
or anchor fields imply high IR scores and therefore should be
evaluated first. The method in [35] also exploits the document
structure information to organize the indexes. It partitions each list
into the following two segments: one top segment containing the
postings only for the occurrences within the three fields of title,
anchor text, and URL, and another bottom segment containing the
postings only for those within the body field. During query
processing, it first processes the entire top segment, and then
attempts to achieve early termination in the second segment,
based on the fact that parts of the TP scores (associated with the
title, anchor and URL fields) have been calculated in the top
segment and thus the upper bounds of the TP scores for all unseen
documents in the second segment can be reduced.

In contrast, [24] and [36] approach the problem from another
angle: They create additional indexes for pairs of terms in the
document and exploit those indexes to implicitly move documents
with higher TP scores to the front of the lists. In particular, [24]
creates additional indexes for all possible term pairs, i.e., pairs
with any possible distances between each other within the same
document, while [36] only creates such indexes for the phrases.

Although we also create term-pair indexes (like [24, 36]), there
are some key differences between them and our approach. First,
we consider document structure (i.e., the differentiation of title,
URL, anchor, and body text) in our ranking function while they
do not. Therefore our study is based on a more realistic or
practical ranking function. To some extent, this paper can be
considered as an attempt to combine the approaches in [4, 35] and
in [24, 36]. Second, compared with [24] where an auxiliary index
is built for all pairs of terms within a large window (resulting in a
huge term-pair index), our study shows that it is sufficient to build
term-pair indexes for terms with at most distance 3. Therefore the
size of the term-pair index (and the index building time) could be
reduced to a feasible level with our approach, without affecting
the search results quality. Compared with [36] where only phrase
index is built, we show that the inclusion of distance-2 and
distance-3 term-pairs can bring addition performance gains over
the phrase index.

2.4 Other Related Work
Compared to the above dynamic pruning techniques, static
pruning techniques (e.g., [6, 20]) try to predict and discard certain
less important parts of the index structures as the indexes are
being built. Such methods achieve high retrieval efficiency by
sacrificing on search quality for some queries. The method in [3]
creates the auxiliary indexes for firstword-nextword pairs to speed
up the phrase query. However, it is not directly suitable to the
non-phrase query. The pre-aggregation techniques [16] first pre-
aggregate the intersections of the lists and then simultaneously
process the intersection list and the term lists to speed up the
retrieval. Interestingly, [18] also uses the intersection lists as an
intermediate level of a three-level caching structure to speed up
query processing. However, the intersection lists in [16, 18] do
not contain the position information of terms. Some other early
termination techniques [5, 32] focus on reducing the number of
full evaluations. Their main idea is to first evaluate all documents
using approximate scores and then perform the full evaluation
only on the documents with the highest approximate scores.

1231

However, we often calculate all of the SR, IR and TP scores
unless we can safely avoid doing so without loss of accuracy.
Finally, early termination strategies are also affected by caching
policies [18, 25, 29]. In this paper, we only focus on dynamic
pruning techniques to get the exact top-k query results and do not
consider pre-aggregation and caching policies.

3. CONTRIBUTIONS OF THIS PAPER
In this paper, we study and evaluate efficient document retrieval
techniques for the case where term proximity information is
integrated into the retrieval models. Our goal is to provide the
search engine with a separate component to speed up the query
processing greatly while not incurring much overhead of storing
the extra indexes. Our main contributions are as follows:

(1) We propose new index structures by creating additional term
pair indexes for pairs of terms that are within certain distances
to each other in the documents, and study corresponding
retrieval strategies for the resulting indexes. We also proposed
new methods to reduce the index size of the term pair indexes.

(2) We integrate the impacts of document structure information,
i.e., the context of term occurrences, into our retrieval models.
Although most of the existing research on early termination
techniques does not consider such information, the real search
engine [4] does so.

(3) We propose the new methods to avoid full evaluations on the
TP scores by using our term pair indexes. Thus our methods
can not only reduce the number of documents to be evaluated
during query processing, but also save the computation cost
by avoiding unnecessary full evaluations.

(4) We compare our algorithms with other existing techniques on
large scale data. Experimental results show that our approach
can consistently improve query efficiency and achieving a
reasonable tradeoff between query efficiency and index size.

4. OUR ALGORITHMS
Our goal is to improve the query efficiency especially on the
proximity-aware retrieval models by creating for the search
engines an auxiliary index component (term pair indexes) which
can be easily plugged in the existing systems. Therefore, our new
index architecture is composed of the normal indexes, which may
be organized by any methods discussed in Section 2, and the term
pair indexes. We note that the new pair indexes do not change the
index organization of the normal inverted indexes.

The main idea of our algorithms is: we exploit the additional term
pair indexes to implicitly move the documents with the highest TP
scores on top of other documents in the normal indexes. Recall
that the normal indexes are not affected by the pair indexes and
often have been organized by other early termination techniques
discussed in Section 2, such that the documents with the highest
SR or IR scores are located to the beginning of the normal
indexes. Therefore, under our new architecture, the most
promising documents (with the highest integrated scores of SR, IR
and TP scores) are organized as the first tier of documents to be
evaluated and thus the early termination can be expected.

A query under the new architecture is then processed as follows:
when the engines receive a query, they first load and process the
relevant lists from the pair indexes (as long as they contain such
relevant lists); they then load the normal inverted indexes and

continue to evaluate the documents of these lists until the top-k
results can be safely returned without scanning the entire lists.

4.1 The Ranking Function
Our ranking function is based on the formula (2.1) discussed in
Section 2. However, we also integrate into it the document
structure information for the following four fields of a web page:
title (T), URL (U), anchor (A) and body fields (B). In particular,
we represent the IR score (or the TP score) as the weighted sum of
its partial scores in all of the four fields (we note that unlike IR
and TP scores, the SR score is not affected by the document
structure). Therefore, our ranking function can be described as
follows:

, , ,
, , ,

, ,
, , ,

(4.1)

where is the weight for the th field, the , , and the
, , are respectively the partial IR and TP scores of the

query in the th field, while other symbols are of the same
meanings as those in the formula (2.1).

We now discuss how to calculate various scores. The SR scores
can be achieved in the exact same way as in [35, 36]. The IR
partial scores can be calculated by the BM25 formula [23] except
that they are computed based on the term occurrences in a
particular field instead of those in the entire document. The basic
process of calculating the document TP score has been discussed
in Section 2 and is based on all pair-wise occurrences of query
terms within a fixed-size window. The scoring function for a
particular pair-wise occurrence can be derived from the scoring
models in [35, 36, 24, 7, 8] and one of their common features is
that such a score is inversely proportional to the square of the
distance between terms as follows:

 ,
1

1 ,
 (4.2)

where , is the TP score for one particular pair-wise
occurrence of the terms and , while () is a linear function of
the square of the distance , of the two terms. The value
of , is also affected by the ordering of the occurrences in
the document and that in the query. For example, given a query
“New York”, we will assign a higher , score to the
occurrence of “New York” than that of “York New”. This can be
achieved by representing the , as followings

 , (4.3)

where and are the positions of and in the document
while and are their positions in the query.

4.2 Building New Indexes
In this subsection, we first describe how we build the term pair
indexes and then discuss how they are combined with various
index structures of the normal indexes.

Building term pair indexes: Given all of the relevant documents
to a query, our goal is to create additional indexes for a small
subset of them that contain the close-by term pairs and thus
potentially have the highest TP scores. In particular, given a term
pair , (which is different from another pair (,)), we first

1232

identify the documents which contain at least one pair-wise
occurrence of them with , , where , is
derived from the above formula (4.3) and is a certain distance
value, say 3. The possible forms of such occurrences are:

 0 , 1 , 2 , and
3 , where , , can be any other terms in

the document but and . We then build an inverted list (we call
it term pair list) for the pair (,) based only on the above
identified documents. The basic form of such a term pair list with
n postings is shown in Figure 4-1.

Figure 4-1 The basic form for a term pair list of n postings

The term pair list is then a sequence of postings, each of which
contains a docID, the term pair frequency , and all of the
occurrences. Unlike the posting in the standard inverted list
discussed in Section 1, which always records the occurrences of a
single term in a document, the posting in the term pair list does so
for either one or both of terms in the query, according to the
distances between them. In particular, we treat two consecutive
occurrences of them with , as a single occurrence
of the pair, while we encode those with larger distances as two
separate occurrences. Thus each occurrence can be represented as
a code of (T, P), where T stands for one of the following types of
the occurrences: (1) and appear together (and in the order of
(,) rather than (,)) with , and , (2)

 appears by itself (i.e., its to the closest following is
greater than), (3) appears by itself (i.e., its to the closest
previous is greater than); while P stands for the position of
the first term in case (1), or the position of the term in the other
two cases. Thus the value of is the number of all of such
occurrences. Please note that we build only a single list for the
pair (,), while we treat (,) and (,) as different pairs
and will create separate term pair lists for them.

From the above we can see that on one hand, we never maintain
any information in the term pair list for the documents that
contain no pairs of , with , , while on the
other hand, once a document contains such a close-by pair, the
information for all occurrences of both terms within will be
encoded into the list. The reason we keep all such information is
to provide the flexibility for the search engines to employ various
ranking functions and evaluation strategies on the term pair
indexes. Once the engines fix such settings, a non-trivial amount
of redundant information in the term pair indexes can be safely
removed without downgrading the query performance much
(details will be discussed soon).

Cooperation with normal indexes: Before being combined with
the above term pair indexes, the normal inverted indexes often
have been reorganized by a variety of other early termination
methods discussed in Section 2 (especially in Subsection 2.2). In
this paper, we mainly focus on the following three kinds of index
organizations of the normal inverted indexes: (1) the standard
inverted indexes structure [31] (which we call STD indexes)

where postings are sorted by Static-rank; (2) the index structure in
[17] (which we call HL indexes) where both SR and IR scores are
considered, resulting in the two segments with high and low IR
scores respectively, in each of which all postings are sorted by SR
scores; (3) the index structure in [35] (which we call structured or
STR indexes) where all of SR, IR and TP scores are considered
and the indexes are also divided into two segments (the TAU
segment and the B segment) but according to whether the
occurrence happens in the TAU (title, anchor and URL) fields or
in the B (body) field. We note that although there are some other
index structures (e.g., sorting postings only by the TP scores [24])
that may have been used for the normal inverted indexes, the
above three ones, i.e., STD, HL, and STR, can to some extent
represent most of the index organizations used in the state-of-the-
art early termination techniques with or without consideration of
the TP information. For example, as discussed in Section 2, the
HL structure can be easily converted to a special case of the
structure in [2], while both STD and HL are considered for the
methods in [36].

4.3 Retrieval Strategies
In this subsection, we discuss the retrieval process for our new
index architecture (using the two-term query as an example),
where the normal indexes can be STD, HL or STR.

Given a query of (, , our retrieval process is divided into
the following two phases:

(1) In the first phase, we check the term pair indexes to see if
they contain the list , for (, . If they do not do so, we
skip the rest part of this phase and go directly to the second
phrase; otherwise we load , into the memory. We then
load the list , if it also exists in the term pair indexes.
After that, we process the entire , and , evaluating
appropriate documents in them, resulting in a temporary top-

 list in which all documents are of their complete scores and
do not need to be evaluated again in the second phase.

(2) In the second phase, we load the normal indexes and
continue to evaluate new documents in them (skipping the
documents that have been evaluated in the first phase) in a
DAAT manner until the early termination can be achieved.

From the above, we can see that all documents with the high TP
scores have been completely evaluated in the first phase and put
in the temporary top-k list. As a result, the upper bound of the TP
scores for all documents in the second phrase is greatly reduced
since none of them contain close-by pairs. Thus as long as the
index structure of the normal indexes (in the second phase) has
the property that the documents with the high SR and IR scores
are also located at the beginning of the lists, the quick early
termination in the second phase can be expected in such cases
since the early termination condition discussed in Subsection 2.2
can be quickly satisfied after a small amount of documents have
been evaluated.

Interestingly, the term pair indexes can not only be used to reduce
the number of documents to be evaluated (since only a small
proportion of the lists need to processed before early termination),
but also be exploited to save the number of full evaluations on TP
scores as follows: when a new document is encountered, we often
have known its exact SR and IR scores (that can often be pre-
computed since their values do not depend on other terms in the
query) and the upper bound of its TP score, therefore we can

 , , , , , , … , , ,

 , , , , , , … , , ,

 ….,

 , , , , , , … , , }

1233

easily get the upper bound of its overall document score, which
can then be compared with the score of the kth document in the
current top-k list. Once we find its overall score is smaller than
that of the kth document, we can safely discard it and thus avoid
the expensive full evaluation of its TP score.

For the queries with more terms, we present a very simple method
by taking advantage of the nonexistence of term pair lists as
follows: if there are no existing term-pair lists for any pair of the
query (, , , … ,) (and this is not due to the term-based
pruning of the lists), we then know that there are no documents
with very high TP scores and therefore the upper bound of the TP
score for all unseen documents can be reduced and thus the early
termination may be achieved.

4.4 Index Size Reduction
The term pair indexes can be pruned in either a term-based
manner and in a posting-based manner. First, we do not need to
build the pair lists for all term pairs based on the rareness of the
terms and the pairs. For example, if the normal inverted lists for
both terms are very short (which means both of them are rare
terms), we do not need to build the pair list for them since it will
not take much time to process even the whole normal lists of
them. In contrast, it is always desirable to build the pair list for a
rare pair that is composed of two common terms since the pair list
will then be much shorter than either of the term lists.

Alternatively, another interesting way to reduce the size for the
term pair indexes is to prune the number of postings stored in each
term pair list, without affecting the precision of the top-k results.
As discussed above, if the ranking functions (and its parameters)
of the retrieval models are fixed, we do not need to store a lot of
information in the current term pair lists, while we can still
achieve the same results in the first phase of our current retrieval
models. This can be achieved by the following: we pre-compute
the top-k list for all documents of the term pair lists (those
processed in the first phase) during the index construction period
and thus we only need to store the resulting top-k list for those
documents in the term pair list, along with a hash table specifying
which documents in the lists have been processed and thus will
not be reevaluated in the second phase. In our experiments, this
idea is slightly modified since we want to keep the ranking
functions as flexible as possible. In particular, for each posting in
a term pair list, we only keep the position information for close-by
pairs while we discard the position information of the independent
occurrences of the single terms (we do this only for the body field
and still keep all position information in the other three fields
since the body field dominates the size). Our later experiments
will show that the index size can be greatly reduced by using the
above various optimizations.

In addition, on one hand, we can reduce the size of the resulting
pair indexes even further using a better compression approach
(e.g., PForDelta in [33]) to compress docIDs and frequencies;
while on the other hand, we can also improve the compression
performance for positions, based on the observation [32] that the
clustering property existing in the single-term occurrences can
lead to better compression for positions. In fact, we may expect to
achieve even better compression ratio since the correlation
between consecutive pairs may be stronger than that between
successive single terms.

5. EXPERIMENTS
5.1 Experimental Setup
For our experiments, we use the following three data sets: the
widely used TREC GOV (1.25 million web pages), TREC GOV2
(25.2 million web pages), and a newly distributed TREC
ClueWeb09 data sets [9] which consists of 1.04 billion web pages
in ten languages while only those in English, about 500 million
pages, are used in our experiments. For the evaluation on the
GOV and GOV2 data sets, we use the trec2004mixed query set
which contains 225 queries and 51 two-term queries among them;
for the ClueWeb09 data set, we use the million query track (we
call trec2009mq) of TREC2009 which contains 40,000 queries
and 14,620 two-term queries among them. For the GOV data set,
we use a single machine with Dual 2.13 GHz Intel CoreTM2 CPU,
4GB RAM, and 2*500 GB local SATA disk. For the ClueWeb09
data set, we use 40 machines, where each machine has Quad 2.50
GHz Intel Xeon CPU, 16GB RAM, and 1.5 TB or 4TB local
disks. All web pages are distributed to those machines via URL
hashing. The GOV2 data are indexed using 5 of the 40 machines
described above.

5.2 Experimental Results
We first compare in Table 5-1 the least number of documents (in
percentage of the list size) to be evaluated (i.e., we assume that we
magically know where the top-k documents are in the inverted
lists) on the GOV data set using our new index architecture where
the normal indexes are organized as STD, HL or STR indexes.
Since the locations of all top-k documents are magically known,
the query processing can be immediately terminated once all of
the top-k documents have been scanned. Therefore, the results
show the potential that the best early termination techniques can
achieve under our architecture with different term distances (i.e.,
the value of in Subsection 4.2) and various normal index
structures. In all the experimental results, we assume k=10.

Table 5-1. Average percentage (%) of evaluated documents
using the magic early termination for the GOV data set

Index
Structure

W/O Term
Pair Indexes

W/ Term Pair Indexes
m= 1 m= 2 m = 3

STD 47.46% 4.26% 1.17% 1.0%
HL 38.06% 3.00% 1.20% 0.99%
STR 12.48% 1.74% 1.41% 1.36%

From Table 5-1, we can see that our methods with the term pair
indexes can significantly reduce the number of documents
required to be evaluated by other early termination methods
without them, for all of the three kinds of normal indexes. This
implies that using term pair indexes can potentially achieve much
faster early termination and thus much more efficient query
processing. For example, for the STD indexes, our methods with
term distance m=3 only need to evaluate 1% of all documents in
the lists, while those methods without term pair indexes need to
process half of the entire lists.

More interestingly, in our methods, using a larger term distance
(for the term pair indexes), e.g., m=3, can result in much less
number of evaluations than using a smaller distance, e.g. m=1.
The reason is that (as discussed in Section 4) once the term pair
indexes are fully processed, the upper bound of the TP scores for
all unseen documents to be evaluated in the normal indexes can be
reduced much more in the former case than in the latter case. This

1234

observation motives us to exploit the term pairs with farther
distances to improve the query performance (as long as the extra
index size is acceptable). Based on the above observation, we
expect to achieve similar query performance in the following
experiments using our real early termination techniques, where
query processing cannot be stopped until either the early
termination condition is satisfied, or the entire lists have been
completely processed.

Table 5-2. Query processing time (ms/query) on the TREC
GOV data set (k=10)

Index
Structure

W/O Term
Pair Indexes

W/ Term Pair Indexes
m= 1 m= 2 m = 3

STD 158 132 62 56
HL 132 61 46 34
STR 50 32 30 32

In Table 5-2, we compare the query processing time (ms/query)
for our methods with term pair indexes and those methods without
them on the GOV data set, where all methods use the real early
termination. From Table 5-2, we can have the following
observations: First, as expected, our methods can achieve much
faster document retrieval than the methods without the term pair
indexes and our methods using the term distance m=3 can result
in the best performance with only 32 ms/query on the STR normal
indexes. Second, as we have shown in the results for the magic
early termination, using the farther term distance (m=3) can
achieve faster query processing than using the distance of m=2
than that of m=1.

Please note that in all the experimental results listed in this paper,
the search results quality of adopting the term-pair index is the
same as that of the basic term index. For the trec2004mixed query
set on the GOV dataset, the MAP (mean average precision) of the
search results is about 0.46, which is among the top results in the
runs submitted to the web track of TREC 2004.

More interestingly, our methods can greatly narrow the
performance gap between different normal index structures. For
example, the difference of the retrieval speed among the methods
using the STD, HL and STR normal indexes are largely reduced
by using our method with the term distance m=3. This observation
shows that our method may in general be used as a flexible and
helpful component for the search engines to improve the query
efficiency without worrying much about how the normal indexes
are organized themselves.

Another interesting observation for Table 5-2 is: although using
the term distance m=3 can result in significant improvement over
using m=1, it can only achieve slightly better performance than
using m=2. This implies that it might not be much beneficial to
build the term pair indexes with a very large term distance since in
that case the gain of the faster processing speed may be
outweighed by the overhead of the extra index size (the tradeoff
will be discussed in more details soon). We perform similar
experiments on the TREC GOV2 and ClueWeb09 data sets, and
similar results can be achieved and are not displayed.

In Table 5-3, we show the total number of documents (
(associated with the 51 two-term queries in the trec2004mixed
query set) that are evaluated on the GOV data set during query
processing, for all methods compared in the previous tables. We
also show the number of the documents () that are evaluated
in the auxiliary term pair lists and the number of documents ()

whose TP scores are fully evaluated. From Table 5-5, we can see
that although our methods need to first process the additional term
pair indexes, we evaluate much less number of documents in the
normal indexes than the methods without the term pair indexes,
which is the main reason that we can achieve higher query
processing speed than them. Interestingly, we can also see that
although using the larger term distance may lead to evaluating
more documents in the term pair indexes than using the smaller
distance, the total number of documents evaluated by them is
much smaller. Therefore, our method using the larger term
distance can achieve the faster speed of query processing than that
using the smaller term distance. In addition, we observe from
Table 5-3 that using our term pair indexes can also help to save
the number of full evaluations on TP scores (i.e., the value of)
due to the reasons discussed in Section 4. The similar
experimental results can also be achieved from the ClueWeb09
data sets and are not shown here.

Table 5-3. The number of evaluated documents during query

processing on the GOV data set

Document
Numbers

W/O Term
Pair Indexes

W/ Term Pair Indexes
m = 1 m = 2 m = 3

STD 4,452,906 3,653,919 1,555,227 1,306,699
HL 3,217,435 1,128,684 583,827 211,216
STR 770,742 477,671 459,844 461,674
STD 0 109,902 114,919 123,185
HL 0 109,902 114,919 123,185
STR 0 109,902 114,919 123,185

STD 5,281 3,890 3,917 4,008
HL 4,971 3,865 3,956 3,630
STR 3,242 400 137 93

Table 5-4. Query processing time on ClueWeb09 (STR
indexes), for the various values of / and a fixed 0.2

/ W/O Term
Pair Indexes

W/ Term Pair Indexes
m= 1 m= 2 m = 3

0 145 137 129 125
0.25 147 118 109 106
0.5 147 116 105 101
1 147 109 100 92
2 144 100 87 85
4 141 94 85 80

We now show the experimental results for the impacts on the
query efficiency of using various parameter values in our ranking
functions. Recall that in the basic form of our ranking function
(formula (2.1)), there are three parameters , , and , specifying
the weights of the SR, IR and TP scores respectively. The higher
weight for a certain kind of score implies the kind of scores may
have a greater impact on the overall document score than other
kinds of scores. We note that the SR score is independent of the
terms, while both the IR and TP scores depend on the terms and
are often correlated with each other (we also find such correlation
between them through our experiments). Therefore, we slightly
changed the formula (2.1) such that , where z is
parameter achieved from our experiments and still
1. We are going to show the experimental results in terms of

1235

either various values of or various values of the rate / . First,
we compare in Table 5-4 the query processing time (ms/query) on
the ClueWeb09 data set (with the STR indexes), using our
methods and the methods without the term pair indexes (w/o TPI),
in terms of different values of / and a fixed value of 0.2.

From Table 5-4, we can achieve the following observations: First,
our methods with term pair indexes can consistently achieve much
faster query processing than the methods without them for various
values for the weights of TP scores (we can also achieve such an
observation in Table 5-5 that will be explained soon). Second, our
methods using a larger distance can achieve better performance
with the increasing of the weights of TP scores. Similar
observations can also be achieved from the experimental results
on the GOV data set and are not shown here.

Table 5-5 . Query processing time on the ClueWeb09 data set
(STR indexes), for the various values of /

/ W/O Term
Pair Indexes

W/ Term Pair Indexes
m= 1 m= 2 m = 3

0.25 154 100 90 85
0.5 155 108 98 91
1 147 109 100 92
2 148 112 102 98
4 144 110 105 99

We also compare in Table 5-5 the query processing time on the
ClueWeb09 data set (with the STR indexes) in terms of different
rates of the weight for the TAU (title, anchor and URL) fields and
that for the body field (i.e. /). From Table 5-5, we can
see that when the TAU fields dominate the overall scores, we can
achieve faster early termination since the indexes for the TAU
fields are always evaluated earlier than those for the body field.

Table 5-6. The index size of the term pair indexes that are
only associated with the trec2009mq query set on the

ClueWeb09 data set, and the total Index size per machine

Index Type
Index-size for
trec2009mq

Total Index-size Per
machine

m=1 m<=2 m<=3 m=1 m<=2 m<=3
Normal Indexes

(STD, HL, or STR) 18.2 GB 60.0 GB

Term-
Pair

Index

W/O
Optimization

2.27
GB

3.25
GB

3.93
GB

> 0.5
TB

> 1.0
TB

> 1.5
TB

With
Optimization

0.41
GB

0.50
GB

0.57
GB

41.8
GB

75.1
GB

104
GB

We compare the index size of normal indexes and our term pair
indexes for the ClueWeb09 data set in Table 5-6. We first show in
the middle column the index size only for the queries in the
trec2009mq query set. This is a rough measure of the amount of
additional data per query that has to be transferred from the disk
to the memory [32] when employing term-pair indexes. We then
show the index size per machine for the whole ClueWeb09 data
set. We show the index size for the term pair indexes with and
without the optimization (the index reduction techniques)
discussed in Subsection 4.4. From the table, we can see that, the
size of the term pair indexes is greatly reduced using our methods.

Finally we show in Table 5-7 both the index size (in GB) of the
term pair indexes for the entire ClueWeb09 data set and the
corresponding query processing time in ms/query. From Table 5-7,

we can see that although the extra index size of the term pair
indexes is fairly large, it can be reduced significantly by our index
reduction techniques discussed in Section 4. Please note that the
uncompressed term-index size is about 60GB per machine.

We note that the index sizes in the above tables can be further
reduced by applying better compression methods [32, 33]. In
addition, if we also take into consideration of the caching
techniques, large proportion of disk traffic can be avoided and
therefore the overall good query efficiency can still be achieved.

Table 5-7. The query processing time (ms) and index size (GB)
per machine on the ClueWeb09 data set

Term-Pair
Index Type

Term-Pair Distance
1 1+2 1+2+3

Full-Size
(without reducing size)

>500 GB
100 ms

>1.0 TB
90.0 ms

>1.5TB
85.3 ms

Hits Reduction 76.7 GB
100 ms

157 GB
 90.0 ms

235 GB
85.3 ms

Hits Reduction
Freq-thresholds = (5, 50)

53.2 GB
99.7 ms

99.9 GB
89.9 ms

143 GB
85.6 ms

Hits Reduction
Freq-thres. = (10, 100)

50.4 GB
99.6 ms

94.2 GB
90.2 ms

134 GB
86.4 ms

Hits Reduction
Freq-thres. = (100, 1000)

41.8 GB
103.5 ms

75.1 GB
100.2 ms

104 GB
99.2 ms

Hits Reduction
Freq-thres. = (1000, 10000)

31.2 GB
123 ms

52.6 GB
123 ms

70.6 GB
123 ms

Index building time is another factor affecting the feasibility of
the term-pair index. We observed in experiments that, although it
takes huge amount of time to build the full-size term-pair index
(i.e. the index without optimization or size reduction), the time
cost of building the optimized term-pair indexes (m=3) is only 3
times of the basic term index.

6. CONCLUSION AND FUTURE WORK
In this paper, we have studied early termination techniques for the
proximity-aware retrieval models on large-scale data sets. We
proposed a new index which essentially offers the current search
engines an additional component (term pair indexes) that can
improve the query efficiency greatly without changing the original
inverted indexes. Our experimental results show that our methods
can significantly improve query efficiency especially for the
proximity-aware retrieval models.

There are still several interesting open problems. First, besides the
simple method we mentioned in Subsection 4.3 to deal with
multiple-term queries, we are currently studying other methods
for such queries. There are two intuitive methods that might be
used to extend our methods for the multiple-term queries: one is
to directly build the additional multiple-term indexes instead of
the pair indexes, while the other is to first decompose the
multiple-term query into a set of two-term queries and then
combine the results of those two-term queries. However, there are
lots of details to be taken care of for them. For example, the
former method may increase the extra index size greatly while the
second method may not be directly suitable to a proximity-aware
retrieval system unless we allow random lookups within the
resulting lists of all two-term queries. In addition, it is interesting
to study how to integrate the more optimal index compression
methods to decrease the index sizes, e.g., PForDelta [33] which
has been shown to be efficient in both compression size and

1236

decompression speed. It will also be interesting to see if we
should reorganize the extended indexes themselves such that the
early termination inside them is. Finally, we want to study the
impacts on our methods of other factors, such as query features,
caching policies and user feedbacks.

7. REFERENCES
[1] V. Anh, O. de Kretser, and A. Moffat. Vector-space ranking

with effective early termination. In Proc. of the 24th Annual
SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR’01), 2001.

[2] V. Anh and A. Moffat. Pruned query evaluation using pre-
computed impact scores. In Proc. of the 29th Annual SIGIR
Conf. on Research and Development in Information
Retrieval (SIGIR’06), 2006.

[3] D. Bahle, H. E. Williams, and J. Zobel. Efficient phrase
querying with an auxiliary index, In Proc. of the 25th Annual
SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR’02), New York, NY, USA,2002.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proc. of the 7th Intl. Conf.
on World Wide Web (WWW’98), 1998.

[5] A. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien.
Efficient query evaluation using a two-level retrieval process.
In Proc. of the 12th Conf. on Information and Knowledge
Management (CIKM’03), Nov 2003.

[6] S. Büttcher and C. Clarke. A document-centric approach to
static index pruning in text retrieval systems. In Proc. of the
15th ACM Intl. Conf. on Information and Knowledge
Management (CIKM’06), 2006.

[7] S. Buttcher and C. Clake. Efficiency vs. effectiveness in
terabyte-scale information retrieval. In Proc. of the 14th Text
Retrieval Conference (TREC’05), 2005.

[8] S. Buttcher and C. Clarke, B. Lushman. Term proximity
scoring for ad-hoc retrieval on very large text collections. In
SIGIR’2006.

[9] Carnegie Mellon University, The ClueWeb09 Data set, 2009,
http://boston.lti.cs.cmu.edu/Data/clueweb09/

[10] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. JCSS, 66(4):614–656, 2003.

[11] R. Fagin. Combining fuzzy information from multiple
systems. JCSS, 58(1):83–99, 1999.

[12] R. Fagin. Combining fuzzy information: an overview.
SIGMOD Rec., 31(2):109-118, 2002.

[13] U. Güntzer, W. Balke, and W. Kiebling. Optimizing multi-
feature queries for image databases. In Proc. of the 26th Intl.
Conf. on Very Large Data Bases (VLDB’00), pages 419–428,
2000.

[14] M. Kaszkiel, J. Zobel, and R. Sacks-Davis. Efficient passage
ranking for document databases. ACM Transactions on
Information Systems, 17(4):406–439, Oct. 1999.

[15] O. Kretser, A. Moffat. Effective document presentation with
a locality-based similarity heuristic. In Proc. of the 22th
Annual SIGIR Conf. on Research and Development in
Information Retrieval, 1999

[16] R.Kumar, K. Punera, T. Suel and S. Vassilvitskii, Top-k
aggregation using intersections of ranked inputs, In Proc. of
the Second ACM Intl. Conf. on Web Search and Data
Mining, 2009

[17] X. Long and T. Suel. Optimized query execution in large
search engines with global page ordering. In Proc. of the 29th
Intl. Conf. on Very Large Data Bases, September 2003.

[18] X. Long and T. Suel. Three-level caching for efficient query
processing in large web search engines. In Proc. of the 14th
Intl. Conf. on World Wide Web, pages 257–266, 2005

[19] A. Moffat and J. Zobel. Fast ranking in limited space. In Proc.
of the 10th IEEE Intl. Conf. on Data Engineering. Houston,
TX, February 1994.

[20] E. de Moura et al. Improving web search efficiency via a
locality based static pruning method. In Proc. of the 14th Intl.
Conf. on World Wide Web, pages 235–244, 2005.

[21] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document
retrieval with frequency-sorted indexes. JASIS, 47(10):749–
764, 1996.

[22] Y. Rasolofo and J. Savoy. Term proximity scoring for
keyword-based retrieval systems. In Proc. of the 25th
European Conf. on IR Research, pages 207–218, April 2003.

[23] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu,
and M. Gatford. Okapi at trec-3. In Proc. of the 3rd Text
Retrieval Conference (TREC), Nov 1994.

[24] R. Schenkel, A. Broschart, S. Hwang, M. Theobald and G.
Weikum. Efficient text proximity search. In Proc. of the 14th
String Processing and Information Retrieval Symposium,
2007.

[25] G. Skobeltsyn, F. Junqueira, V. Plachouras, R. Baeza-Yates:
ResIn: a combination of results caching and index pruning
for high-performance web search engines. In Proc. of the
31st Annual SIGIR Conf. on Research and Development in
Information Retrieval, 2008.

[26] R. Song, M. Taylor, J. Wen, H. Hon, Y. Yu. Viewing term
proximity from a different perspective. vol 4956, pp. 346-
357, Springer Berlin / Heidelberg , 2008.

[27] T. Strohman and W. Croft, Efficient Document Retrieval in
Main Memory, In Proc. of the 30th Annual SIGIR Conf. on
Research and Development in Information Retrieval

[28] T. Tao and C. Zhai, An exploration of proximity measures in
information retrieval, In Proc. of the 30th Annual SIGIR
Conf. on Research and Development in Information
Retrieval.

[29] Y. Tsegay, A. Turpin, and J. Zobel. Dynamic index pruning
for effective caching. In Proc. of the ACM 16th Conf. on
Information and Knowledge Management, 2007

[30] H. Turtle and J. Flood. Query evaluation: strategies and
optimizations. Information Processing and Management,
31(6):831–850, 1995.

[31] I. Witten, A. Moffat, and T. Bell. Managing gigabytes:
compressing and indexing documents and images. Morgan
Kaufmann, second edition, 1999

[32] H. Yan, S. Ding and T. Suel. Compressing term positions in
web indexes, In Proc. of the 32nd Annual SIGIR Conf. on

1237

Research and Development in Information Retrieval
(SIGIR’09), Boston, July, 2009

[33] H. Yan, S. Ding and T. Suel, Inverted Index Compression
and Query Processing with Optimized Document Ordering,
The 18th Intl. World Wide Web Conference (WWW’09),
Madrid, Spain, April 2009

[34] F. Zhang, S. Shi, H. Yan and J. Wen. Revisiting globally
sorted indexes for efficient document retrieval. In Proc. of
the Third ACM Intl. Conf. on Web Search and Data Mining
(WSDM’10), 2010.

[35] M. Zhu, S. Shi, M. Li, and J.-R. Wen. Effective top-K
computation in retrieving structured documents with term-
proximity Support. In Proc. of the ACM 16th Conf. on
Information and Knowledge Management (CIKM’07),
Portugal, 2007.

[36] M. Zhu, S. Shi, N. Yu, J.-R. Wen. 2008. Can phrase indexing
help to process non-phrase queries? In Proc. of the ACM
17th Conf. on Information and Knowledge Management
(CIKM’08), 2008

[37] J. Zobel and A. Moffat. 2006. Inverted files for text search
engines. ACM Computing Surveys. Vol. 38, No 2, Jul. 2006.

1238

