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ABSTRACT 
There has been a large amount of research on early termination 
techniques in web search and information retrieval. Such 
techniques return the top-k documents without scanning and 
evaluating the full inverted lists of the query terms. Thus, they can 
greatly improve query processing efficiency. However, only a 
limited amount of efficient top-k processing work considers the 
impact of term proximity, i.e., the distance between term 
occurrences in a document, which has recently been integrated 
into a number of retrieval models to improve effectiveness. 

In this paper, we propose new early termination techniques for 
efficient query processing for the case where term proximity is 
integrated into the retrieval model. We propose new index 
structures based on a term-pair index, and study new document 
retrieval strategies on the resulting indexes. We perform a detailed 
experimental evaluation on our new techniques and compare them 
with the existing approaches. Experimental results on large-scale 
data sets show that our techniques can significantly improve the 
efficiency of query processing. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search process; 
H.3.4 [Systems and Software]: Performance evaluation 
(efficiency and effectiveness) 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Top-k, Term proximity, Document structure, Term-pair index 

 

1. INTRODUCTION 
A lot of research in web search and information retrieval has 
studied how to improve the efficiency of document retrieval, 
using techniques such as massive parallelism, caching, inverted 
index compression and early termination. We focus on one 

important class of optimizations, early termination techniques 
(also called dynamic query pruning techniques), which are widely 
used in IR systems and large search engines [31]. 

To better understand early termination techniques, we first look at 
the most basic index structure, the inverted index [31, 37]. An 
inverted index consists of many inverted lists, each of which is a 
sequence of postings. Each posting contains a document ID 
(docID), plus additional information such as the term frequency in 
the document, the exact positions of the occurrences, and their 
context (e.g., in the title, in anchor text, or in URLs). Typically the 
postings in each inverted list are sorted by their docIDs to achieve 
good index compression [31]. To process a query, a search engine 
could traverse the complete inverted lists for all relevant terms, 
calculate relevance scores for all documents in these lists, and 
finally return the top-k (e.g., k = 10) documents having the highest 
scores. However, such exhaustive evaluation requires significant 
computing resources and may greatly increase query response 
time. 

To overcome this problem, many early termination techniques 
have been proposed [1, 2, 5, 10, 13, 17, 21, 24, 30, 31, 34, 35, 36]. 
The common goal of these is to speed up query processing by 
avoiding the processing of all documents in the relevant lists, and 
instead evaluating only a small subset. This is usually done by 
employing alternative index organizations such that during a 
traversal of these structures, the most promising documents (those 
likely to have the highest scores) are evaluated first while other 
documents may be evaluated later only as needed. Once a certain 
amount of documents has been processed, it is often possible to 
terminate the query evaluation and return the top-k results, 
without even considering the less promising documents. 

The features being used to evaluate the documents (i.e., calculate 
the document scores) play a crucial role in the efficiency of early 
termination techniques, since they determine the best organization 
and ordering of the index, and thus the point at which early 
termination can occur. Most existing research on early termination 
techniques treats a document as a bag of words and evaluates 
queries using the following two kinds of features: (a) term-
dependent features, e.g., within-document frequencies [21], or 
term-based IR scores or impacts [2]; and (b) term-independent 
features, e.g., Pagerank or other static ranks or scores [4, 17, 34] 
that measure the overall quality, importance, or popularity of a 
document (based on analysis of links, content, query logs, or 
traffic data in a preprocessing step). We note that while term-
dependent scores are query-related, they are here only based on 
each separate term instead of the whole query, and thus do not 
depend on the relative positions or distances between terms within 
a document. 
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However, overall scores may also depend on the distance between 
the query terms in the document, called term proximity (TP), such 
that terms occurring close to each other often result in a higher 
score. In fact, the real search engine [4] has integrated the term 
proximity into their ranking system (although the details are not 
provided in [4]). In addition, a lot of recent research [7, 8, 15, 26, 
28] has shown that retrieval effectiveness can be greatly improved 
by integrating term proximity scores into the retrieval model. 
Unfortunately, there is much less research on how to improve 
query efficiency for such proximity-aware retrieval systems, with 
the exception of [24, 35, 36]. In the following, we will refer to 
early termination (ET) techniques that consider term proximity 
(TP) as TP-ET methods, and refer to those without TP as NTP-ET 
methods. We note that while real search engines often integrate 
into their overall scoring function a variety of other features 
beyond static ranks, term-based IR scores, and query-based term 
proximity scores, in this paper we only focus on these three kinds 
of scores, which we call SR, IR, and TP scores, respectively. 

Thus, the study of TP-ET techniques is interesting and important 
due to the importance of term proximity factors in state-of-the-art 
ranking functions. However, the index structures and retrieval 
strategies of existing NTP-ET techniques cannot be directly 
applied to TP-ET methods. The main reason is that each inverted 
list is only associated with one particular term and does not 
consider any other terms, while the TP score is based on the entire 
query and therefore depends on the interaction between several 
query terms. Independently ordering each relevant inverted list of 
a given query in some order, say by term scores, may result in a 
fairly non-monotonic and almost random distribution of the TP 
scores that makes early termination impossible for most queries. 
Thus, the main challenge for TP-ET methods is how to consider 
the impacts of all three kinds of scores to achieve effective early 
termination and thus efficient query processing. 

In this paper, we study new early termination techniques that 
improve retrieval efficiency for the case where term proximity 
information is taken into account in the retrieval model. Our goal 
is to create a new auxiliary index structure and mechanism that 
can be used in IR systems to speed up query processing without 
reorganizing their entire structure. In particular, we create an 
additional term-pair index for cases where certain pairs of terms 
occur close to each other in a document and propose new retrieval 
strategies for the resulting indexes. The new index organization 
implicitly moves documents with high term proximity scores 
towards the front of the query processing pipeline, without 
disturbing the normal indexes too much. Thus, the documents 
with the highest overall scores are likely to be evaluated first 
during query processing, resulting in effective early termination. 
Our experimental results show that our methods can achieve 
significant improvements in efficiency over existing methods. 

2. BACKGROUND AND RELATED WORK 
We refer to [31, 37] for basic background on indexing and query 
processing in search engines. 

2.1 The Ranking Functions 
As mentioned in Section 1, we focus on the following three types 
of scores: SR, IR and TP scores. Almost none of the existing 
research on early termination techniques has studied other 
additional types of scores beyond these, though real search 
engines may do so. In fact, most ET techniques are based on only 
one or two of these. For example, [2, 21] uses only the IR score 

while [4, 17, 34] considers both SR and IR scores and [24] studies 
both IR and TP scores. There are only a few ET techniques [35, 
36] that have integrated all three scores into their ranking 
functions. The overall document score for a particular ET method 
is often evaluated as a linear weighted sum of all types of scores 
considered by it, and the general ranking function for most of the 
ET techniques is as follows: 

 , · · , · ,  (2.1) 

where S(d, q) is the overall score of the document d with respect 
to the query q, SR(d) is the SR score of the d, IR(d, q) and 

,  are respectively the IR and TP scores of the document d 
with regard to the query q, while , , and  are three non-
negative parameters ( 1). Usually all of the SR, IR 
and TP scores are normalized into the range [0, 1]. Formula (2.1) 
can be adapted in various ways by tuning , , and . For 
example, ranking functions for methods that only use SR and IR 
scores can be modeled by setting 0. 

There has been a lot of research on the calculation of each of the 
three types of scores. The SR score could be computed using the 
Pagerank method in [4] but could also incorporate various other 
measures of document quality or importance. One popular way to 
calculate the IR score is the BM25 formula in [23], which has 
been widely used in IR systems. However, the calculation of TP 
scores is often more complicated. It does not depend only on a 
particular term but on the entire query. Many approaches [7, 8, 15, 
22, 24, 26, 28, 35, 36] have been proposed to calculate TP scores. 
Most methods assume the TP score of a pair of occurrences to be 
inversely proportional to the square of their distance within the 
document, but the concrete implementations are different from 
each other and the ways to combine such pair TP scores into the 
document TP score are also different. However, a popular way is 
to first slide a window with a certain size w over the document, 
and then each time calculate the TP score for a term pair 
< ,  based on only the contributions from the occurrences of 

 and  within that window. Then all such pair scores are 
combined using a weighted sum, to obtain the final document TP 
score. 

The ranking functions of practical search engines also take into 
consideration the document structure and the context of term 
occurrences, e.g., whether they are in the title, or in the URL, for 
better result quality [4]. Like [4, 35], we distinguish the following 
four different contexts (we call them fields) of a web document: 
title, URL, anchor (text), and body fields, where the anchor text 
refers to the visible, clickable text (in other pages) in a hyperlink 
pointing to the page, while the body field refers to the rest of the 
web page (anything not in the other three fields). 

2.2 Early Termination without TP 
Ideally, an early termination technique stops evaluating 
documents immediately once the top-k documents have been 
discovered. In practice, we cannot immediately tell if a document 
we just encountered will be in the final top-k, and thus we have to 
continue evaluating new documents until we are sure that no new 
document can achieve a higher score than any document in the 
current top-k list. In addition, we often require that the k 
documents in the result list (achieved by the early termination 
techniques) are returned in the same order as without early 
termination.  
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We note that although many early termination methods may relax 
the above restriction allowing for approximate top-k results [5, 10, 
17, 32] (e.g., the result list contains 99% of the real top-k 
documents on average) as long as a certain retrieval precision can 
be reached, we only focus on exact top-k query processing, that is, 
all top-k results must be returned and in the correct order.  

Index Reorganization: Most early termination techniques 
reorganize the inverted lists in some way that is ordered by certain 
types of scores, such that the most promising documents are 
skewed towards the beginning of the lists, and thus evaluated 
earlier than other documents. In particular, the method in [21] 
does so based on the within-document frequencies (which are 
assumed to dominate the IR scores). The method in [4] stores the 
postings (hits) of a list into two sets of inverted barrels: one set for 
the hit lists that include title or anchor hits and another set for all 
hit lists. The method in [2] partitions an inverted list into m 
segments in each of which all documents are of the same impact 
values (which are essentially quantized IR scores) and sorted by 
docIDs. The segments themselves are sorted in descending order 
of their impacts. The approach in [17] partitions the documents in 
a list into two segments based on their IR scores, and the segment 
with the higher scores is evaluated first. All documents within 
each segment are sorted in descending order of their SR scores. In 
this way, the documents with the highest IR and SR scores are 
located either in the top segment or the beginning of the bottom 
segment. The very recent research in [34] sorts a list by a 
combination of the so-called UBIR score and Pagerank (or static 
rank), which are both term-independent information. 

Retrieval Strategies: Many evaluation strategies [2, 5, 14, 17, 19, 
30, 32, 34, 35, 36, 37] have been proposed in the IR and web 
search areas, and they can be roughly divided into the following 
three categories: document-at-a-time (DAAT) [5, 14, 17, 30, 32, 
35, 36, 37], term-at-a-time (TAAT) [19, 30, 37] and score-at-a-
time (SAAT) [2]. DAAT evaluates a document by considering the 
contributions of all query terms, before it deals with the next 
document; TAAT evaluates all documents in the inverted list of 
one term before it does so for the next term; SAAT is only 
suitable for indexes sorted by impacts [2]. While TAAT is widely 
used in the traditional IR systems and SAAT can achieve good 
performance in certain cases [37], DAAT has been shown to be 
able to achieve very good query performance in many cases 
especially with certain optimizations [5, 14, 17, 30, 32, 35, 36, 
37]. DAAT often requires a smaller run-time memory size while 
the other two methods need more memory to maintain 
intermediate scores during query processing. Please refer to [2, 5, 
37] for a detailed comparison among those strategies. 

We note that many retrieval algorithms have also been proposed 
in the database area, e.g., Fagin's Algorithm (FA) [11] and the No 
Random-Access Algorithm (NRA) [12]. Please refer to [13] for a 
survey of these methods. 

2.3 Early Termination with TP 
There are only a few early termination approaches [24, 35, 36] 
(and [4] although the concept of early termination was not 
explicitly presented in it) that integrate the TP information into 
their retrieval models. They adopt different strategies to overcome 
the above problem, where the methods in [4, 35] exploit the 
document structure to reduce the upper bound of the unseen 
scores, while [24, 36] implicitly move the documents with high 
TP scores to the front of the list by creating new phrase indexes or 

term pair indexes. In particular, the method in [4] groups the 
documents of a list into two sets where one set is actually a subset 
of the other one and contain only those hit lists that include title or 
anchor hits. That is, they assume that the occurrences in the title 
or anchor fields imply high IR scores and therefore should be 
evaluated first. The method in [35] also exploits the document 
structure information to organize the indexes. It partitions each list 
into the following two segments: one top segment containing the 
postings only for the occurrences within the three fields of title, 
anchor text, and URL, and another bottom segment containing the 
postings only for those within the body field. During query 
processing, it first processes the entire top segment, and then 
attempts to achieve early termination in the second segment, 
based on the fact that parts of the TP scores (associated with the 
title, anchor and URL fields) have been calculated in the top 
segment and thus the upper bounds of the TP scores for all unseen 
documents in the second segment can be reduced.  

In contrast, [24] and [36] approach the problem from another 
angle: They create additional indexes for pairs of terms in the 
document and exploit those indexes to implicitly move documents 
with higher TP scores to the front of the lists. In particular, [24] 
creates additional indexes for all possible term pairs, i.e., pairs 
with any possible distances between each other within the same 
document, while [36] only creates such indexes for the phrases. 

Although we also create term-pair indexes (like [24, 36]), there 
are some key differences between them and our approach. First, 
we consider document structure (i.e., the differentiation of title, 
URL, anchor, and body text) in our ranking function while they 
do not. Therefore our study is based on a more realistic or 
practical ranking function. To some extent, this paper can be 
considered as an attempt to combine the approaches in [4, 35] and 
in [24, 36]. Second, compared with [24] where an auxiliary index 
is built for all pairs of terms within a large window (resulting in a 
huge term-pair index), our study shows that it is sufficient to build 
term-pair indexes for terms with at most distance 3. Therefore the 
size of the term-pair index (and the index building time) could be 
reduced to a feasible level with our approach, without affecting 
the search results quality. Compared with [36] where only phrase 
index is built, we show that the inclusion of distance-2 and 
distance-3 term-pairs can bring addition performance gains over 
the phrase index. 

2.4 Other Related Work 
Compared to the above dynamic pruning techniques, static 
pruning techniques (e.g., [6, 20]) try to predict and discard certain 
less important parts of the index structures as the indexes are 
being built. Such methods achieve high retrieval efficiency by 
sacrificing on search quality for some queries. The method in [3] 
creates the auxiliary indexes for firstword-nextword pairs to speed 
up the phrase query. However, it is not directly suitable to the 
non-phrase query. The pre-aggregation techniques [16] first pre-
aggregate the intersections of the lists and then simultaneously 
process the intersection list and the term lists to speed up the 
retrieval. Interestingly, [18] also uses the intersection lists as an 
intermediate level of a three-level caching structure to speed up 
query processing. However, the intersection lists in [16, 18] do 
not contain the position information of terms. Some other early 
termination techniques [5, 32] focus on reducing the number of 
full evaluations. Their main idea is to first evaluate all documents 
using approximate scores and then perform the full evaluation 
only on the documents with the highest approximate scores. 
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However, we often calculate all of the SR, IR and TP scores 
unless we can safely avoid doing so without loss of accuracy. 
Finally, early termination strategies are also affected by caching 
policies [18, 25, 29]. In this paper, we only focus on dynamic 
pruning techniques to get the exact top-k query results and do not 
consider pre-aggregation and caching policies.   

3. CONTRIBUTIONS OF THIS PAPER 
In this paper, we study and evaluate efficient document retrieval 
techniques for the case where term proximity information is 
integrated into the retrieval models. Our goal is to provide the 
search engine with a separate component to speed up the query 
processing greatly while not incurring much overhead of storing 
the extra indexes. Our main contributions are as follows: 

(1) We propose new index structures by creating additional term 
pair indexes for pairs of terms that are within certain distances 
to each other in the documents, and study corresponding 
retrieval strategies for the resulting indexes. We also proposed 
new methods to reduce the index size of the term pair indexes.  

(2) We integrate the impacts of document structure information, 
i.e., the context of term occurrences, into our retrieval models. 
Although most of the existing research on early termination 
techniques does not consider such information, the real search 
engine [4] does so. 

(3) We propose the new methods to avoid full evaluations on the 
TP scores by using our term pair indexes. Thus our methods 
can not only reduce the number of documents to be evaluated 
during query processing, but also save the computation cost 
by avoiding unnecessary full evaluations.  

(4) We compare our algorithms with other existing techniques on 
large scale data. Experimental results show that our approach 
can consistently improve query efficiency and achieving a 
reasonable tradeoff between query efficiency and index size.  

4. OUR ALGORITHMS 
Our goal is to improve the query efficiency especially on the 
proximity-aware retrieval models by creating for the search 
engines an auxiliary index component (term pair indexes) which 
can be easily plugged in the existing systems. Therefore, our new 
index architecture is composed of the normal indexes, which may 
be organized by any methods discussed in Section 2, and the term 
pair indexes. We note that the new pair indexes do not change the 
index organization of the normal inverted indexes.  

The main idea of our algorithms is: we exploit the additional term 
pair indexes to implicitly move the documents with the highest TP 
scores on top of other documents in the normal indexes. Recall 
that the normal indexes are not affected by the pair indexes and 
often have been organized by other early termination techniques 
discussed in Section 2, such that the documents with the highest 
SR or IR scores are located to the beginning of the normal 
indexes. Therefore, under our new architecture, the most 
promising documents (with the highest integrated scores of SR, IR 
and TP scores) are organized as the first tier of documents to be 
evaluated and thus the early termination can be expected.  

A query under the new architecture is then processed as follows: 
when the engines receive a query, they first load and process the 
relevant lists from the pair indexes (as long as they contain such 
relevant lists); they then load the normal inverted indexes and 

continue to evaluate the documents of these lists until the top-k 
results can be safely returned without scanning the entire lists. 

4.1 The Ranking Function 
Our ranking function is based on the formula (2.1) discussed in 
Section 2. However, we also integrate into it the document 
structure information for the following four fields of a web page: 
title (T), URL (U), anchor (A) and body fields (B). In particular, 
we represent the IR score (or the TP score) as the weighted sum of 
its partial scores in all of the four fields (we note that unlike IR 
and TP scores, the SR score is not affected by the document 
structure). Therefore, our ranking function can be described as 
follows: 

 

, , ,
, , ,

, ,
, , ,

 
(4.1) 

where is the weight for the th field, the , ,   and the 
, ,  are respectively the partial IR and TP scores of the 

query  in the th field, while other symbols are of the same 
meanings as those in the formula (2.1).  

We now discuss how to calculate various scores. The SR scores 
can be achieved in the exact same way as in [35, 36]. The IR 
partial scores can be calculated by the BM25 formula [23] except 
that they are computed based on the term occurrences in a 
particular field instead of those in the entire document. The basic 
process of calculating the document TP score has been discussed 
in Section 2 and is based on all pair-wise occurrences of query 
terms within a fixed-size window. The scoring function for a 
particular pair-wise occurrence can be derived from the scoring 
models in [35, 36, 24, 7, 8] and one of their common features is 
that such a score is inversely proportional to the square of the 
distance between terms as follows: 

 ,
1

1 ,
 (4.2) 

where ,  is the TP score for one particular pair-wise 
occurrence of the terms and  , while () is a linear function of 
the square of the distance ,  of the two terms. The value 
of ,  is also affected by the ordering of the occurrences in 
the document and that in the query. For example, given a query 
“New York”, we will assign a higher ,  score to the 
occurrence of “New York” than that of “York New”. This can be 
achieved by representing the ,  as followings 

 ,   (4.3) 

where and  are the positions of  and  in the document 
while and are their positions in the query.  

4.2 Building New Indexes 
In this subsection, we first describe how we build the term pair 
indexes and then discuss how they are combined with various 
index structures of the normal indexes. 

Building term pair indexes: Given all of the relevant documents 
to a query, our goal is to create additional indexes for a small 
subset of them that contain the close-by term pairs and thus 
potentially have the highest TP scores. In particular, given a term 
pair ,  (which is different from another pair ( , )), we first 
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identify the documents which contain at least one pair-wise 
occurrence of them with , , where , is 
derived from the above formula (4.3) and  is a certain distance 
value, say 3. The possible forms of such occurrences are: 

 0 , 1 , 2 , and 
3 , where , ,  can be any other terms in 

the document but  and . We then build an inverted list (we call 
it term pair list) for the pair ( , ) based only on the above 
identified documents. The basic form of such a term pair list with 
n postings is shown in Figure 4-1. 

 
Figure 4-1  The basic form for a term pair list of n postings 

The term pair list is then a sequence of postings, each of which 
contains a docID, the term pair frequency , and all of the  
occurrences. Unlike the posting in the standard inverted list 
discussed in Section 1, which always records the occurrences of a 
single term in a document, the posting in the term pair list does so 
for either one or both of terms in the query, according to the 
distances between them. In particular, we treat two consecutive 
occurrences of them with ,  as a single occurrence 
of the pair, while we encode those with larger distances as two 
separate occurrences. Thus each occurrence can be represented as 
a code of (T, P), where T stands for one of the following types of 
the occurrences: (1)  and  appear together (and in the order of 
( , ) rather than ( , ) ) with ,  and  , (2) 

 appears by itself (i.e., its  to the closest following  is 
greater than ), (3)  appears by itself (i.e., its  to the closest 
previous  is greater than ); while P stands for the position of 
the first term in case (1), or the position of the term in the other 
two cases. Thus the value of  is the number of all of such 
occurrences. Please note that we build only a single list for the 
pair ( , ), while we treat ( , ) and ( , ) as different pairs 
and will create separate term pair lists for them. 

From the above we can see that on one hand, we never maintain 
any information in the term pair list for the documents that 
contain no pairs of ,  with , , while on the 
other hand, once a document  contains such a close-by pair, the 
information for all occurrences of both terms within  will be 
encoded into the list. The reason we keep all such information is 
to provide the flexibility for the search engines to employ various 
ranking functions and evaluation strategies on the term pair 
indexes. Once the engines fix such settings, a non-trivial amount 
of redundant information in the term pair indexes can be safely 
removed without downgrading the query performance much 
(details will be discussed soon). 

Cooperation with normal indexes: Before being combined with 
the above term pair indexes, the normal inverted indexes often 
have been reorganized by a variety of other early termination 
methods discussed in Section 2 (especially in Subsection 2.2).  In 
this paper, we mainly focus on the following three kinds of index 
organizations of the normal inverted indexes: (1) the standard 
inverted indexes structure [31] (which we call STD indexes) 

where postings are sorted by Static-rank; (2) the index structure in 
[17] (which we call HL indexes) where both SR and IR scores are 
considered, resulting in the two segments with high and low IR 
scores respectively, in each of which all postings are sorted by SR 
scores;  (3) the index structure in [35] (which we call structured or 
STR indexes) where all of SR, IR and TP scores are considered 
and the indexes are also divided into two segments (the TAU 
segment and the B segment) but according to whether the 
occurrence happens in the TAU (title, anchor and URL) fields or 
in the B (body) field. We note that although there are some other 
index structures (e.g., sorting postings only by the TP scores [24]) 
that may have been used for the normal inverted indexes, the 
above three ones, i.e., STD, HL, and STR, can to some extent 
represent most of the index organizations used in the state-of-the-
art early termination techniques with or without consideration of 
the TP information. For example, as discussed in Section 2, the 
HL structure can be easily converted to a special case of the 
structure in [2], while both STD and HL are considered for the 
methods in [36].  

4.3 Retrieval Strategies 
In this subsection, we discuss the retrieval process for our new 
index architecture (using the two-term query as an example), 
where the normal indexes can be STD, HL or STR. 

Given a query  of ( , , our retrieval process is divided into 
the following two phases:  

(1) In the first phase, we check the term pair indexes to see if 
they contain the list , for ( ,  . If they do not do so, we 
skip the rest part of this phase and go directly to the second 
phrase; otherwise we load , into the memory. We then 
load the list ,  if it also exists in the term pair indexes. 
After that, we process the entire ,  and  ,  evaluating 
appropriate documents in them, resulting in a temporary top-

 list in which all documents are of their complete scores and 
do not need to be evaluated again in the second phase. 

(2) In the second phase, we load the normal indexes and 
continue to evaluate new documents in them (skipping the 
documents that have been evaluated in the first phase) in a 
DAAT manner until the early termination can be achieved.  

From the above, we can see that all documents with the high TP 
scores have been completely evaluated in the first phase and put 
in the temporary top-k list. As a result, the upper bound of the TP 
scores for all documents in the second phrase is greatly reduced 
since none of them contain close-by pairs. Thus as long as the 
index structure of the normal indexes (in the second phase) has 
the property that the documents with the high SR and IR scores 
are also located at the beginning of the lists, the quick early 
termination in the second phase can be expected in such cases 
since the early termination condition discussed in Subsection 2.2 
can be quickly satisfied after a small amount of documents have 
been evaluated.  

Interestingly, the term pair indexes can not only be used to reduce 
the number of documents to be evaluated (since only a small 
proportion of the lists need to processed before early termination), 
but also be exploited to save the number of full evaluations on TP 
scores as follows: when a new document is encountered, we often 
have known its exact SR and IR scores (that can often be pre-
computed since their values do not depend on other terms in the 
query) and the upper bound of its TP score, therefore we can 

    , , , , , , … , , , 

              , , , , , , … , , , 

              ….,  

              , , , , , , … , , } 
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easily get the upper bound of its overall document score, which 
can then be compared with the score of the kth document in the 
current top-k list. Once we find its overall score is smaller than 
that of the kth document, we can safely discard it and thus avoid 
the expensive full evaluation of its TP score.   

For the queries with more terms, we present a very simple method 
by taking advantage of the nonexistence of term pair lists as 
follows: if there are no existing term-pair lists for any pair of the 
query ( , , , … ,  ) (and this is not due to the term-based 
pruning of the lists), we then know that there are no documents 
with very high TP scores and therefore the upper bound of the TP 
score for all unseen documents can be reduced and thus the early 
termination may be achieved.    

4.4 Index Size Reduction 
The term pair indexes can be pruned in either a term-based 
manner and in a posting-based manner. First, we do not need to 
build the pair lists for all term pairs based on the rareness of the 
terms and the pairs. For example, if the normal inverted lists for 
both terms are very short (which means both of them are rare 
terms), we do not need to build the pair list for them since it will 
not take much time to process even the whole normal lists of 
them. In contrast, it is always desirable to build the pair list for a 
rare pair that is composed of two common terms since the pair list 
will then be much shorter than either of the term lists.  

Alternatively, another interesting way to reduce the size for the 
term pair indexes is to prune the number of postings stored in each 
term pair list, without affecting the precision of the top-k results. 
As discussed above, if the ranking functions (and its parameters) 
of the retrieval models are fixed, we do not need to store a lot of 
information in the current term pair lists, while we can still 
achieve the same results in the first phase of our current retrieval 
models. This can be achieved by the following: we pre-compute 
the top-k list for all documents of the term pair lists (those 
processed in the first phase) during the index construction period 
and thus we only need to store the resulting top-k list for those 
documents in the term pair list, along with a hash table specifying 
which documents in the lists have been processed and thus will 
not be reevaluated in the second phase. In our experiments, this 
idea is slightly modified since we want to keep the ranking 
functions as flexible as possible. In particular, for each posting in 
a term pair list, we only keep the position information for close-by 
pairs while we discard the position information of the independent 
occurrences of the single terms (we do this only for the body field 
and still keep all position information in the other three fields 
since the body field dominates the size). Our later experiments 
will show that the index size can be greatly reduced by using the 
above various optimizations. 

In addition, on one hand, we can reduce the size of the resulting 
pair indexes even further using a better compression approach 
(e.g., PForDelta in [33]) to compress docIDs and frequencies; 
while on the other hand, we can also improve the compression 
performance for positions, based on the observation [32] that the 
clustering property existing in the single-term occurrences can 
lead to better compression for positions. In fact, we may expect to 
achieve even better compression ratio since the correlation 
between consecutive pairs may be stronger than that between 
successive single terms.  

5. EXPERIMENTS 
5.1 Experimental Setup 
For our experiments, we use the following three data sets: the 
widely used TREC GOV (1.25 million web pages), TREC GOV2 
(25.2 million web pages), and a newly distributed TREC 
ClueWeb09 data sets [9] which consists of 1.04 billion web pages 
in ten languages while only those in English, about 500 million 
pages, are used in our experiments. For the evaluation on the 
GOV and GOV2 data sets, we use the trec2004mixed query set 
which contains 225 queries and 51 two-term queries among them; 
for the ClueWeb09 data set, we use the million query track (we 
call trec2009mq) of TREC2009 which contains 40,000 queries 
and 14,620 two-term queries among them. For the GOV data set, 
we use a single machine with Dual 2.13 GHz Intel CoreTM2 CPU, 
4GB RAM, and 2*500 GB local SATA disk. For the ClueWeb09 
data set, we use 40 machines, where each machine has Quad 2.50 
GHz Intel Xeon CPU, 16GB RAM, and 1.5 TB or 4TB local 
disks. All web pages are distributed to those machines via URL 
hashing. The GOV2 data are indexed using 5 of the 40 machines 
described above. 

5.2 Experimental Results 
We first compare in Table 5-1 the least number of documents (in 
percentage of the list size) to be evaluated (i.e., we assume that we 
magically know where the top-k documents are in the inverted 
lists) on the GOV data set using our new index architecture where 
the normal indexes are organized as STD, HL or STR indexes.  
Since the locations of all top-k documents are magically known, 
the query processing can be immediately terminated once all of 
the top-k documents have been scanned. Therefore, the results 
show the potential that the best early termination techniques can 
achieve under our architecture with different term distances (i.e., 
the value of  in Subsection 4.2) and various normal index 
structures. In all the experimental results, we assume k=10. 

Table 5-1. Average percentage (%) of evaluated documents 
using the magic early termination for the GOV data set  

Index 
Structure 

W/O Term 
Pair Indexes  

W/ Term Pair Indexes 
m= 1 m= 2 m = 3 

STD 47.46% 4.26% 1.17% 1.0% 
HL 38.06% 3.00% 1.20% 0.99% 
STR 12.48% 1.74% 1.41% 1.36% 

 
From Table 5-1, we can see that our methods with the term pair 
indexes can significantly reduce the number of documents 
required to be evaluated by other early termination methods 
without them, for all of the three kinds of normal indexes. This 
implies that using term pair indexes can potentially achieve much 
faster early termination and thus much more efficient query 
processing. For example, for the STD indexes, our methods with 
term distance m=3 only need to evaluate 1% of all documents in 
the lists, while those methods without term pair indexes need to 
process half of the entire lists.  

More interestingly, in our methods, using a larger term distance 
(for the term pair indexes), e.g., m=3, can result in much less 
number of evaluations than using a smaller distance, e.g. m=1. 
The reason is that (as discussed in Section 4) once the term pair 
indexes are fully processed, the upper bound of the TP scores for 
all unseen documents to be evaluated in the normal indexes can be 
reduced much more in the former case than in the latter case. This 
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observation motives us to exploit the term pairs with farther 
distances to improve the query performance (as long as the extra 
index size is acceptable). Based on the above observation, we 
expect to achieve similar query performance in the following 
experiments using our real early termination techniques, where 
query processing cannot be stopped until either the early 
termination condition is satisfied, or the entire lists have been 
completely processed. 

Table 5-2. Query processing time (ms/query) on the TREC 
GOV data set (k=10) 

Index 
Structure 

W/O Term 
Pair Indexes  

W/ Term Pair Indexes 
m= 1 m= 2 m = 3 

STD 158 132 62 56 
HL 132 61 46 34 
STR 50 32 30 32 

In Table 5-2, we compare the query processing time (ms/query) 
for our methods with term pair indexes and those methods without 
them on the GOV data set, where all methods use the real early 
termination. From Table 5-2, we can have the following 
observations: First, as expected, our methods can achieve much 
faster document retrieval than the methods without the term pair 
indexes and our methods using the term distance m=3 can result 
in the best performance with only 32 ms/query on the STR normal 
indexes. Second, as we have shown in the results for the magic 
early termination, using the farther term distance (m=3) can 
achieve faster query processing than using the distance of m=2 
than that of m=1. 

Please note that in all the experimental results listed in this paper, 
the search results quality of adopting the term-pair index is the 
same as that of the basic term index. For the trec2004mixed query 
set on the GOV dataset, the MAP (mean average precision) of the 
search results is about 0.46, which is among the top results in the 
runs submitted to the web track of TREC 2004. 

More interestingly, our methods can greatly narrow the 
performance gap between different normal index structures. For 
example, the difference of the retrieval speed among the methods 
using the STD, HL and STR normal indexes are largely reduced 
by using our method with the term distance m=3. This observation 
shows that our method may in general be used as a flexible and 
helpful component for the search engines to improve the query 
efficiency without worrying much about how the normal indexes 
are organized themselves. 

Another interesting observation for Table 5-2 is: although using 
the term distance m=3 can result in significant improvement over 
using m=1, it can only achieve slightly better performance than 
using m=2. This implies that it might not be much beneficial to 
build the term pair indexes with a very large term distance since in 
that case the gain of the faster processing speed may be 
outweighed by the overhead of the extra index size (the tradeoff 
will be discussed in more details soon). We perform similar 
experiments on the TREC GOV2 and ClueWeb09 data sets, and 
similar results can be achieved and are not displayed. 

In Table 5-3, we show the total number of documents (    
(associated with the 51 two-term queries in the trec2004mixed 
query set) that are evaluated on the GOV data set during query 
processing, for all methods compared in the previous tables. We 
also show the number of the documents ( ) that are evaluated 
in the auxiliary term pair lists and the number of documents ( ) 

whose TP scores are fully evaluated. From Table 5-5, we can see 
that although our methods need to first process the additional term 
pair indexes, we evaluate much less number of documents in the 
normal indexes than the methods without the term pair indexes, 
which is the main reason that we can achieve higher query 
processing speed than them. Interestingly, we can also see that 
although using the larger term distance may lead to evaluating 
more documents in the term pair indexes than using the smaller 
distance, the total number of documents evaluated by them is 
much smaller. Therefore, our method using the larger term 
distance can achieve the faster speed of query processing than that 
using the smaller term distance. In addition, we observe from 
Table 5-3 that using our term pair indexes can also help to save 
the number of full evaluations on TP scores (i.e., the value of ) 
due to the reasons discussed in Section 4. The similar 
experimental results can also be achieved from the ClueWeb09 
data sets and are not shown here. 

 
Table 5-3. The number of evaluated documents during query 

processing on the GOV data set 

Document 
Numbers 

W/O Term 
Pair Indexes  

W/ Term Pair Indexes 
m = 1 m = 2 m = 3 

 
STD 4,452,906 3,653,919 1,555,227 1,306,699
HL 3,217,435 1,128,684 583,827 211,216
STR 770,742 477,671 459,844 461,674
STD 0 109,902 114,919 123,185
HL 0 109,902 114,919 123,185
STR 0 109,902 114,919 123,185

 
STD 5,281 3,890 3,917 4,008
HL 4,971 3,865 3,956 3,630
STR 3,242 400 137 93

 

Table 5-4. Query processing time on ClueWeb09 (STR 
indexes), for the various values of  /  and a fixed 0.2 

/  W/O Term 
Pair Indexes  

W/ Term Pair Indexes 
m= 1 m= 2 m = 3 

0 145 137 129 125 
0.25 147 118 109 106 
0.5 147 116 105 101 
1 147 109 100 92 
2 144 100 87 85 
4 141 94 85 80 

 

We now show the experimental results for the impacts on the 
query efficiency of using various parameter values in our ranking 
functions. Recall that in the basic form of our ranking function 
(formula (2.1)), there are three parameters ,  , and , specifying 
the weights of the SR, IR and TP scores respectively. The higher 
weight for a certain kind of score implies the kind of scores may 
have a greater impact on the overall document score than other 
kinds of scores. We note that the SR score is independent of the 
terms, while both the IR and TP scores depend on the terms and 
are often correlated with each other (we also find such correlation 
between them through our experiments). Therefore, we slightly 
changed the formula (2.1) such that , where z is 
parameter achieved from our experiments and still 
1. We are going to show the experimental results in terms of 
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either various values of  or various values of the rate  /  . First, 
we compare in Table 5-4 the query processing time (ms/query) on 
the ClueWeb09 data set (with the STR indexes), using our 
methods and the methods without the term pair indexes (w/o TPI), 
in terms of different values of /  and a fixed value of 0.2.  

From Table 5-4, we can achieve the following observations: First, 
our methods with term pair indexes can consistently achieve much 
faster query processing than the methods without them for various 
values for the weights of TP scores (we can also achieve such an 
observation in Table 5-5 that will be explained soon). Second, our 
methods using a larger distance can achieve better performance 
with the increasing of the weights of TP scores. Similar 
observations can also be achieved from the experimental results 
on the GOV data set and are not shown here. 

Table 5-5 . Query processing time on the ClueWeb09 data set 
(STR indexes), for the various values of  /   

/   W/O Term 
Pair Indexes  

W/ Term Pair Indexes 
m= 1 m= 2 m = 3 

0.25 154 100 90 85 
0.5 155 108 98 91 
1 147 109 100 92 
2 148 112 102 98 
4 144 110 105 99 

 

We also compare in Table 5-5 the query processing time on the 
ClueWeb09 data set (with the STR indexes) in terms of different 
rates of the weight for the TAU (title, anchor and URL) fields and 
that for the body field (i.e. / ). From Table 5-5, we can 
see that when the TAU fields dominate the overall scores, we can 
achieve faster early termination since the indexes for the TAU 
fields are always evaluated earlier than those for the body field. 

Table 5-6. The index size of the term pair indexes that are 
only associated with the trec2009mq query set on the 

ClueWeb09 data set, and the total Index size per machine  

Index Type 
Index-size for 
trec2009mq 

Total Index-size Per 
machine 

m=1 m<=2 m<=3 m=1 m<=2 m<=3 
Normal Indexes 

(STD, HL, or STR) 18.2 GB 60.0 GB 

Term-
Pair 

Index 

W/O 
Optimization 

2.27 
GB 

3.25 
GB 

3.93 
GB 

> 0.5 
TB 

> 1.0
TB 

> 1.5
TB 

With 
Optimization 

0.41 
GB 

0.50 
GB 

0.57 
GB 

41.8 
GB 

75.1
GB 

104 
GB 

 
We compare the index size of normal indexes and our term pair 
indexes for the ClueWeb09 data set in Table 5-6. We first show in 
the middle column the index size only for the queries in the 
trec2009mq query set. This is a rough measure of the amount of 
additional data per query that has to be transferred from the disk 
to the memory [32] when employing term-pair indexes. We then 
show the index size per machine for the whole ClueWeb09 data 
set. We show the index size for the term pair indexes with and 
without the optimization (the index reduction techniques) 
discussed in Subsection 4.4. From the table, we can see that, the 
size of the term pair indexes is greatly reduced using our methods.  

Finally we show in Table 5-7 both the index size (in GB) of the 
term pair indexes for the entire ClueWeb09 data set and the 
corresponding query processing time in ms/query. From Table 5-7, 

we can see that although the extra index size of the term pair 
indexes is fairly large, it can be reduced significantly by our index 
reduction techniques discussed in Section 4. Please note that the 
uncompressed term-index size is about 60GB per machine. 

We note that the index sizes in the above tables can be further 
reduced by applying better compression methods [32, 33]. In 
addition, if we also take into consideration of the caching 
techniques, large proportion of disk traffic can be avoided and 
therefore the overall good query efficiency can still be achieved. 

Table 5-7. The query processing time (ms) and index size (GB) 
per machine on the ClueWeb09 data set 

Term-Pair 
Index Type 

Term-Pair Distance 
1 1+2 1+2+3 

Full-Size 
(without reducing size) 

>500 GB 
100 ms

>1.0 TB 
90.0 ms

>1.5TB 
85.3 ms

Hits Reduction 76.7 GB 
100 ms

157 GB 
 90.0 ms

235 GB 
85.3 ms

Hits Reduction 
Freq-thresholds = (5, 50) 

53.2 GB 
99.7 ms

99.9 GB 
89.9 ms

143 GB 
85.6 ms

Hits Reduction 
Freq-thres. = (10, 100) 

50.4 GB 
99.6 ms

94.2 GB 
90.2 ms

134 GB 
86.4 ms

Hits Reduction 
Freq-thres. = (100, 1000) 

41.8 GB 
103.5 ms

75.1 GB 
100.2 ms

104 GB 
99.2 ms

Hits Reduction 
Freq-thres. = (1000, 10000)

31.2 GB 
123 ms

52.6 GB 
123 ms

70.6 GB 
123 ms

 

Index building time is another factor affecting the feasibility of 
the term-pair index. We observed in experiments that, although it 
takes huge amount of time to build the full-size term-pair index 
(i.e. the index without optimization or size reduction), the time 
cost of building the optimized term-pair indexes (m=3) is only 3 
times of the basic term index. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we have studied early termination techniques for the 
proximity-aware retrieval models on large-scale data sets. We 
proposed a new index which essentially offers the current search 
engines an additional component (term pair indexes) that can 
improve the query efficiency greatly without changing the original 
inverted indexes. Our experimental results show that our methods 
can significantly improve query efficiency especially for the 
proximity-aware retrieval models. 

There are still several interesting open problems. First, besides the 
simple method we mentioned in Subsection 4.3 to deal with 
multiple-term queries, we are currently studying other methods 
for such queries. There are two intuitive methods that might be 
used to extend our methods for the multiple-term queries: one is 
to directly build the additional multiple-term indexes instead of 
the pair indexes, while the other is to first decompose the 
multiple-term query into a set of two-term queries and then 
combine the results of those two-term queries.  However, there are 
lots of details to be taken care of for them. For example, the 
former method may increase the extra index size greatly while the 
second method may not be directly suitable to a proximity-aware 
retrieval system unless we allow random lookups within the 
resulting lists of all two-term queries. In addition, it is interesting 
to study how to integrate the more optimal index compression 
methods to decrease the index sizes, e.g., PForDelta [33] which 
has been shown to be efficient in both compression size and 
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decompression speed. It will also be interesting to see if we 
should reorganize the extended indexes themselves such that the 
early termination inside them is. Finally, we want to study the 
impacts on our methods of other factors, such as query features, 
caching policies and user feedbacks. 
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