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ABSTRACT
Implicit user feedback, including click-through and subsequent brows-
ing behavior, is crucial for evaluating and improving the quality of
results returned by search engines. Several recent studies[1, 2, 3,
13, 25] have used post-result browsing behavior including the sites
visited, the number of clicks, and the dwell time on site in order to
improve the ranking of search results. In this paper, we firststudy
user behavior on sponsored search results (i.e., the advertisements
displayed by search engines next to the organic results), and compare
this behavior to that of organic results. Second, to exploitpost-result
user behavior for better ranking of sponsored results, we focus on
identifying patterns in user behavior andpredict expected on-site ac-
tions in future instances. In particular, we show how post-result be-
havior depends on various properties of the queries, advertisement,
sites, and users, and build a classifier using properties such as these
to predict certain aspects of the user behavior. Additionally, we de-
velop a generative model to mimic trends in observed user activ-
ity using a mixture of pareto distributions. We conduct experiments
based on billions of real navigation trails collected by a major search
engine’s browser toolbar.

Categories and Subject Descriptors:H.4.m [Information Systems
Applications]: General

General Terms: Experimentation, Measurement

Keywords: implicit feedback, user behavior, sponsored search

1. INTRODUCTION
Recently, a great deal of effort in the research community has fo-

cused on improving user experience in web search through theincor-
poration of implicit user feedback [2, 13]. This feedback includes
click-through behavior, dwell times on sites visited from query re-
sults, and other navigational behavior by search engine users. In
general, implicit feedback provides valuable informationabout user
satisfaction on web search engines.

While most prior work on implicit feedback has centered on or-
ganic search, we focus here on user navigation behavior associated
with sponsored search. To our knowledge, this is the first work to
focus on user behavior within sponsored search advertisements –
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ads which are displayed by search engines next to conventional or-
ganic search results. Revenue from these sponsored resultsprovide
much of the economic foundation of modern web search engines.
However, sponsored search differs significantly from organic search
in several important ways: First, while organic search is focused on
satisfying users by addressing search queries, sponsored search has
to optimize for ad revenue while accounting for user satisfaction and
the constraints and objectives of advertisers. Second, theranking of
ads in sponsored search differs from that of organic search.Specif-
ically, sponsored search ranking relies heavily on features such as
predicted click-through rates and advertisement bid amounts, and
less on hyperlink and anchortext information, which are frequently
unavailable for short-lived ads. Third, click-through rates in spon-
sored search tend to be lower than for organic results, suggesting
users might interact differently with these results than with organic
results [8].

Our experiments rely on user browsing behavior collected from a
navigational toolbar plug-in issued by a major search engine, com-
prising several million users who opted to share their browsing data.
From this data, we use anonymized information about the queries
submitted to search engines, the organic and sponsored results clicked
on by users, and their subsequent behavior (including URLs and
associated dwell times) on the visited sites. Analysis of this data
leads to interesting observations. Perhaps the most compelling one
is that in expectation, the CTR of ads does not have a strong cor-
relation with what happens afterwards, in terms of click-activity or
time spent. One possibly explanation for this counter-intuitive re-
sult is the proliferation of deceptive textual ad-snippetsdesigned to
entice users to visit sites, resulting in a high CTR but failing to ef-
fectively engage users once they visit. This hypothesis suggests that
optimizing ad placement for high CTR does not necessarily imply
the best user experience as is often assumed in the sponsoredsearch
community.

Above findings motivate the incorporation of implicit feedback,
e.g., number of subsequent clicks on the site, and dwell time, into
the ranking of advertisements. While many techniques have been
proposed recently on how to best utilize implicit feedback in search
[1, 2, 3, 5, 18, 19, 23, 25], the effectiveness of such proposals is
often constrained by the limited availability of feedback data. For
small search engines which do not have toolbar-like products, it is
nearly impossible to gather a large amount of user behavioral infor-
mation. Even major search engines can gather only a fractionof
the data associated with a small subset of users. To address this is-
sue, we demonstrate how user visit behavior on result sites depends
on various properties of the queries, ads, sites, and users associated
with that visit. We then go on to use such properties to predict cer-
tain aspects of the user behavior. Formally, given a query, result, and
user, we are interested in modeling and predicting the post-result



user behavior, in terms of the number of additional clicks made and
the amount of time spent by users on the result. This prediction of
seemingly complex user behavior is made even more difficult when
one considers the proliferation of missing data that likelyresults in
such a real-world classification task. We develop a robust method for
predicting user behavior, which we evaluate thoroughly on different
scenarios of information availability.

Furthermore, we present a generative model based on mixtureof
pareto distributions to describe user behavior. There are a large num-
ber of variables influencing the navigation of a user on queryresults.
Different queries induce different probabilistic constraints on user
navigation based on that query’s intent. For instance, broad infor-
mational queries (e.g., camera shopping) require more browsing by
users relative to more focused queries (e.g., finding a specific publi-
cation). By accounting for the varieties of behavior present in user
activity, our model provides a better fit to observed data than the pre-
vious model in [14]. Overall, this paper makes the followingcontri-
butions:

• A thorough analysis of sponsored search behavior. To under-
stand the intricacies of sponsored search, we perform a high-
level comparison of user visit behavior resulting from spon-
sored and organic query results.

• We analyze the influence of various factors on user behavior
in sponsored search. Some of these observations are often
counter to prior assumptions made on how users value online
advertisments (e.g., high CTR implies better ads).

• We develop a novel generative model incorporating diverse
trends in users’ expected engagement and information need
associated with issued queries.

• To deal with the sparsity inherent with user navigational infor-
mation in sponsored search, we demonstrate experimentally
that user behavior can be predicted with sufficient accuracy
based on previously seen similar instances.

The rest of the paper is organized as follows. Section 2 discusses
relevant previous research. Section 3 describes our data and exper-
imental setup. Section 4 analyses user behavior on sites andcom-
pares behavior on organic and sponsored results. Section 5 explains
our generative model for user behavior, and Section 6 provides a
closer analysis of user behavior by controlling for severalimportant
factors. Our results on predicting of user behavior are presented in
Section 7, and Section 8 provides some concluding remarks.

2. BACKGROUND AND PRIOR WORK
Sponsored search:There has recently been a large amount of re-

search on sponsored search, i.e., how to best select ads to display
next to search results, which is an important part of the emerging
area ofComputational Advertising [9]. While click-through behav-
ior (and in particular CTR) is known to be an important factorin
ranking sponsored search ads, we are not aware of any detailed stud-
ies ofpost-click behavior, knowledge useful for both advertiser and
user satisfaction.

Using Implicit Feedback in Search:Several recent studies have
focused on how implicit measures can be utilized to improve Web
search [2, 13, 16, 22]. In [2] it was found that implicit feedback can
improve the accuracy of a competitive search ranking algorithm by
almost 31%. Various methods have been proposed for how to incor-
porate implicit measures into ranking. For instance, thereis work on
how to interpret click-through data accurately [15, 16], identify rel-
evant websites using past user activity [1, 3, 5, 24], and rank pages
based on user feedback [18, 19, 21]. Our work differs from theabove
in that we focus on sponsored search. Additionally, we not only an-
alyze implicit feedback, but detail a prediction mechanismfor fore-

casting user behavior in previously unseen scenarios. While [8] pro-
vides some notion of user behavior in the context of sponsored query
results, it is with the intention of expanding textual similarity, a task
sufficiently different from that tackled here.

Modeling User Behavior: Another line of work has focused on
modeling user behavior [4, 10, 14]. We show that while our data
conforms to a power law as in [14], the exponent of the distribution
best fitting our data is substantially different from that predicted in
prior work. While our study is based on search-induced behavior,
[14] studied trails created from more undirected browsing.The work
presented here adopts a novel pareto mixture-model based onquery
information need that is able to accurately fit observed userbehavior.

3. EXPERIMENTAL SETUP AND DATA
In the past several years, browser enhancing plug-ins have seen

wide-spread acceptance. These plug-ins are third party programs
which modify the browser software to provide additional function-
ality when navigating the web. One particularly popular type of
browser plug-in aresearch toolbars, which embed a search inter-
face into the web browser. These toolbars typically send back to
the engine various information about the user’s navigational behav-
ior, given the user’s consent, and this information is used by the en-
gines to constantly improve the quality of their search services, and
in some cases also to personalize the results for the particular user.

The data used in our experiment was collected between January
and July 2008, and represents a sample of users of a major search en-
gine’s search toolbar who opted into sharing their data. This sample
contains roughly4 million anonymous users, as identified by their
associated browser cookies, and billions of individual page requests.
Following the technique described by White and Drucker [25], we
segment user navigation into post-query trails, i.e., the sequence of
pages viewed as the direct consequence of following a query result.
When creating these post-query trails, we introduce an additional
criterion which terminates a trail upon navigation to a siteother
than that of the clicked query result as in [14]. Thus, we focus on
the query results themselves and the implicit feedback thatcan be
gleaned from user behavior on the corresponding sites only.

4. USER BEHAVIOR ON QUERY RESULTS
By monitoring the trails induced by post-result user navigation,

we are able to compile a detailed understanding of how users inter-
act with the sites that are offered to them. The focus of this section
is to present trends in user browsing and information seeking behav-
ior, and to offer some intuitive explanations of our findingswhen
possible.

Many attributes could be collected to provide a quantitative sum-
mary of user behavior on query results. Following prior workin
relevance feedback and user navigation, for each trail (originating
from a search result page) we focus on: (a) the number of clicks
the user makes on the trail (trail length), and (b) the total time spent
in the trail (trail duration). These two numbers provide a useful
synopsis of user navigation behavior. Additionally, to describe how
individual sites are navigated in aggregate, we use the Shannon en-
tropy describing the various trails that users take in the site (more
details in Section 4.2). Using these simple features, we canobtain
useful insights into the ways users interact with query results. While
we will consider both organic and sponsored search results,we are
particularly interested in the case of sponsored search results, which
has been studied much less by previous work.

In Sections 4.1 and 4.2, we present and discuss the observed dis-
tributions for trail length, trail duration, and entropy taken from the
accumulated organic and sponsored results. Section 4.3 studies the
interdependence between these observed variables.



4.1 Trail Analysis
After partitioning our data into query trails, we investigate the dis-

tributions of the number of clicks made in a trail after landing on a
query result (trail length), and the total time spent in the trail after
landing on the result (trail duration). Figure 1(a) presents the dis-
tribution of trail lengths; not surprisingly most trails are very short,
and in fact more than70% of trails involve no additional click after
the click-through on the search result. Excluding the initial click-
through, the average number of clicks per trail is0.39 for spon-
sored results and0.25 for organic results. Thus, while sponsored
results tend to have lower click-through rates than organicresults
(not shown here), once users clicks on sponsored results they are, on
average, more active.

Figure 1(b) displays the distribution of trail durations. While spon-
sored search results tend to lead to more time spent on results than
organic results –82s versus75s in expectation, we note that spon-
sored results are also much more likely to result in visits of< 20s

than organic results; i.e., users frequently click sponsored results and
then leave almost immediately. This may be an indicator of the occa-
sionally deceptive nature of the textual snippets designedby adver-
tisers to be presented to users for sponsored search results. Adver-
tisers realize that increased traffic to their site maximizes the num-
ber of potential customers and have developed expertise at engineer-
ing snippets to optimize click-through rate, possibly deceiving some
users into thinking the resulting site will suit their needs. (In con-
trast, snippets for organic results are created not by the site owner,
but automatically by the engine.)

We note that it is difficult to directly compare the expected be-
havior of users on organic and sponsored search results. Anygiven
cause for initiating a web search may result in clicks on organic re-
sults, while only a subset of these scenarios tend to find users pur-
suing sponsored results. Thus, a query “car insurance” has area-
sonable chance of a sponsored result being clicked, however, for a
query such as, e.g., “mean of beta distribution”, it is much less likely
that a sponsored result would be clicked or even offered. Consid-
ering that contrasting these data sets is difficult, we observe that the
overall trend seems to be of similar overall shape; it is likely that sim-
ilar processes underlie both organic and sponsored behavior, perhaps
with different parameters or initial conditions. In the following, we
focus primarily on the latter of these two, sponsored search, a subset
of user behavior largely overlooked by prior work on user behavior.

(a) Distribution of Clicks (b) Distribution of Time Spent
Figure 1: Distributions of User Activity On Result Pages

4.2 Entropy of trails
The number of clicks alone is a rather course-grained feature for

describing user behavior and engagement. Within any given site,
there are likely many trails of a given click-length along which a user
can navigate, with associated meanings for user and site owner. Five
clicks on a trail describing how to file a complaint can be interpreted
very differently than five clicks browsing and purchasing products on
a retail site. The infinite possibilities of the web makes a large scale
analysis of fine-grained user surfing behavior across many different
sites difficult. However, we still seek to understand in a broad sense
how users navigate on a query result site. One possible metric for

this is the Shannon entropyH of the navigational history on a site
S: H =

P

ρ∈{trailsS} −pρ log2 pρ. Hereρ denotes a navigational
trail in S, andpρ is the observed probability of a user taking that
trail. This roughly translates to the number of bits needed to describe
which trail a user has taken. Sites with a large entropy tend to see
a wide variety of trails taken by users, while those sites with a very
low H have most users take one of a few different trials, either by
choice or due to site structure.

For both ads and non-ad results, we collect all sites receiving at
least50 visits and calculate the entropy as above. Figure 2 presents
the distribution of relative site frequency of observed entropy values
for organic and sponsored results. We notice that sites resulting from
sponsored search results tend to have higher entropy than organic
result sites. This is especially significant since there is afar greater
number of organic observations, and entropy is dependent onthe
number of observations. Alternately, the longer expected trail length
of sponsored results may contribute to the difference in entropies.

From the observed difference in entropy, one could conjecture dif-
ferences in site function and associated query type (navigational, in-
formational, transactional) between sponsored and organic results.
For example, many advertisements are placed by large retailsites,
where users can browse for many different products related to their
interests. On the other hand, many organic sites are clickedin re-
sponse to a simple, direct question, where only a single click is
needed to satisfy the user.

Figure 2: Distribution of Entropy for On-Site Behavior

4.3 Relation Between Time and Clicks
The number of clicks made and the time spent on a trail are highly

correlated, as would be expected; it takes a certain amount of time
for users to make successive clicks. More interestingly, weobserve
that the probability of a user making an additional click in the trail
seems to be dependent on the time spent on the current page. Figure
3 shows the strong correspondence between the likelihood ofmaking
another click on the site (P(nextclick)) and the dwell time (t) on
the current page. We note that as the dwell timet increases, the
probability of making the next clickP(nextclick) also increases,
for both sponsored and organic results.

Figure 3: Probability of Another Click vs. Time Spent on Page

To study this further, we look at howP(nextclick |time ≥ y)
depends on the number of prior clicks made in the trail, i.e.,
P(nextclick |time ≥ y, totclick = x). In Figure 4, we plot the
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Figure 5: Distribution of Trail Lengths.
probability of a user making successive clicks conditionedon the
number of prior clicks as well as the time spent on the currentpage.
Note that the probability of making another click increaseswith both
the number of previous clicks on the site and the time spent onthe
current page. One possible explanation is that ofincreasing user
engagement, i.e., the probability of making additional clicks depends
on some measure of the user’s engagement with the site. Increased
on-site activity in the form of clicks or time spent may indicate a
greater chance of the user becoming engaged.

5. MODELING CLICK BEHAVIOR
Visits on query results constitute a diverse set of navigational trails.

We observe that the distribution or trail lengths closely resembles a
power law, i.e., the probability of observing a trail of length x, P(x),
is proportional tox−α whereα is thescaling exponent of the power
law. This observation is in accordance with the study by Huberman
et al. in [14]. In Figure 5 we plot the observed distribution on the
log-log scale. In this scale, it is evident that the distribution adheres
to a straight line (whose slope is roughly equal to3).

While both our study and [14] obtain a power law, we note that the
exponent of our power law differs significantly from the exponent of
1.5 that was observed and theoretically derived in [14]. Figure5
shows the power law with exponent1.5 along with the observed dis-
tribution. Also shown in the figure is the distribution predicted by
our model (discussed below), which provides a very good fit tothe
observed distribution.

Before delving into the details of our proposed model, we note
the reasons for which we believe our observed power law differs
from the one observed and predicted in [14]. First, the nature of
the web has changed dramatically since the study in [14]. Second,
our analysis focuses solely on trails originating from query result
pages, while Huberman et al. focus on trails obtained from gen-

eral browsing. Search-induced trails are likely to be shorter than
random-surfing trails for two reasons: (i) typically, searchers seek
specific information and when they find what they are looking for,
they quickly end their trails, moving on to the next task in hand,
while in [14], the assumption is that users continue browsing until
the benefit (enjoyment) of the pages encountered becomes less than
the “cost” of browsing, and (ii) in the case when users do not find
the desired information following a search result, it is likely they go
back to a different search result or reformulate the query tostart a
new trail.

5.1 Mixture of Power Laws
A cursory look at our data reveals that fitting one power law over

the surfing behavior aggregated over millions of queries is inade-
quate, as it greatly oversimplifies complex human behavior.Intu-
itively, different queries have different information needs, thereby
inducing very different types of click behavior. For instance, queries
related to shopping entail much more browsing on behalf of users
than queries on more focused tasks, e.g., finding a specific book or
publication. To account for this diversity, we now propose amixture
model of user behavior based on queries1.

Instead of one underlying power law, we assume that there is a
mixture of power law distributions generating user behavior. In par-
ticular, our model consists ofC clusters of queries. Each cluster,
c, has its own discrete power law distribution with unknown param-
eterαc. A particularc models a set of queries that have a certain
information need and possess a characteristic click behavior best fit
by αc. Under the discrete power law, a user makesx clicks fol-
lowing a search result with probabilityP(x|αc) = f(x, αc) where

f(x, αc) = x−αc

ζ(αc)
andζ(αc) =

P∞
x=1 x−αc . Large values ofαc

imply long user trails (e.g., broad queries requiring some amount of
browsing), while small values ofαc imply short trails (e.g., more fo-
cused queries). The prior probability of a cluster to contain a query
is πc, where

PC

c=1 πc = 1. We face the problem of estimating these
unknown parameters of our model, denoted byθ = {πc, αc}

C
c=1.

From the data we construct a vector for each queryq whereq(x)
denotes the number of trails of lengthx originated fromq. Given this
query vector, we can assign queryq to the above mentioned clusters.
We denote the probability that queryq belongs clusterc by γq,c.
Assuming that all visits to a query are drawn i.i.d. in accordance to
that query’s parameters, we can calculateγq,c as:

γq,c = P(c|θ) · P(q|αc)

= πc ·

∞
Y

x=1

f(x, αc)
q(x) = πc ·

∞
Y

x=1

ˆ x−αc

ζ(αc)

˜q(x)

Applying the law of total probability, we normalizeγq,c such that
PC

c=1 γq,c = 1. Thus, the log-likelihood of the entire query dataQ,
given unknownθ, is:
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To optimize log-likelihood over the unknown parameters (π’s, α’s),
we use the Expectation-Maximization (EM) algorithm [12]. In this
paradigm, we iteratively improve our estimates onπ andα, as shown
in Algorithm 1.
1The model can be generalized to accomodate the influence of users
and pages as well.



Algorithm 1 Exp. Maximization for Power Law Mixture Model

while convergence condition not metdo

E step:

γq,c =
πc ·

Q∞
x=1

ˆ

x−αc

ζ(αc)

˜q(x)

PC

i=1

`

πi ·
Q∞

x=1

ˆ

x−αi

ζ(αi)

˜q(x)´

M step:

πc =

P

q∈Q
γq,c

N

where:N is the total number of unique queries, andαc can
be estimated following the work of [11] as:

αc = 1 +

P

q∈Q

`

γq,c · q(x)
´

P

q∈Q

P∞
x=1

`

γq,c · q(x) · ln(2 · x)
´

end while
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Figure 6: Trail distributions of the 5 clusters derived by EM.

We ran the EM alogorithm withC = 5 clusters on2 million trails
from the sponsored search data set. Figure 6 shows the trail length
distribution associated with each cluster. (Each cluster contains at
least5% of the queries.) From the scaling exponents, it is evident
that these clusters differ significantly from each other. This validates
the hypothesis that different queries have different information intent
and lead to vastly different user behavior. (The overall fit of our
mixture model to the observed power law is shown in Figure 5.)

6. FACETED ANALYSIS OF BEHAVIORAL
TRENDS

In the previous sections, we showed general patterns of userbe-
havior in terms of number of clicks and time spent, and discussed
possible models for this behavior. Of course, query topic, query
intent, time of day, specialization, domain knowledge, theuser’s dis-
position, and countless other ingredients can contribute to how a user
behaves after clicking on a query result. While consideringeach of
these facets is impossible, in this section we perform a moredetailed
analysis by separately controlling for a few of the more interesting
of these factors. In particular, we look at click-through rate, query
topic, and several other properties of queries.

6.1 Click-Through Rate Vs. User Engagement
In the sponsored search community it is widely assumed that the

ads with the highest CTR are the “best” ads – the high proportion
of clicks has been interpreted as a testament to the site’s quality and
relevance to the user’s needs [20]. It is unknown, however, if an in-
creased click-through rate for a particular ad or site translates to more
on-site activity per visit. This is an important consideration for ad-
vertisers and search engines; the results that users tend toclick most

frequently may not actually be the most useful results to theuser, or
the result leading to the most on-site activity or even purchases.
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Figure 7: Expected On-Site Clicks Vs. Site Click-Through Rate

To investigate the presence of such a correlation, we compare the
CTR of sites with the expected trail length and duration of visits to
those sites, for sponsored and organic results. We compute the CTR
of a site by dividing the number of times the site was clicked by
the number of impressions for the site.2 Figure 7 shows the mean
trail lengths, depending on the site’s CTR3. As shown in Figure 7,
there is no obvious relation between the level of click-based activ-
ity and the CTR; web surfers do not seem to browse more on sites
with a higher CTR. This appears to be true for both sponsored and
organic results, with sponsored results resulting in slightly more ac-
tivity across the range of CTRs. Measurements of query duration as
influence by CTR appear very similar to Figure 7, showing verylittle
if any noticeable correlation between CTR and trail duration. This
is an interesting and somewhat unexpected result: While optimizing
result placement based on CTR may optimize the payments to the
search engine, from our data it seems that a higher CTR does not
always lead to more activity on the site per visit. This phenomenon
could possibly be explained by the proliferation of deceptive textual
ad-snippets designed to entice users to visit sites, resulting in a high
CTR but ineffective engagement of users once they visit.

6.2 Topical Influence On User Behavior
Previously, we have speculated that query topic likely influences

the behavior of users on the site visited from the result page. In
order to show the impact of query topic on site activity, we took the
entire set of query trails culminating from sponsored search results
and identified a query topic according to a proprietary, ad-centric
topical taxonomy, using a specialized classifier. Then, within each
topic, we calculated the average trail length and trail duration after
landing on the result site. The results are shown in Figure 8 presents
this comparison. (Note that each topic had a significant number of
instances, and that overall data is roughly balanced acrosstopics.)

As conjectured, the amount of activity does indeed vary across the
topics we have considered, both for trail length and duration. This
has possible implications for approaches that exploit userbehavior
to improve search results, in that one great care must be exercised
when making comparisons across topic boundaries.

Second, and perhaps more interestingly, increased click activity
in a topic is not necessarily associated with increased timespent.
Note that queries in theTravel category tend to lead to significant
on-site activity in terms of both number of clicks and time spent,
while for Finance we have fairly small trail lengths but very long
trail durations.
2While the clickability and thus CTR of an ad/site depends on many
factors, including position on the result page, here we lookat this
simple definition of CTR, leaving more detailed analysis forfuture
work.
3Here we present relative CTRs to preserve proprietary information.
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6.3 Influence of Other Query Factors
So far, we have considered the influence of CTR and query topic

on on-site activity. Next, we look at the impact of other factors,
that, in the past, have often been associated with user browsing ac-
tivity or page quality: (i) The ordering of the results clicked for the
query. (ii) The number of query terms. (iii) The navigational vs.
informational nature of the query. (iv) The PageRank of the clicked
search results [6]. (v) The overall frequency of the query inour data
set. These features were selected due to their intuitive influence on a
user’s browsing behavior or their use in prior work.

To demonstrate the impact that these facets may have on user
browsing, we segregate data into sets according to the valueof that
facet. In order to maximize the illustrative ability permissible by
such an arrangement, we partition data according to the boundaries
made by a decision tree attempting to predict onsite activity based
solely on the feature in question. After partitioning the data, we cal-
culate the trail length for each bin. Due to lack of space, we do not
prevent similar results for trail duration. The result of these experi-
ments can be seen in Figure 9. The y-axis is the average trail length
per bin (µ). Below we explain these features and associated obser-
vations in detail.
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Figure 9: Influence of External Factors on Trail Length

Ordering of Results Clicked for a Query: Examining Figure 9,

we notice that users tend to be more active on the first search result
visited during a multi-result query session. In other words, trails
originating from the first result that is clicked tend to be longer. This
might be due to a loss of patience as the session carries on, ordue
to the fact that users first click on higher ranked and thus possibly
better results. Additionally, sessions with many results clicked may
simply not have any good results, therefore the need for manyresults
to be visited. We note in this context that there is a known bias for
users to click on the first result on a search result page, evenif that
result is worse than a lower-ranked result on the page; it is possible
that this bias carries over to subsequent clicks on the site.

Number of Query Terms: Contrary to our initial assumptions,
the amount of on-site surfing decreases as the number of termsin
the query grows. Our expectation was that longer queries tend to
be more specific than their shorter counterparts thereby leading to
greater interest once a result had been chosen. There are several pos-
sible explanations. First, longer queries may lead more directly to
the page that the user really wants, making additional clicks unnec-
essary. Second, long queries are often difficult to answer for search
engines and may thus give worse results.

Navigational vs. Informational Nature of the Query: Broder
[7] proposed a taxonomy of query goals into three main categories:
navigational, informational, and transactional queries.We expect the
query goal would influence the manner in which users navigatethe
results presented to them. Rather than follow the detailed techniques
described in prior work (e.g., [17]) to automatically identify the cat-
egory of a query, we use the simpler idea (also described in [17]) that
clicks on navigational queries typically focus on one or only a few re-
sults (e.g., most clicks for the query “myspace” go to myspace.com),
while the other two categories of queries may see a variety ofresults
clicked by different users. Thus, we use the variance in the selected
results for a query as a proxy for how navigational a query maybe;
queries with low variance see one of a few results chosen in most
cases, and are therefore more likely to be navigational.

Looking at the result in Figure 9, we see that non-navigational
queries tend to lead to more click activity than navigational que-
ries. Non-navigational queries are often more exploratoryin nature;
a user may not know exactly what is wanted or may require some
orientation when searching for the correct information [23]. Non-
navigational results that are product-oriented may also lead to brows-
ing to facilitate comparison shopping: a user searching for“hard
drive” is likely to examine similar products before making afinal
decision.

Pagerank of Clicked Search Results: PageRank is an enormously
influential static ranking of page importance based on the hyperlink
structure of the web, and has occasionally been considered aproxy
for page quality [6]. To study the impact of Pagerank on site activ-
ity, we computed Pagerank values for a site-based web graph.As
we see, Pagerank seems to have fairly little impact on the surfing
behavior of users when visiting a site via query results. Figure 9
shows the weak correlation between PageRank and click-activity. In
fact, search results with the lowest values of PageRank seemto have
slightly more activity than results with moderate PageRank. Results
with low PageRank may be sufficiently specialized to preventthe
wide-spread attention necessary for a high PageRank, however, this
specialization may attract a lot of interest from users visiting that
site.

Query Frequency: On the other hand, query frequency seems to
have a substantial impact on the amount of on-site activity,with the
most frequent queries resulting in many more clicks than infrequent
queries. We conjecture that more common queries lead to better
results, which in turn result in more activity [1].



7. PREDICTING USER ENGAGEMENT
In the previous sections, we examined toolbar logs to study user

behavior, characterizing user behavior in terms of post-result click
activity, time spent, and entropy. Metrics such as these could be
leveraged to improve ranking of sponsored and organic results, as
illustrated in a rich set of prior work in IR [2, 5, 18, 19, 23].Fur-
thermore, our study revealed that these metrics may be even more
important given the fact that neither CTR nor PageRank provide a
strong signal for how users behave after a result is clicked.

However, a major hurdle in leveraging user behavior for ranking
is its limited availability. Given the vast size of the internet, the data
available to any one party is likely to cover only a small fraction of
the trail activity that takes place on the Web. To address this sparsity,
next we look at the problem of predicting user behavior: given a
user, query, and result, we want to predict the activity on the trail
originating from this result, conditioned on the fact that the result is
clicked4.

Predictions about on-site user activity are made using standard sta-
tistical tools, incorporating features extracted from past user brows-
ing behavior, the various query features from Section 6, anddata
about how users navigate on individual landing pages and their as-
sociated sites. We show that some measures of behavior can bepre-
dicted reliably when all three entities involved in the given triplet
(i.e., user, query, result) have been previously seen in thetraining
data. Also, we show that the classification can be made robustto the
case where some of these entities are new, i.e., unseen in thetrain-
ing data. These results have two implications: While prediction on
known entities shows that user behavior tends to be consistent (i.e.,
past behavior predicts future behavior), prediction on newentities
demonstrates generalizability of the prediction task.

Since our emphasis is on understanding user engagement in terms
of the number of clicks and amount of time spent on-site, we now
demonstrate that we can predict with sufficient reliabilitywhether
or not a user will spend more than a certain amount (in our case,
60 seconds) on a result and whether that user will make one or two
additional clicks on that site. We believe the ability to predict these
simple metrics implies that more general forecasts can be made, a
task which we leave to future work. In the remainder of this section
we present the set of features used when making these predictions,
and discuss issues associated with their collection. We then present
our results for predicting user activity. Finally, in orderto simulate a
more realistic setting and to evaluate the influence of certain features,
we perform predictions with intentionally excluded feature sets.

7.1 Feature Extraction
The features in our experiments are divided into four entities:

User Features: Observations compiled on a specific user’s query
result and navigational behavior. Strict anonymity is ensured
throughout the course of our experiments.

Query Features: How clicked results are distributed, and how re-
sults tend to be browsed for particular queries5.

Site Features: Navigational features aggregated across all landing
pages associated with a particular site. Site-wide features are
much less sparse, and therefore more likely to be available,
in quantities needed to make valid statistical inferences,than
single-page features.

4Note that the probability of a result to get clicked is its CTRvalue.
CTR prediction has been studied before, and we focus on the orthog-
onal problem of predicting activity after the result is clicked.
5Future work could follow previous work in [5] and use individual
query terms (rather than complete queries) to alleviate sparseness in
the data.

Page Features:Features pertaining to individual landing pages. While
this set of features is potentially more revealing than site-wide
features, we are less likely to have enough information in the
logs for a particular landing page. The set of specific features
used in this set is identical to that for the Site Feature set,dif-
fering only in the granularity of aggregation.

The specific nature of each feature is described below. Some of these
features are accumulated for all four of the above entities,while oth-
ers are specific to one or two. This list of features is by no means
exhaustive, and additional features may lead to further gains in pre-
diction.

Click Probabilities: The probability of makingi ∈ [1, 5] clicks,
and the mean number of clicks made per visit. Used in all four
entities.

Distribution of Times: The amount of time spent on the page re-
sulting on theith click, i ∈ [1, 5]. Additionally, the mean
time spent per visit. Used in all four entities.

Navigational Shannon Entropy: The number of bits needed to en-
code the path chosen on a particular site or page. In addition
to computing path entropy values for all paths visited on a site,
we compute entropy for limited-depth user navigations, giving
some notion of how a site is shaped from the perspective of a
site’s visitors. These features are used in the Page and Site
Feature entities.

Query Intent: Rather than perform more advanced computation in
order to determine the desired type of action a user wishes to
perform, we compute the variance among clicked results for
a particular query, and the information entropy for describing
query results. The intuition behind this approach, as described
before, is that navigational queries will tend to focus on a sin-
gle result, while non-navigational queries will have more dif-
fuse results, and therefore greater variance and entropy. This
is a Query feature, of course.

User Activity: The number of queries issued by a user, the aver-
age number of clicks per query by this user, the probability
a clicked result will be an ad, and the expected position of a
user’s clicked results. These features are applicable onlyto the
User entity.

Activity on Queries: The frequency, click rate, ad click rate, and
mean position of the clicked result. Also the diversity of re-
sults clicked, that is

|urlsunique|

|freqquery |
.

Query Topic: The topic of a particular query, as determined by our
proprietary query taxonomy. Additionally, we look at the num-
ber of terms present in a particular query.

Click-Through Rate A simple estimation of click-through rate for
a particular url: The number of times a url is clicked divided
by the number of times a url is returned as a query result. This
is a page-specific feature.

7.2 Experimental Setup
Our data consists of more than 2 million instances, where each in-

stance consists of a triple < user, query, result URL > and theresult-
ing click trail on the site. Since many features listed aboverequire
aggregations over many instances (e.g., click probabilities), we need
to be careful during the feature extraction process to ensure that the
information from the test set is not “leaked” to the classifier. More
specifically, we perform the aggregation and agglomerationof fea-
tures as follows: our instances are partitioned into two equal sized
sets. One of these two sets is used to compile features which require



Feature Set Used Click AUC Time AUC

Top100k Ad 0.708 0.594

Random100k Ad 0.672 0.585

Top100k Non-Ad 0.704 0.598

Random100k Non-Ad 0.613 0.560

Table 1: Predictive Performance on the Various Data Sets Used
for Ad and Non-Ad Data.

cross-instance aggregation. We call this set thetraining set and the
other set thetest set.

From the training set, a classifier is trained. While evaluating on
the test set, given a test instance we probe into our trainingset to
check whichever features are available for the entities involved in
the test instance. For instance, if the user involved in the test in-
stance is entirely new, then we may not get any user-centric features
for him/her from our training set. The same is not true for que-
ries though, since features like query topic or query intentcan be
extracted even if the query is new. The classifer then takes these fea-
tures to predict user behavior on the test instance. This evaluation
process ensures that no information from the test set is disclosed to
the classifier.

While it is impossible to make meaningful predictions in a com-
plete absence of features, we show that even a few features are suffi-
cient to provide reasonable classifier performance. In order to eval-
uate the predictive response to missing features, two data sets are
compiled for both organic and sponsored search results. (Both data
sets consist of training and test data, in order to ensure fair evalua-
tions, as described above).

• RandomSet: This dataset consists of100, 000 instances sam-
pled at random, restricted to ensure that at leastsome features
are present. This random sampling leads to a feature distribu-
tion which should reflect performance of our classifier in the
wild.

• TopSet: This is a filtered dataset to ensure that feature density
is high and that all sets of features are represented. For each
of the four entities (user, query, site and page) listed before,
a subset of the data is extracted, consisting only of instances
where the associated feature is present; instances where an
entity’s associated feature is missing are filtered out. Foreach
of these four sets, the25, 000 instances containing the most
number of features are selected; these are best-case samples
in which the presence of certain features is ensured. Finally,
these four sub-sets are combined to make100, 000 optimistic
instances. This data is used to give something of a best-case
evaluation of our classifier. Since the presence of all features is
ensured, we can use this data set to estimate the discriminative
ability of each feature entity.

All classification tasks in this section were performed using cost-
sensitive two-class logistic regression with ridge regularization. The
vector, wT is optimized using Newton’s Method. Parameters and
weights used for each classification sub-problem were hand tuned
by compiling a large parameter set, performing model training and
test evaluation on each parameter. The configuration offering the
best test performance is retained. To account for imbalances in the
size of positive to negative instances in each of our experiments, we
use the area under the receiver operating characteristic curve (AUC)
as our metric for evaluating predictive ability.

7.3 Results
Initial Results: Classifier performance on each of these data sets

is presented in Table 1. The first experiment we evaluate is the bi-
nary classification task deciding whether or not a user will make one
additional click (column titled “Click AUC”), or if a user will spend

at least one minute (“Time AUC” column), on a particular result site
given that the result was clicked. Both data sets are used to show how
well we can do with the Top100k data set as well as a more natural
setting of the Random100k data. We conduct these experiments on
both organic and sponsored search data.

From Table 1, we see that in both the ad and non-ad cases, the Top
100k data set offers an improvement in classification performance
over the Random100k data set. This result is unsurprising since the
former data set consists of instances where the most information is
available, while the latter follows the natural, often sparse distribu-
tion of feature availability. We note that while Random100k offers
degraded classification performance, we believe the results are still
acceptable. With more optimized feature extraction user behavior
can be conjectured with sufficient reliability in the wild.

Of interest is the improved predictive ability on the ad dataset
in comparison to the non-ad data. This is surprising, since our data
set contained more non-ad data, by an order of magnitude, implying
denser feature availability. We believe this can be attributed to dif-
ferent user expectations when clicking on ads as opposed to non-ads:
There are many reasons why a user may click on an organic result
presented by a search engine, but only a small subset of thesetend
to lead to clicks on sponsored search results.

Predicting Two Clicks: While predicting a single click on a query
result is a challenging task, we seek to discover whether further ac-
tivity can be forecasted. As a simple test, we take query results from
the ad and non-ad Top100k data sets, and predict if a user will go
to make two clicks on a particular result. Table 2 presents the results
of this experiment. We see that performance is comparable tothat
achieved in predicting a single click. This may indicate that most
of the uncertainty involved in predicting user behavior occurs at the
first step. For future work, we would like to perform a much more
detailed prediction of user activity.

Data Set Used AUC

Ad Top100k 0.69

Non-Ad Top100k 0.697

Table 2: Accuracy in Predicting Two Clicks

Ablative Feature Experiments: Missing some features is com-
mon in our data. In order to understand the reduction in classifier
performance from missing a particular feature set, we evaluate the
performance of our classifier in the presence of allbut a given en-
tity of features. This ablative feature classification is performed by
removing certain features from the training and test data, and using
logistic regression as before. Top100k data sets are used to ensure
that the feature removed was present in sufficient numbers inthe ini-
tial data set, and while only results from our sponsored search data
set are used due to space constraints, the results are similar for non-
ad data. The results of this study are presented in Table 3.

Feature Set Removed Click AUC Time AUC

None 0.708 0.594

User Features 0.708 0.594

Query Features 0.708 0.59

Site Features 0.671 0.572

URL Features 0.667 0.586

User & Query 0.708 0.59

Site & URL 0.594 0.546

Table 3: Accuracy Results In an Ablative Feature Comparison
for Ads on the Top 100k Set

Single Feature Experiments:Table 3 reveals the dependency of
our classifier on site and URL specific information; missing either
of these feature sets severely restricts the ability of our classifier,
while user and query can be removed with little consequence on the



output. At this point, it is unclear if users or queries are really use-
less in determining on-site behavior, or if this information is largely
subsumed once site and URL information is known. We conduct a
single feature classification experiment on our ad Top100k data in
order to understand exactly how much information related toeach
feature set helps in prediction. This is done by filtering allbut a par-
ticular feature entity, then classifying as above; the results are shown
in Table 4:

Feature Set Used Click AUC Time AUC

User Features 0.503 0.505

Query Features 0.594 0.546

Site Features 0.659 0.573

URL Features 0.644 0.564

All Features 0.708 0.594

Table 4: Accuracy Results Using Individual Feature Sets forAds
on the Top100k Set

From Table 4, we see that user features provide very little informa-
tion as to user navigation behavior in our model. This has theupside
that data can be collected in a way that maximizes privacy. Queries
prove to be a better discriminator then users by a wide margin; how-
ever, the performance is still significantly below that achieved when
all features are present. This could be because result quality often
varies significantly for a particular query, or that query synonymy
or ambiguity confounds predictions based on query featuresalone.
Site and URL features seem to offer the most classification informa-
tion – some sites or pages are predictably more prone to elicit clicks
or browsing time from users. It is interesting to note that site fea-
tures tend to outperform URL features, even though a URL provides
information on a finer resolution then a site alone as one sitecan
contain many URLs. One possible explanation is that there exists
much more site information in our data set, enabling better feature
estimates. Regardless of the cause, this observation is promising
since site level information is the most frequently available data in
our logs.

8. CONCLUSION
In this paper, we have performed the first detailed study of post-

click through user behavior on sponsored results, and compared it
to the case of organic search. We also presented a generativemodel
based on a mixture of power laws, and showed how to predict user
behavior on result sites using a set of user, query, site, andpage
features.

Overall, our results show that user behavior in sponsored search
has a number of similarities, but also some differences fromthat
in organic search. This observation is interesting since sponsored
search results originate from a distinct and specialized mechanism,
ruled more by bid prices than relevance to users, who only indirectly
affected ad selection via click-through rate. However, it is becoming
increasingly clear that to be successful, a sponsored search platform
has to balance the interests of advertisers, searchers, andsearch en-
gines, and this requires use of a richer set of features including those
gleaned through implicit feedback.

Our work here takes a first step towards using such features in
sponsored search, but leaves open a number of questions. First,

prediction results could be improved greatly by using more sophis-
ticated methods and by incorporating additional features,some of
which such as the position of the clicked ad among sponsored results
were not available at the time of this study. It would also be interest-
ing to relate post click-through behavior to actual convergence (e.g.,
a purchase, or as defined by the advertiser), and to explore the long-
term changes in user behavior due to engagement with ad sites(e.g.,
do people return to a site after engaging in more clicks on a previous
visit).
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