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ABSTRACT ads which are displayed by search engines next to convahtion

ganic search results. Revenue from these sponsored rpsnltde
much of the economic foundation of modern web search engines
However, sponsored search differs significantly from oigaaarch
in several important ways: First, while organic search @uf®d on
satisfying users by addressing search queries, sponseaechshas
to optimize for ad revenue while accounting for user satisfa and
the constraints and objectives of advertisers. Secondatiiéng of
ads in sponsored search differs from that of organic se@phcif-
ically, sponsored search ranking relies heavily on featsieh as
predicted click-through rates and advertisement bid arsouand
less on hyperlink and anchortext information, which arejdiently
unavailable for short-lived ads. Third, click-throughesin spon-
sored search tend to be lower than for organic results, stigge
users might interact differently with these results thathweirganic
results [8].

Implicit user feedback, including click-through and suipsent brows-
ing behavior, is crucial for evaluating and improving thelify of
results returned by search engines. Several recent stdi@s 3,
13, 25] have used post-result browsing behavior includimgsites
visited, the number of clicks, and the dwell time on site idesrto
improve the ranking of search results. In this paper, we Sinsty
user behavior on sponsored search results (i.e., the @dbragnts
displayed by search engines next to the organic resultd);@mpare
this behavior to that of organic results. Second, to explost-result
user behavior for better ranking of sponsored results, was®n
identifying patterns in user behavior apddict expected on-site ac-
tions in future instances. In particular, we show how pestitt be-
havior depends on various properties of the queries, ddearent,
sites, and users, and build a classifier using propertids asithese
to predict certain aspects of the user behavior. Additignele de- . . .
velop a generative model to mimic trends in observed usév-act Our experiments rely on user browsing behavior collectethfa

ity using a mixture of pareto distributions. We conduct ekpents nav!gatlonal t(l)oll?l?r plug-in |s?]ued by da makjlor seharp hbfmg:pm-
based on billions of real navigation trails collected by gansearch prising several million users w o_opte_ tos ar_et eir brag "?“a-
engine's browser toolbar. From this data, we use anonymized information about theiegier

i i ) . submitted to search engines, the organic and sponsordtsrelsked
Cate.gor!es and Subject DescriptorsH.4.m [Information Systems by users, and their subsequent behavior (including URidcs a
Applications]: General associated dwell times) on the visited sites. Analysis &f tiata
General Terms: Experimentation, Measurement leads to interesting observations. Perhaps the most congpehe
Keywords: implicit feedback, user behavior, sponsored search IS that in expectation, the CTR of ads does not have a strong co

relation with what happens afterwards, in terms of clickvity or
1. INTRODUCTION time spent. One possibly explanation for this countertiiviel re-
sult is the proliferation of deceptive textual ad-snippdsigned to
entice users to visit sites, resulting in a high CTR but figjlio ef-
fectively engage users once they visit. This hypothesigestg that
optimizing ad placement for high CTR does not necessarijylym
the best user experience as is often assumed in the sporssaneth
community.

Recently, a great deal of effort in the research communigyfoa
cused on improving user experience in web search throughtbe
poration of implicit user feedback [2, 13]. This feedbacklimes
click-through behavior, dwell times on sites visited fromegy re-
sults, and other navigational behavior by search enginesuse

general, implicit feedback provides valuable informatidiout user Above findings motivate the incorporation of implicit feetl,

satisfaction on web search engines. e.g., number of subsequent clicks on the site, and dwell, tinte

Wh'le moks]t prlofr workhon implicit feedpack ha; chent.ere.d 0N Of'the ranking of advertisements. While many techniques haes b
ganic search, we focus here on user navigation behaviociassd ,,,,qeq recently on how to best utilize implicit feedbatkéarch

with sponsored search. To our knowledge, this is the firskvior [1, 2, 3, 5, 18, 19, 23, 25], the effectiveness of such prdgosa
focus on user behavior within sponsored search advertiss®e o constrained by the limited availability of feedbacktal For

small search engines which do not have toolbar-like pragutis

nearly impossible to gather a large amount of user behdvita-
Permission to make digital or hard copies of all or part of twork for ~ Mation. Even major search engines can gather only a fracfion
personal or classroom use is granted without fee providatdbpies are  the data associated with a small subset of users. To addiieds-t
not made or distributed for profit or commercial advantaget that copies ~ sue, we demonstrate how user visit behavior on result sipsrdls
bear this notice and the full citation on the first page. Toyouiherwise, to  on various properties of the queries, ads, sites, and ussegiated
republish, to post on servers or to redistribute to listgyires prior specific  \yith that visit. We then go on to use such properties to pteztic

permission and/or a fee. . . .
KDD'09, June 28—July 1, 2009, Paris, France. tain aspects of the user behavior. Formally, given a quesylt, and
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user behavior, in terms of the number of additional clickslenand
the amount of time spent by users on the result. This predicif
seemingly complex user behavior is made even more diffichérw
one considers the proliferation of missing data that likelgults in
such a real-world classification task. We develop a robusgtaukfor
predicting user behavior, which we evaluate thoroughly ifflergnt
scenarios of information availability.

casting user behavior in previously unseen scenarios.&/[Blipro-
vides some notion of user behavior in the context of sposguery
results, it is with the intention of expanding textual sianity, a task
sufficiently different from that tackled here.

Modeling User Behavior: Another line of work has focused on
modeling user behavior [4, 10, 14]. We show that while ouadat
conforms to a power law as in [14], the exponent of the digtiin

Furthermore, we present a generative model based on miaturebest fitting our data is substantially different from thagtdticted in

pareto distributions to describe user behavior. There are a lange n
ber of variables influencing the navigation of a user on quesylts.
Different queries induce different probabilistic congita on user
navigation based on that query’s intent. For instance, dioor-
mational queries (e.g., camera shopping) require moreinguby
users relative to more focused queries (e.g., finding a Bpecibli-
cation). By accounting for the varieties of behavior preéseruser
activity, our model provides a better fit to observed data tha pre-
vious model in [14]. Overall, this paper makes the followaamntri-
butions:

prior work. While our study is based on search-induced biehav
[14] studied trails created from more undirected browsifige work
presented here adopts a novel pareto mixture-model basgdeon
information need that is able to accurately fit observed bgkavior.

3. EXPERIMENTAL SETUP AND DATA

In the past several years, browser enhancing plug-ins hesme s
wide-spread acceptance. These plug-ins are third partyrgms
which modify the browser software to provide additional dtion-
ality when navigating the web. One particularly popularetyqf

e A thorough analysis of sponsored search behavior. To unddprowser plug-in aresearch toolbars, which embed a search inter-
stand the intricacies of sponsored search, we perform a higfce into the web browser. These toolbars typically send bac
level comparison of user visit behavior resulting from sponthe engine various information about the user’s navigatibehav-

sored and organic query results.

ior, given the user’s consent, and this information is usgethb en-

We analyze the influence of various factors on user behavighines to constantly improve the quality of their search ises; and

in sponsored search. Some of these observations are oft@rS0me cases also to personalize the results for the particser.
counter to prior assumptions made on how users value online The data used in our experiment was collected between Januar

advertisments (e.g., high CTR implies better ads).

and July 2008, and represents a sample of users of a majohsar

We develop a novel generative model incorporating divers@in€’s search toolbar who opted into sharing their datas $ample

trends in users’ expected engagement and information ne§@ntains roughlyl million anonymous users, as identified by their

associated with issued queries.
To deal with the sparsity inherent with user navigation&diin

mation in sponsored search, we demonstrate experimentafty

that user behavior can be predicted with sufficient accura
based on previously seen similar instances.

The rest of the paper is organized as follows. Section 2 digsi
relevant previous research. Section 3 describes our ddtaxqer-

imental setup. Section 4 analyses user behavior on sitesand

pares behavior on organic and sponsored results. Sectiopld&ires

our generative model for user behavior, and Section 6 pesval
closer analysis of user behavior by controlling for severgdortant

factors. Our results on predicting of user behavior arequesl in

Section 7, and Section 8 provides some concluding remarks.

2. BACKGROUND AND PRIOR WORK

associated browser cookies, and billions of individualgoaagjuests.
Following the technique described by White and Drucker ,[2&8

gment user navigation into post-query trails, i.e., #guence of
ges viewed as the direct consequence of following a qesiitr
When creating these post-query trails, we introduce antiaddi

criterion which terminates a trail upon navigation to a sither

than that of the clicked query result as in [14]. Thus, we foon

the query results themselves and the implicit feedback dhatbe
gleaned from user behavior on the corresponding sites only.

4. USER BEHAVIOR ON QUERY RESULTS

By monitoring the trails induced by post-result user natiara
we are able to compile a detailed understanding of how us&es i
act with the sites that are offered to them. The focus of thigisn
is to present trends in user browsing and information segb@hav-
ior, and to offer some intuitive explanations of our findingken

Sponsored searchThere has recently been a large amount of repossible.

search on sponsored search, i.e., how to best select adsplaydi
next to search results, which is an important part of the gingr
area ofComputational Advertising [9]. While click-through behav-
ior (and in particular CTR) is known to be an important fadtor
ranking sponsored search ads, we are not aware of any desaile-

Many attributes could be collected to provide a quantieagum-
mary of user behavior on query results. Following prior wark
relevance feedback and user navigation, for each traigif@ting
from a search result page) we focus on: (a) the number ofsclick
the user makes on the traitdil length), and (b) the total time spent

ies of post-click behavior, knowledge useful for both advertiser andin the trail ¢rail duration). These two numbers provide a useful

user satisfaction.

synopsis of user navigation behavior. Additionally, toaése how

Using Implicit Feedback in Search: Several recent studies have individual sites are navigated in aggregate, we use therfimaan-

focused on how implicit measures can be utilized to improvebW
search [2, 13, 16, 22]. In [2] it was found that implicit feedk can
improve the accuracy of a competitive search ranking algariby

tropy describing the various trails that users take in tie (nore
details in Section 4.2). Using these simple features, weotdain
useful insights into the ways users interact with queryltssWhile

almost 31%. Various methods have been proposed for how ¢o-inc we will consider both organic and sponsored search resuitsgre

porate implicit measures into ranking. For instance, tigeveork on
how to interpret click-through data accurately [15, 16gntfy rel-
evant websites using past user activity [1, 3, 5, 24], an#l pages
based on user feedback [18, 19, 21]. Our work differs fronatimve
in that we focus on sponsored search. Additionally, we nbt an-
alyze implicit feedback, but detail a prediction mechanfemfore-

particularly interested in the case of sponsored searctitseg/hich
has been studied much less by previous work.

In Sections 4.1 and 4.2, we present and discuss the obsesred d
tributions for trail length, trail duration, and entropyéa from the
accumulated organic and sponsored results. Section 4lstthe
interdependence between these observed variables.



4.1 Trail Analysis

After partitioning our data into query trails, we investigahe dis-
tributions of the number of clicks made in a trail after larglon a
query result (trail length), and the total time spent in ttzél &fter
landing on the result (trail duration). Figure 1(a) presehie dis-
tribution of trail lengths; not surprisingly most trailseavery short,
and in fact more thafi0% of trails involve no additional click after
the click-through on the search result. Excluding the éhitlick-
through, the average number of clicks per trail0i89 for spon-

this is the Shannon entropy of the navigational history on a site
St H =37 raissy —Pologapp. Herep denotes a navigational
trail in S, andp, is the observed probability of a user taking that
trail. This roughly translates to the number of bits needetksscribe
which trail a user has taken. Sites with a large entropy terske
a wide variety of trails taken by users, while those site$aitvery
low H have most users take one of a few different trials, either by
choice or due to site structure.

For both ads and non-ad results, we collect all sites retgiat

sored results and.25 for organic results. Thus, while sponsored'eaSt5O visits and calculate the entropy as above. Figure 2 presents

results tend to have lower click-through rates than orgaesults
(not shown here), once users clicks on sponsored resujtaitheon
average, more active.

Figure 1(b) displays the distribution of trail durationshilé spon-
sored search results tend to lead to more time spent ongekah

the distribution of relative site frequency of observedepy values
for organic and sponsored results. We notice that site$tiregtrom
sponsored search results tend to have higher entropy tlgamior
result sites. This is especially significant since therefar greater
number of organic observations, and entropy is dependerthen

sored results are also much more likely to result in visitsco20s
than organic results; i.e., users frequently click spoedoesults and
then leave almost immediately. This may be an indicator@bitta-
sionally deceptive nature of the textual snippets desidnyeddver-
tisers to be presented to users for sponsored search readier-
tisers realize that increased traffic to their site maximitde num-
ber of potential customers and have developed expertiseyateser-
ing snippets to optimize click-through rate, possibly déog some
users into thinking the resulting site will suit their needfn con-
trast, snippets for organic results are created not by theosiner,
but automatically by the engine.)

We note that it is difficult to directly compare the expected b
havior of users on organic and sponsored search resultsgikeg
cause for initiating a web search may result in clicks on oigee-
sults, while only a subset of these scenarios tend to findsysar
suing sponsored results. Thus, a query “car insurance” hraa-a
sonable chance of a sponsored result being clicked, howerea
query such as, e.g., “mean of beta distribution”, it is mwedsllikely
that a sponsored result would be clicked or even offered. siden
ering that contrasting these data sets is difficult, we olestirat the
overall trend seems to be of similar overall shape; it idyikieat sim-
ilar processes underlie both organic and sponsored behpeihaps
with different parameters or initial conditions. In theléling, we
focus primarily on the latter of these two, sponsored seaslibset
of user behavior largely overlooked by prior work on userdyédr.
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Figure 1: Distributions of User Activity On Result Pages

4.2 Entropy of trails

The number of clicks alone is a rather course-grained fedtur
describing user behavior and engagement. Within any giiten s
there are likely many trails of a given click-length alongiefha user
can navigate, with associated meanings for user and siterowive
clicks on a trail describing how to file a complaint can beripteted
very differently than five clicks browsing and purchasinggbrcts on
a retail site. The infinite possibilities of the web makesrgéascale
analysis of fine-grained user surfing behavior across méfereint
sites difficult. However, we still seek to understand in aglokgense
how users navigate on a query result site. One possible afetri

o o5 1 10 12

of sponsored results may contribute to the difference iropigs.

From the observed difference in entropy, one could conjedif-
ferences in site function and associated query type (nawitg, in-
formational, transactional) between sponsored and argasults.
For example, many advertisements are placed by large sited,
where users can browse for many different products relateketir
interests. On the other hand, many organic sites are clickee-
sponse to a simple, direct question, where only a single dtic
needed to satisfy the user.
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Figure 2: Distribution of Entropy for On-Site Behavior

4.3 Relation Between Time and Clicks

The number of clicks made and the time spent on a trail ardyhigh
correlated, as would be expected; it takes a certain amduithe
for users to make successive clicks. More interestinglypbserve
that the probability of a user making an additional click e trail
seems to be dependent on the time spent on the current pagee Fi
3 shows the strong correspondence between the likelihoodkihg
another click on the siteP(nextclick)) and the dwell time#) on
the current page. We note that as the dwell titmiacreases, the
probability of making the next clicl(nextclick) also increases,
for both sponsored and organic results.

probability of clicking by time spent on page
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Figure 3: Probability of Another Click vs. Time Spent on Page

To study this further, we look at hoW(neztclick|time > y)
depends on the number of prior clicks made in the trail, i.e.,
P(nextclick|time > y,totclick = x). In Figure 4, we plot the
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Figure 4: Probability of Subsequent Clicks Depending on Num
ber of Previous Clicks and Time Spent on Current Page for
Sponsored Results
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Figure 5: Distribution of Trail Lengths.
probability of a user making successive clicks conditionadthe
number of prior clicks as well as the time spent on the cunpege.
Note that the probability of making another click increaséh both
the number of previous clicks on the site and the time sperthen
current page. One possible explanation is thainofeasing user

eral browsing. Search-induced trails are likely to be sotthan
random-surfing trails for two reasons: (i) typically, séas seek
specific information and when they find what they are lookiog f
they quickly end their trails, moving on to the next task iméa
while in [14], the assumption is that users continue brogaintil
the benefit (enjoyment) of the pages encountered beconethtas
the “cost” of browsing, and (i) in the case when users do nut fi
the desired information following a search result, it i®likthey go
back to a different search result or reformulate the querstao a
new trail.

5.1 Mixture of Power Laws

A cursory look at our data reveals that fitting one power la@rov
the surfing behavior aggregated over millions of querieqéslé-
quate, as it greatly oversimplifies complex human behaviotu-
itively, different queries have different information wise thereby
inducing very different types of click behavior. For instanqueries
related to shopping entail much more browsing on behalf efas
than queries on more focused tasks, e.g., finding a specifik ®o
publication. To account for this diversity, we now proposaigture
model of user behavior based on quefies

Instead of one underlying power law, we assume that there is a

mixture of power law distributions generating user behavio par-
ticular, our model consists af clusters of queries. Each cluster,
¢, has its own discrete power law distribution with unknowmngpa-
etera.. A particularc models a set of queries that have a certain
information need and possess a characteristic click behaeist fit
by a.. Under the discrete power law, a user makeslicks fol-
lowing a search result with probabili(z|a.) = f(z, ac) where
fla,ac) = £ and((a.) = Y27, @~ *°. Large values ofv.
imply long user trails (e.g., broad queries requiring someant of
browsing), while small values ef. imply short trails (e.g., more fo-
cused queries). The prior probability of a cluster to cantaguery

is 7, where>" | 7. = 1. We face the problem of estimating these
unknown parameters of our model, denoteddby {m., ac}le.

engagement, i.e., the probability of making additional clicks depends From the data we construct a vector for each quenhereq(x)
on some measure of the user’s engagement with the site.aseate denotes the number of trails of lengttoriginated fromy. Given this

on-site activity in the form of clicks or time spent may ingie a
greater chance of the user becoming engaged.

5. MODELING CLICK BEHAVIOR

Visits on query results constitute a diverse set of navogti trails.
We observe that the distribution or trail lengths closekerables a
power law, i.e., the probability of observing a trail of l¢hg:, P(z),
is proportional tar ~* where« is thescaling exponent of the power
law. This observation is in accordance with the study by Hiorlae
et al. in [14]. In Figure 5 we plot the observed distributiam the
log-log scale. In this scale, it is evident that the disttidw adheres
to a straight line (whose slope is roughly equab}o

While both our study and [14] obtain a power law, we note that t

exponent of our power law differs significantly from the erpat of

1.5 that was observed and theoretically derived in [14]. Figbre
shows the power law with exponeht along with the observed dis-

tribution. Also shown in the figure is the distribution preid by
our model (discussed below), which provides a very good fibéo
observed distribution.

Before delving into the details of our proposed model, wesnot
the reasons for which we believe our observed power lawrdiffe

from the one observed and predicted in [14]. First, the matir
the web has changed dramatically since the study in [14]oi8Ec
our analysis focuses solely on trails originating from guesult

query vector, we can assign querio the above mentioned clusters.
We denote the probability that querybelongs cluster: by vq,.
Assuming that all visits to a query are drawn i.i.d. in acemce to
that query’s parameters, we can calcukaje as:

Yae = P(c0) - P(qlac)
- . oo a(z) . s Lac q(z)
= 7 L[lf(amocc) T xl;[l [C(O‘c)]

Applying the law of total probability, we normalizg, . such that
chzl 74, = 1. Thus, the log-likelihood of the entire query d&ja
given unknowry, is:

C
mEQO) = 3 in(Bal) =3 (> (- Blglac))

q€Q q€Q c=1
C oo — e -
o (S )
qeqQ c=1 =1

To optimize log-likelihood over the unknown parameters(a’s),
we use the Expectation-Maximization (EM) algorithm [12j. this
paradigm, we iteratively improve our estimatesmoandc, as shown
in Algorithm 1.

1The model can be generalized to accomodate the influencers us

pages, while Huberman et al. focus on trails obtained from- ge and pages as well.



Algorithm 1 Exp. Maximization for Power Law Mixture Model

while convergence condition not meo

E step:
~ _ Te H;Ozl [z(;ij } o
e [e’s} x i (=)
'L'Czl (71'2‘ ’ r=1 I:C(QT):Iq )
M step:
e = quj\Q] Ya,c

where: N is the total number of unique queries, andcan
be estimated following the work of [11] as:

quQ (’Yq,c : Q(I))
Yo omsy (Yae - q(x) - In(2 - )

ac=1+
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Figure 6: Trail distributions of the 5 clusters derived by EM.
We ran the EM alogorithm witd' = 5 clusters or2 million trails

from the sponsored search data set. Figure 6 shows theenai
distribution associated with each cluster. (Each clustertains at

frequently may not actually be the most useful results taes, or
the result leading to the most on-site activity or even pasels.

—ad
no ad

o 1 2 5 6 7

3 4
relative CTR

Figure 7: Expected On-Site Clicks Vs. Site Click-Through Rée

To investigate the presence of such a correlation, we caathar
CTR of sites with the expected trail length and duration sftgito
those sites, for sponsored and organic results. We comipeit€ TR
of a site by dividing the number of times the site was clickgd b
the number of impressions for the sfteFigure 7 shows the mean
trail lengths, depending on the site’s CTRs shown in Figure 7,
there is no obvious relation between the level of click-basetiv-
ity and the CTR; web surfers do not seem to browse more on sites
with a higher CTR. This appears to be true for both sponsoned a
organic results, with sponsored results resulting in slygmore ac-
tivity across the range of CTRs. Measurements of query idurais
influence by CTR appear very similar to Figure 7, showing Vit
if any noticeable correlation between CTR and trail duratidhis
is an interesting and somewhat unexpected result: Whilengphg
result placement based on CTR may optimize the paymentseto th
search engine, from our data it seems that a higher CTR ddes no
always lead to more activity on the site per visit. This plraeoon
could possibly be explained by the proliferation of deceptextual
ad-snippets designed to entice users to visit sites, neguitt a high
CTR but ineffective engagement of users once they visit.

least5% of the queries.) From the scaling exponents, it is eviden§ .2 Topical Influence On User Behavior

that these clusters differ significantly from each otheisMalidates
the hypothesis that different queries have different imi@tion intent
and lead to vastly different user behavior. (The overall fibor

mixture model to the observed power law is shown in Figure 5.)

6. FACETED ANALYSIS OF BEHAVIORAL
TRENDS

In the previous sections, we showed general patterns ofthgser
havior in terms of number of clicks and time spent, and diseds

possible models for this behavior. Of course, query topigryg
intent, time of day, specialization, domain knowledge,uber’s dis-
position, and countless other ingredients can contrilmitew a user
behaves after clicking on a query result. While considegagh of
these facets is impossible, in this section we perform a metailed
analysis by separately controlling for a few of the morerieséng
of these factors. In particular, we look at click-througkeraquery
topic, and several other properties of queries.

Previously, we have speculated that query topic likely erilces
the behavior of users on the site visited from the result page
order to show the impact of query topic on site activity, wekithe
entire set of query trails culminating from sponsored deaesults
and identified a query topic according to a proprietary, eatgc
topical taxonomy, using a specialized classifier. Thenhiwieach
topic, we calculated the average trail length and trail tionaafter
landing on the result site. The results are shown in Figune8ents
this comparison. (Note that each topic had a significant raurob
instances, and that overall data is roughly balanced atop&s.)

As conjectured, the amount of activity does indeed varyssctioe
topics we have considered, both for trail length and dumatithis
has possible implications for approaches that exploit be@avior
to improve search results, in that one great care must beisadr
when making comparisons across topic boundaries.

Second, and perhaps more interestingly, increased clitbkitgic
in a topic is not necessarily associated with increased speat.
Note that queries in th@&ravel category tend to lead to significant

6.1 Click-Through Rate Vs. User Engagement on-site activity in terms of both number of clicks and timesp
In the sponsored search community it is widely assumed lieat t While for Finance we have fairly small trail lengths but very long

ads with the highest CTR are the “best” ads — the high proporti

of clicks has been interpreted as a testament to the sitalgyjand
relevance to the user’s needs [20]. It is unknown, howet:an in-
creased click-through rate for a particular ad or site {edias to more

on-site activity per visit. This is an important considevatfor ad-
vertisers and search engines; the results that users tetidkonost

trail durations.

2While the clickability and thus CTR of an ad/site depends @myn
factors, including position on the result page, here we labkhis
simple definition of CTR, leaving more detailed analysisfidure
work.

3Here we present relative CTRS to preserve proprietaryimiion.
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Figure 8: Distribution of Trail Lengths and Trail Durations Ac-
cording to Query Topic

6.3 Influence of Other Query Factors

we notice that users tend to be more active on the first seasthir
visited during a multi-result query session. In other worlails
originating from the first result that is clicked tend to bader. This
might be due to a loss of patience as the session carries alueor
to the fact that users first click on higher ranked and thusipbs
better results. Additionally, sessions with many resuitked may
simply not have any good results, therefore the need for mesuts
to be visited. We note in this context that there is a knowrs &
users to click on the first result on a search result page, iéveat
result is worse than a lower-ranked result on the page; ib$siple
that this bias carries over to subsequent clicks on the site.

Number of Query Terms: Contrary to our initial assumptions,
the amount of on-site surfing decreases as the number of tarms
the query grows. Our expectation was that longer queried tien
be more specific than their shorter counterparts therelgingao
greater interest once a result had been chosen. There aralgsos-
sible explanations. First, longer queries may lead morectliy to
the page that the user really wants, making additional sligknec-
essary. Second, long queries are often difficult to answesdarch
engines and may thus give worse results.

So far, we have considered the influence of CTR and query topic Navigational vs. Informational Nature of the Query: Broder

on on-site activity. Next, we look at the impact of other tast
that, in the past, have often been associated with user brgwas-
tivity or page quality: (i) The ordering of the results clekfor the
query. (ii) The number of query terms. (iii) The navigatibna.
informational nature of the query. (iv) The PageRank of tlieked
search results [6]. (v) The overall frequency of the quergundata
set. These features were selected due to their intuitiveenéle on a
user’s browsing behavior or their use in prior work.

[7] proposed a taxonomy of query goals into three main catego
navigational, informational, and transactional queri#fs.expect the
query goal would influence the manner in which users navitete
results presented to them. Rather than follow the detadlelstiques
described in prior work (e.g., [17]) to automatically idiénthe cat-
egory of a query, we use the simpler idea (also describedii {iat
clicks on navigational queries typically focus on one oyanfew re-
sults (e.g., most clicks for the query “myspace” go to myspeam),

To demonstrate the impact that these facets may have on usgfile the other two categories of queries may see a varietgsafits

browsing, we segregate data into sets according to the wdltmat
facet. In order to maximize the illustrative ability persitde by
such an arrangement, we partition data according to thedzoias
made by a decision tree attempting to predict onsite agthéised
solely on the feature in question. After partitioning théadave cal-
culate the trail length for each bin. Due to lack of space, waaot
prevent similar results for trail duration. The result oésle experi-
ments can be seen in Figure 9. The y-axis is the averageenajth

clicked by different users. Thus, we use the variance in ¢hected
results for a query as a proxy for how navigational a query bey
queries with low variance see one of a few results chosen st mo
cases, and are therefore more likely to be navigational.

Looking at the result in Figure 9, we see that non-navigation
queries tend to lead to more click activity than navigatiomae-
ries. Non-navigational queries are often more exploraitornature;

a user may not know exactly what is wanted or may require some

per bin (z). Below we explain these features and associated obsejrientation when searching for the correct information ][28on-

vations in detail.
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Figure 9: Influence of External Factors on Trail Length
Ordering of Results Clicked for a Query: Examining Figure 9,
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navigational results that are product-oriented may asd ie brows-
ing to facilitate comparison shopping: a user searching'fiard
drive” is likely to examine similar products before makindimal
decision.

Pagerank of Clicked Search ResultsPageRank is an enormously
influential static ranking of page importance based on thEeHink
structure of the web, and has occasionally been considepeadxs
for page quality [6]. To study the impact of Pagerank on sitiva
ity, we computed Pagerank values for a site-based web graph.
we see, Pagerank seems to have fairly little impact on thiéngur
behavior of users when visiting a site via query results. ufedgd
shows the weak correlation between PageRank and clickitsictin
fact, search results with the lowest values of PageRank sebave
slightly more activity than results with moderate PageR&wsults
with low PageRank may be sufficiently specialized to prevbst
wide-spread attention necessary for a high PageRank, leonteis
specialization may attract a lot of interest from userstivigi that
site.

Query Frequency. On the other hand, query frequency seems to
have a substantial impact on the amount of on-site actiwityy the
most frequent queries resulting in many more clicks tharemient
queries. We conjecture that more common queries lead terbett
results, which in turn result in more activity [1].



7. PREDICTING USER ENGAGEMENT

In the previous sections, we examined toolbar logs to stusgy u
behavior, characterizing user behavior in terms of postteclick
activity, time spent, and entropy. Metrics such as thesédcbe
leveraged to improve ranking of sponsored and organic tsas
illustrated in a rich set of prior work in IR [2, 5, 18, 19, 23fur-

Page Features:Features pertaining to individual landing pages. While

this set of features is potentially more revealing than witte
features, we are less likely to have enough information én th
logs for a particular landing page. The set of specific festur
used in this set is identical to that for the Site Featuredikt,
fering only in the granularity of aggregation.

thermore, our study revealed that these metrics may be €ve@ m The gpecific nature of each feature is described below. Séthese
important given the fact that neither CTR nor PageRank peoe  feqtyres are accumulated for all four of the above entitisie oth-
strong signal for how users behave after a result is clicked. ers are specific to one or two. This list of features is by normea

~ However, a major hurdle in leveraging user behavior for Bk exhaustive, and additional features may lead to furthersgai pre-
is its limited availability. Given the vast size of the intet, the data diction.

available to any one party is likely to cover only a small frac of
the trail activity that takes place on the Web. To addresssparsity, Click Probabilities: The probability of making: € [1, 5] clicks,

next we look at the problem of predicting user behavior: gige
user, query, and result, we want to predict the activity an tthil

originating from this result, conditioned on the fact tHa tesult is
clicked®.

Predictions about on-site user activity are made usinglstaista-
tistical tools, incorporating features extracted fromtpeer brows-
ing behavior, the various query features from Section 6, deatd
about how users navigate on individual landing pages arid dse
sociated sites. We show that some measures of behavior qae-be
dicted reliably when all three entities involved in the giviiplet
(i.e., user, query, result) have been previously seen irirthieing
data. Also, we show that the classification can be made robtise
case where some of these entities are new, i.e., unseen frathe
ing data. These results have two implications: While prgaticon
known entities shows that user behavior tends to be consigte.,
past behavior predicts future behavior), prediction on eeiities
demonstrates generalizability of the prediction task.

and the mean number of clicks made per visit. Used in all four
entities.

Distribution of Times: The amount of time spent on the page re-

sulting on thei” click, ¢ € [1,5]. Additionally, the mean
time spent per visit. Used in all four entities.

Navigational Shannon Entropy: The number of bits needed to en-

code the path chosen on a particular site or page. In addition
to computing path entropy values for all paths visited ore si

we compute entropy for limited-depth user navigationsingjv
some notion of how a site is shaped from the perspective of a
site’s visitors. These features are used in the Page and Site
Feature entities.

Query Intent: Rather than perform more advanced computation in

order to determine the desired type of action a user wishes to
perform, we compute the variance among clicked results for
a particular query, and the information entropy for desngb

Since our emphasis is on understanding user engagementis te
of the number of clicks and amount of time spent on-site, w& no
demonstrate that we can predict with sufficient reliabilithether
or not a user will spend more than a certain amount (in our,case
60 seconds) on a result and whether that user will make one or two
additional clicks on that site. We believe the ability togtiot these
simple metrics implies that more general forecasts can bema
task which we leave to future work. In the remainder of thigtisa
we present the set of features used when making these poedict
and discuss issues associated with their collection. We phesent
our results for predicting user activity. Finally, in ordersimulate a
more realistic setting and to evaluate the influence of ireféatures, Activity on Queries: The frequency, click rate, ad click rate, and
we perform predictions with intentionally excluded featsets. mean position of the clicked result. Also the diversity of re

. sults clicked, that g Suniquel
7.1 Feature Extraction

[freqquery|
The features in our experiments are divided into four etiti

query results. The intuition behind this approach, as dssdr
before, is that navigational queries will tend to focus ofma s
gle result, while non-navigational queries will have moife d
fuse results, and therefore greater variance and entrdug. T
is a Query feature, of course.

User Activity: The number of queries issued by a user, the aver-
age number of clicks per query by this user, the probability
a clicked result will be an ad, and the expected position of a
user’s clicked results. These features are applicabletorthe
User entity.

Query Topic: The topic of a particular query, as determined by our
proprietary query taxonomy. Additionally, we look at themu
User Features: Observations compiled on a specific user’s query ber of terms present in a particular query.

result and navigational behavior. Strict anonymity is eedu  cjick-Through Rate A simple estimation of click-through rate for
throughout the course of our experiments. a particular url: The number of times a url is clicked divided

Query Features: How clicked results are distributed, and how re- by the number of times a url is returned as a query result. This
sults tend to be browsed for particular queties is a page-specific feature.

Site Features: Navigational features aggregated across all landing

pages associated with a particular site. Site-wide featare 7.2 Experimental Setup

much less sparse, and therefore more likely to be available, oy data consists of more than 2 million instances, wherk #ac

in quantities needed to make valid statistical inferent@  stance consists of atriple < user, query, result URL > andebelt-

single-page features. ing click trail on the site. Since many features listed abmauire
“Note that the probability of a result to get clicked is its CT&ue. ~ aggregations over many instances (e.g., click probasjifiwe need
CTR prediction has been studied before, and we focus on thegsr  to be careful during the feature extraction process to enthat the
onal problem of predicting activity after the result is &kdl. information from the test set is not “leaked” to the classifidore
®Future work could follow previous work in [5] and use indivil  specifically, we perform the aggregation and agglomeratiofea-
query terms (rather than complete queries) to alleviatesepass in  tures as follows: our instances are partitioned into twoakgized
the data. sets. One of these two sets is used to compile features wétlire




[ Feature Set Used [ Click AUC | Time AUC |

Top 100k Ad 0.708 0.594
Random100k Ad 0.672 0.585
Top 100k Non-Ad 0.704 0.598
Random100k Non-Ad 0.613 0.560

Table 1: Predictive Performance on the Various Data Sets Use
for Ad and Non-Ad Data.

cross-instance aggregation. We call this settthiing set and the
other set theest set.

From the training set, a classifier is trained. While evéihgaon
the test set, given a test instance we probe into our traiségo
check whichever features are available for the entitiesliad in
the test instance. For instance, if the user involved in &t in-
stance is entirely new, then we may not get any user-cemaitifes

for him/her from our training set. The same is not true for-que

ries though, since features like query topic or query intemt be
extracted even if the query is new. The classifer then tdiesetfea-
tures to predict user behavior on the test instance. Thisi@ian

process ensures that no information from the test set isodisd to
the classifier.

While it is impossible to make meaningful predictions in aneo
plete absence of features, we show that even a few featweasiir
cient to provide reasonable classifier performance. Inrdaleval-
uate the predictive response to missing features, two ddtasse
compiled for both organic and sponsored search resultsh (@ata
sets consist of training and test data, in order to ensureYailua-
tions, as described above).

e RandomSet: This dataset consists @00, 000 instances sam-

pled at random, restricted to ensure that at leask features

at least one minute (“Time AUC” column), on a particular féesite
given that the result was clicked. Both data sets are usdwto kow
well we can do with the Top00% data set as well as a more natural
setting of the Randonm00k data. We conduct these experiments on
both organic and sponsored search data.

From Table 1, we see that in both the ad and non-ad cases, the To

100k data set offers an improvement in classification perforreanc
over the Randoni00% data set. This result is unsurprising since the

former data set consists of instances where the most infames
available, while the latter follows the natural, often sgadistribu-
tion of feature availability. We note that while Randdi0k offers
degraded classification performance, we believe the seatdt still
acceptable. With more optimized feature extraction uséavier
can be conjectured with sufficient reliability in the wild.

Of interest is the improved predictive ability on the ad dsg¢a
in comparison to the non-ad data. This is surprising, sincedata
set contained more non-ad data, by an order of magnitudéyimp
denser feature availability. We believe this can be attetuo dif-
ferent user expectations when clicking on ads as opposethtads:
There are many reasons why a user may click on an organid resul
presented by a search engine, but only a small subset of tiede
to lead to clicks on sponsored search results.

Predicting Two Clicks: While predicting a single click on a query
result is a challenging task, we seek to discover whethénduiac-
tivity can be forecasted. As a simple test, we take quenjtetom
the ad and non-ad Top00Ok data sets, and predict if a user will go
to make two clicks on a particular result. Table 2 preserggéBults
of this experiment. We see that performance is comparahileato
achieved in predicting a single click. This may indicatet timest
of the uncertainty involved in predicting user behaviorwscat the

are present. This random sampling leads to a feature distribfirst step. For future work, we would like to perform a much mor
tion which should reflect performance of our classifier in thedetailed prediction of user activity.

wild.

e TopSet: This is a filtered dataset to ensure that feature density
is high and that all sets of features are represented. Fbr eac
of the four entities (user, query, site and page) listed feefo
a subset of the data is extracted, consisting only of ins&nc

[ DataSetUsed | AUC |
Ad Top 100k 0.69
Non-Ad Top100k | 0.697

Table 2: Accuracy in Predicting Two Clicks

where the associated feature is present; instances where anp|ative Feature Experiments: Missing some features is com-

entity’s associated feature is missing are filtered out.each

of these four sets, the5, 000 instances containing the most

mon in our data. In order to understand the reduction in iflass
performance from missing a particular feature set, we evalthe

number of features are selected; these are best-case samplgrformance of our classifier in the presence obatla given en-
in which the presence of certain features is ensured. Finalljry, of features. This ablative feature classification isfpened by

these four sub-sets are combined to mab@ 000 optimistic

removing certain features from the training and test datd, using

instances. This data is used to give something of a best-caggyisiic regression as before. Tapok data sets are used to ensure

evaluation of our classifier. Since the presence of all featis

that the feature removed was present in sufficient numbeheiimi-

ensured, we can use this data set to estimate the discriv@inat(j5| qata set, and while only results from our sponsoredckedata

ability of each feature entity.

All classification tasks in this section were performed gstost-
sensitive two-class logistic regression with ridge regaéion. The

vector,w” is optimized using Newton’s Method. Parameters and

weights used for each classification sub-problem were haneldt
by compiling a large parameter set, performing model trajrand
test evaluation on each parameter. The configuration offettie
best test performance is retained. To account for imbataimcte
size of positive to negative instances in each of our expaErs) we
use the area under the receiver operating characteristie ¢UC)

as our metric for evaluating predictive ability.

7.3 Results

set are used due to space constraints, the results arerdioniteon-
ad data. The results of this study are presented in Table 3.

Feature Set Removef Click AUC | Time AUC |

None 0.708 0.594
User Features 0.708 0.594
Query Features 0.708 0.59
Site Features 0.671 0.572
URL Features 0.667 0.586
User & Query 0.708 0.59
Site & URL 0.594 0.546

Table 3: Accuracy Results In an Ablative Feature Comparison
for Ads on the Top 100k Set

Initial Results: Classifier performance on each of these data sets Single Feature Experiments:Table 3 reveals the dependency of

is presented in Table 1. The first experiment we evaluateeidith
nary classification task deciding whether or not a user walkenone
additional click (column titled “Click AUC"), or if a user Wlispend

our classifier on site and URL specific information; missiitfer
of these feature sets severely restricts the ability of dassifier,
while user and query can be removed with little consequendb®



output. At this point, itis unclear if users or queries arallyeuse-
less in determining on-site behavior, or if this informatis largely

prediction results could be improved greatly by using manghss-
ticated methods and by incorporating additional featusespe of

subsumed once site and URL information is known. We conductwhich such as the position of the clicked ad among sponsesdts

single feature classification experiment on our ad To@k data in
order to understand exactly how much information relatedaoh
feature set helps in prediction. This is done by filteringbatla par-
ticular feature entity, then classifying as above; theltesue shown
in Table 4:

[ Feature Set Usedl Click AUC | Time AUC |

User Features 0.503 0.505
Query Features 0.594 0.546
Site Features 0.659 0.573
URL Features 0.644 0.564
All Features 0.708 0.594

Table 4: Accuracy Results Using Individual Feature Sets foAds
on the Top 100k Set

From Table 4, we see that user features provide very litfteina-
tion as to user navigation behavior in our model. This hasipgsde
that data can be collected in a way that maximizes privacyeries
prove to be a better discriminator then users by a wide mahngin-
ever, the performance is still significantly below that &vled when
all features are present. This could be because resultyodien
varies significantly for a particular query, or that quernayymy
or ambiguity confounds predictions based on query featal@se.
Site and URL features seem to offer the most classificatifomrima-
tion — some sites or pages are predictably more prone to elicks
or browsing time from users. It is interesting to note théd $ea-
tures tend to outperform URL features, even though a URLigesv
information on a finer resolution then a site alone as onecsite
contain many URLs. One possible explanation is that theigtsex
much more site information in our data set, enabling betature
estimates. Regardless of the cause, this observation isiginy
since site level information is the most frequently avdaatiata in
our logs.

8. CONCLUSION

In this paper, we have performed the first detailed study ef-po
click through user behavior on sponsored results, and cadpa
to the case of organic search. We also presented a generaioel

based on a mixture of power laws, and showed how to predict use

behavior on result sites using a set of user, query, site,page
features.

Overall, our results show that user behavior in sponsorattke
has a number of similarities, but also some differences ftioat
in organic search. This observation is interesting sinamspred
search results originate from a distinct and specializedhaism,
ruled more by bid prices than relevance to users, who onlyently
affected ad selection via click-through rate. Howeves hécoming
increasingly clear that to be successful, a sponsoredtspkatform
has to balance the interests of advertisers, searcherseanch en-
gines, and this requires use of a richer set of featuresdimguthose
gleaned through implicit feedback.

Our work here takes a first step towards using such features L|n

were not available at the time of this study. It would alsoriieriest-
ing to relate post click-through behavior to actual coneece (e.g.,
a purchase, or as defined by the advertiser), and to expleferiy-
term changes in user behavior due to engagement with adsites

do people return to a site after engaging in more clicks oregipus
visit).
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