
Top-k Aggregation Using Intersections of Ranked Inputs

Ravi Kumar Kunal Punera Torsten Suel Sergei Vassilvitskii
Yahoo! Research

701 First Ave.
Sunnyvale, CA 94089

{ravikumar, kpunera, suel, sergei}@yahoo-inc.com

ABSTRACT
There has been considerable past work on efficiently computing
top k objects by aggregating information from multiple ranked lists
of these objects. An important instance of this problem is query
processing in search engines: One has to combine information from
several different posting lists (rankings) of web pages (objects) to
obtain the top k web pages to answer user queries. Two particularly
well-studied approaches to achieve efficiency in top-k aggregation
include early-termination algorithms (e.g., TA and NRA) and pre-
aggregation of some of the input lists. However, there has been
little work on a rigorous treatment of combining these approaches.

We generalize the TA and NRA algorithms to the case when pre-
aggregated intersection lists are available in addition to the original
lists. We show that our versions of TA and NRA continue to re-
main “instance optimal,” a very strong optimality notion that is a
highlight of the original TA and NRA algorithms. Using an index
of millions of web pages and real-world search engine queries, we
empirically characterize the performance gains offered by our new
algorithms. We show that the practical benefits of intersection lists
can be fully realized only with an early-termination algorithm.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems—Query Processing

General Terms: Algorithms, Experimentation, Theory

Keywords: TA, NRA, early-termination, intersections

1. INTRODUCTION
A typical scenario for database middleware systems is the fol-

lowing. We are given a universe of objects and a collection of lists,
where a list corresponds to an object attribute. In each list, the ob-
jects are sorted according to a score computed with respect to the
attribute represented by the list. Now, given an aggregation func-
tion to combine the attribute scores for an object, and a number k,
the task is to find the top k objects ranked according to their aggre-
gated scores; see [8] for more background on middleware aggre-
gation. A similar scenario also arises in information retrieval (IR)
applications. Here, the objects are the web pages and the lists are
the posting lists for terms. Within each term posting list, the web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’09, February 9–12, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-390-7 ...$5.00.

pages that contain the term are sorted by a relevance score. The
relevance of a web page for a multi-term query is defined to be an
aggregation of the individual term relevances. Given a multi-term
query and a number k, the goal then is to output the top k most
relevant web pages; see [15, 24] for background on IR systems.

Efficient top-k aggregation plays a vital role in large-scale data-
base and IR systems; this is especially true in the case of web search
engines where k is small and the posting lists can be overwhelm-
ingly long. Efficiency is often achieved through a combination of
carefully designed aggregation algorithms and a judicious choice
of data (i.e., lists) made available to these algorithms. Aggregation
algorithms exploit the fact that only the top k results are sought
and resort to early termination, i.e., they stop as soon as the top k
objects are discovered. With respect to data, there are several op-
tions to achieve efficiency depending on answers to the following
questions: Can a list be pruned to discard objects with low scores
or should it be presented in its entirety? Do the lists permit ran-
dom access or only sequential access? Can some of the lists be
pre-aggregated into a single list? Is an approximate set of top k an-
swers acceptable? In this paper we are interested in two efficiency
choices, namely, early-termination and pre-aggregation of lists.

Early-termination is an attractive option to ensure efficiency in
top-k aggregation, and such algorithms have been developed in
both database and IR contexts; see, e.g., [1, 2, 3, 5, 9, 10, 11, 13,
16, 18, 22, 25]. Two particularly interesting ones are the Threshold
Algorithm (TA) and the No Random-access Algorithm (NRA) pro-
posed by Fagin, Lotem, and Naor [9]; the former assumes random
access capabilities to the list while the latter assumes only sequen-
tial access. These algorithms require aggregation functions to be
monotone and proceed as follows. The input lists are scanned in
parallel and the top k objects seen so far are stored. At each step,
an upper bound on the best possible aggregated score of an object
that is yet to be encountered is computed. If this upper bound is
worse than the aggregated score of the k-th best object found so far,
the algorithm stops. Note that the upper bound guarantees that the
top k objects are correctly computed. Also, if k is small compared
to the length of the lists, early termination of the algorithms results
in huge savings in processing time. In addition, TA and NRA have
been shown to be instance optimal, i.e., they achieve optimality in
every instance for a natural class of algorithms and databases.

Another way to accelerate top-k retrieval is by pre-aggregating
some of the input lists to produce new and hopefully shorter lists.
A specific instantiation of this paradigm is to construct posting lists
for pairs of terms from their individual posting lists. Here, the post-
ing list for a term pair consists of all the web pages that contain both
the individual terms along with their aggregated relevance score; in
other words, it represent intersections of lists. Using pre-computed
intersection lists has been shown to improve the performance of

large-scale search engines [14]. These intersection lists, however,
take up additional space dictating a cost-benefit trade-off, and care-
ful strategies have been proposed to select the pairs of terms for
which intersection lists should be pre-computed [6, 14].

Even though early-termination aggregation algorithms and the
utility of pre-computed intersection lists have been studied exten-
sively, there has been little work on a rigorous treatment of a com-
bination of these two natural approaches to perform efficient top-k
aggregation. Can an algorithm that uses a properly designed early
termination on intersection lists significantly outperform an algo-
rithm that is based either on an early termination on the original
lists or on a complete scan of the intersection lists? And, to derive
the full benefits of intersection lists, what is the principled way to
perform early termination with intersection lists? Addressing these
questions is precisely the focus of this paper.

Our contributions. We provide a formal analysis of two well-
studied early-termination algorithms, namely, TA and NRA, in the
presence of intersection lists. Specifically, we generalize both TA
and NRA to the case when pre-aggregated intersection lists are
present in addition to the original lists. We show that our versions
of TA and NRA continue to remain instance optimal even in this
case, i.e., even though the optimum algorithm has access to the
intersection lists, our generalizations perform on par with the opti-
mum. In fact, our algorithms will use all of the given lists. While
this might appear wasteful since some of the intersections can yield
redundant information, we show that this is unavoidable: Any al-
gorithm that hopes to be instance optimal cannot afford to ignore
even one of the input intersection lists. Our algorithmic generaliza-
tions also hold in the case when we can pre-compute intersections
of more than two lists, and when only prefixes of pre-aggregated
intersections are stored, pruned to remove low scoring elements.

The main technical challenge involved in the generalization of
TA is incorporating the extra information given by the intersection
lists to compute an upper bound on the aggregated score of yet un-
seen objects; an analogous step is needed in NRA. Unlike the case
with original TA and NRA, it turns out that the upper bound here is
given by a mathematical program. For simple decomposable aggre-
gation functions such as addition, this simplifies to a linear program
that can be solved in polynomial time. Addition is a natural aggre-
gation function that is of interest in IR, where the relevance score
of a document to a multi-term query is the sum of the relevance
scores of the document to each of the terms in the query.

While the linear program gives the optimum upper bound, it can
be expensive to solve, especially if the number of lists is large. We
attack this problem in two ways. First, for the special case of the
addition function and for pairwise intersections, we give a simple
combinatorial algorithm based on finding the minimum cost per-
fect matching in a specific graph. For larger-sized intersections,
we provide a simple approximation algorithm that computes an an-
swer within a small constant factor of the optimum upper bound. In
theory, instance optimality is not robust against approximate upper
bounds; in practice, however, this approximation might suffice.

We conduct experiments on two collections of data: The queries
provided in the TREC GOV2 dataset consisting of about 25 million
documents, and query trace from the Yahoo! search engine run over
an index created on 16 million randomly sampled web pages. We
compare the performance of our algorithms against two baselines:
One that uses intersection lists but does not terminate early and
one that can terminate early but does not use intersection lists. We
show that the effects of early-termination and intersection lists are
synergistic. On realistic query traces, we show that the practical
benefits of intersection lists can be fully realized only with early-
termination algorithms.

Organization of the paper. The paper is organized as follows.
Section 2 discusses related work in the areas of top-k aggrega-
tion and pre-aggregating intersection lists. Section 3 contains our
main results, including our generalizations of TA and NRA, the in-
stance optimality of the generalizations, the mathematical program
to compute the upper bounds, the combinatorial matching-based
algorithm, and the approximation algorithm for addition. Section
4 contains the experimental results on the TREC GOV2 and a web
search index dataset. Concluding remarks are given in Section 5.

2. RELATED WORK
The related work falls into two main categories: Top-k process-

ing in databases and IR and the use of intersections to speed up
top-k processing, especially in the context of web IR.

There have been several algorithms proposed in the database and
IR communities for efficient computation of top k results using
pruning or early-termination methods. In the context of aggregat-
ing ranked lists with scores, the work of Fagin [7], which intro-
duced Fagin’s Algorithm (FA) and the work of Fagin, Lotem, and
Naor [9], which introduced the Threshold Algorithm (TA) and the
No Random-access Algorithm (NRA), are significant milestones.
For a general description of these, see the survey by Fagin [8].
The TA algorithm was independently discovered by (at least) two
other groups: Nepal and Ramakrishna [16] and Günter, Balke, and
Kiessling [10]. Instance optimality was introduced in [9] and the
algorithms TA and NRA were shown to satisfy this notion. Sub-
sequent to their development, the FA, TA, and NRA algorithms
have found applications in other areas including query processing
in distributed and P2P environments [26] and integrating structure
indexes and inverted lists [12]. However, none of these considered
analogs of FA, TA, or NRA algorithms for intersection lists.

The work that is closest to ours is that of Das et al. in [6], who
considered the problem of answering top-k queries using views,
where a view is a materialized version of a list that ranks values ac-
cording to a positive linear combination of a subset of attributes of
a relation. They proposed an LP-based algorithm that generalizes
TA to this setting. Indeed, while their work addresses a more gen-
eral version of our problem, they neither show instance optimality
of the resulting algorithms, nor consider the more realistic NRA
in their setting, nor give combinatorial algorithms for the problem,
relying instead on generic LP solvers

The field of IR has also considered early-termination algorithms
for processing inverted lists. Earlier work include [5, 11, 22, 25].
Persin, Zobel, and Sacks-Davis [18] proposed the use of frequency
sorting (as opposed to sorting by document ID) in posting lists in
conjunction with simple early-termination algorithms. Anh, Kretser,
and Moffat [1] developed a new inverted file structure using quan-
tized weights that provides cost-effective searching when early-
termination heuristics are employed. Anh and Moffat [2, 3] devel-
oped methods to reduce the number of candidate documents con-
sidered during the evaluation of ranked queries. Long and Suel [13]
proposed a pruning technique that integrates hyperlink information
with standard term-based information. Soffer et al. [21] considered
an extreme case of efficient top-k processing, where low-scoring
postings are completely eliminated from the index, and show that
this can be done with very little loss in precision. Ntoulas and Cho
[17] studied how to avoid degradation of result quality due to prun-
ing while still realizing most of its benefit.

The use of intersections or pairs of terms to improve query pro-
cessing has been addressed in several papers. Long and Suel [14]
considered a three-level caching scheme for improving search en-
gine performance, where the intermediate level is tasked to exploit
frequently occurring pairs of terms by caching intersections or pro-

jections of the corresponding inverted lists. A similar scheme was
proposed in the context of P2P-based search [4]. In [14], it is men-
tioned in passing that it is possible to combine pruning and list
intersections; but this issue was not investigated in detail. Building
intersections of posting lists is also related to building optimized in-
dexed structures to take commonly occurring phrase queries, e.g.,
“new york”, into account; see, for example, [23]. The problem
of distributing posting lists via careful assignment of inverted lists
to machines in order to reduce intersection costs was studied by
Zhang and Suel [27]. Schenkel et al. [19] proposed a precomputed
and materialized index structure and integrate it with a top-k query
engine for proximity search.

3. MAIN RESULTS
In this section we highlight the challenges introduced by the

integration of intersection lists into the TA and NRA algorithms,
and present our formal results. Since our results apply to any pre-
aggregation of lists, for sake of clarity, we use the term combination
instead of intersection. The additional information provided makes
the computation of the stopping condition for TA and NRA a non-
trivial endeavor, and we explore both optimal and approximation
algorithms and remark on their impact on instance optimality for
both of these approaches.

3.1 Model
We adopt the notation and conventions established previously by

Fagin and others [7, 9]. In the classic scenario the database D
contains a set X of n objects where each object X ∈ X has m
different numeric scores (x1, . . . , xm), which we will call param-
eters. We can think of the database as consisting of m sorted lists,
L1, . . . , Lm, and each element in list Li has a pair (X,xi) where
xi is the i-th score of X . Each list Li is stored in (decreasing)
sorted order by the xi’s. We use [m] = {1, . . . ,m}.

In this work we investigate the effect of having precomputed
some list combinations. For a given S ⊆ [m], let the list LS be
composed of the combination of lists {Li}i∈S .1 Our algorithms
work in the limited information case, where each element of LS is
of the form (X, fS({xj | j ∈ S})), where fS is a partial aggrega-
tion function. In this case we do not learn the individual scores
of X , but only learn the partially aggregate score. The results
carry over trivially to the full information case where in addition
to knowing the partially aggregated score, we also learn the indi-
vidual scores {xj}j∈S of X .

We are interested in retrieving the top k elements under some
aggregation function h. We make a series of assumptions about h.

(A1) Monotonicity: We say h is monotone if h(x1, . . . , xm) ≤
h(x′1, . . . , x

′
m) whenever xi ≤ x′i for every i.

(A2) Decomposability: We say h is decomposable if, for any
partition P = {S1, . . . , St} of [m], there exists a function gP , and
partial aggregation functions fS1 , . . . , fSt such that h(x1, . . . , xm)
= gP(fS1({xj | j ∈ S1}), . . . , fSt({xj | j ∈ St})).

For example, for m = 6, let P = {{1, 4, 6}, {2, 5}, {3}}. De-
composability would mean that there are functions f1,4,6, f2,5, f3,
and gP such that h(x1, x2, x3, x4, x5, x6) = gP(f1,4,6(x1, x4, x6),
f2,5(x2, x5), f3(x3)).

Many functions that occur in practice are monotone and decom-
posable. For example, if h = min, max, or sum, the decomposi-
tion is easy — take h = g = f . Even complicated-looking func-
tions such as x3 log(x1 + x2) often have an easy decomposition.

1For notational simplicity, from here on, we will drop the braces
when the subscripts are explicit sets. For example, we will use fi
instead of f{i} and fi,j instead of f{i,j}.

3.2 Instance optimality
We are interested in instance optimal algorithms for top-k re-

trieval. Intuitively, instance optimality implies the optimality of
algorithms on every input, not just on a worst case input. Formally,
let D be a class of databases and A be the class of algorithms that
correctly return the top k answers from D for every query. We
say that an algorithm B ∈ A is instance optimal over D and A,
if, for every A ∈ A and every D ∈ D, cost(B) = O(cost(A)),
where cost refers to the total amount of resources consumed by the
algorithm. In our case, we will be making a distinction between se-
quential accesses with cost cS per access, and randomized accesses
with cost cR per access. In typical scenarios, cR � cS .

3.3 Common subproblem
A common problem in the design of the early-termination con-

dition for top-k algorithms, and in particular, TA and NRA, is to
obtain a best and a worst case bound on the aggregated score for
each element we have already seen and any element not yet seen.

Suppose that we can upper bound the score of each parameter
i by xi, i.e., for every element X with scores (x1, . . . , xm), we
know that xi ≤ xi. Then, by the monotonicity of the aggregation
function, h(x1, . . . , xm) ≤ h(x1, . . . , xm). Indeed, this fact is
crucial to proving the termination condition for TA and NRA [9].
Suppose now, that we know extra information on the aggregated
score of some of the elements. How does this change our bounds?

As a running example, consider a case where m = 3 and the ag-
gregation function h is the sum of all elements, i.e., h(x1, x2, x3) =
x1+x2+x3. If all we know is x1, x2, x3 then an easy upper bound
is h(x1 +x2 +x3) ≤ x1 +x2 +x3. Suppose, in addition, we know
that x1 + x2 ≤ x1,2, where x1,2 is an upper bound on the combi-
nation score of parameters 1 and 2. Then, we can obtain another
upper bound: h(x1 + x2 + x3) ≤ x1,2 + x3. Suppose that we also
know the values of x2,3 and x1,3, then we can obtain a different

upper bound h(x1, x2, x3) ≤
x1,2+x2,3+x1,3

2
.

A quick enumeration leads to five possible upper bounds and we
are interested in the smallest of them: h(x1, x2, x3) ≤ min{x1 +
x2 +x3, x1,2 +x3, x1,3 +x2, x2,3 +x1, (x1,2 +x1,3 +x2,3)/2}.
Some of the conditions could be redundant and finding the best
possible upper bound calls for a principled approach. The way to
solve this constrained maximization problem is by a linear program
(LP). The above example can be formulated as a simple LP:

max h(x1, x2, x3) s.t. xi ≤ xi,∀i and xi + xj ≤ xi,j ,∀i, j. (1)

More generally, we have the following setting. Let S be a family of
subsets of [m]; we assume S contains all the singletons. Let ` be the
maximum number of individual lists subsumed by a combination
list, i.e., ` = maxS∈S |S|. For each S ∈ S, let xS be an upper
bound on the combination score of the parameters in S. Now, given
a monotone, decomposable aggregation function h as above, we
can express the best upper bound on h as a mathematical program:

max h(x1, . . . , xm) s.t. fS({xj : j ∈ S}) ≤ xS ,∀S ∈ S. (2)

For an arbitrary h, this could be a complicated optimization. If
however fS , g, and h are convex, then the above mathematical pro-
gram can be solved in polynomial time via convex programming.

For the rest of the paper we focus on the following important
special case.

(A3) h is the addition function, i.e., h(x1, . . . , xm) =
Pm
i=1 xi.

Addition is a natural aggregation function that is of interest in IR
and web search contexts: The relevance of a document to a multi-
term query is the sum of the relevance of the document to each of
the terms in the query.

3.3.1 Combinatorial algorithms for addition
For addition, notice that the mathematical program in (2) reduces

to a simple LP.

max
mX
i=1

xi s.t.
X
j∈S

xj ≤ xS ,∀S ∈ S. (3)

While this LP can be solved in polynomial time, it is not efficient in
practice. The goal of this section to solve or approximate (3) using
combinatorial methods. We first consider the important case of
` ≤ 2, i.e., we have pairwise combination lists. Next, we consider
the general case and give an approximation algorithm.

Exact algorithm for ` ≤ 2. In the case when each combined list
has at most two elements, i.e., ` ≤ 2, we give an exact combinato-
rial algorithm that is based on matching.

THEOREM 1. If ` ≤ 2, then the LP in (3) can be solved by
finding a minimum cost perfect matching on a particular graph on
2m nodes and 4|S|+m edges.

The proof is given by the following reduction. Let E = S ∩ [m]2.
We rewrite the LP in (3) as max

Pm
i=1 xi s.t. xi ≤ xi and xi +

xj ≤ xi,j ,∀(i, j) ∈ E. The dual of this LP is a covering LP:

min
X

(i,j)∈E

yi,jxi,j+

mX
i=1

yixi s.t. yi+
X
j

yi,j ≥ 1,∀i. (4)

Consider the following interpretation of the dual LP in (4). LetG =
(V,E) be a weighted graph onm nodes, and let V = {v1, . . . , vm}.
For each (i, j) ∈ E, let the weight of the (vi, vj) edge be xi,j , and
the weight of node vi be xi. Then the LP in (4) solves a fractional
edge cover problem — we are to (fractionally) select edges and
nodes so that the total weight emanating from any node is at least
1. We have the following characterization.

LEMMA 2. The LP in (4) is half-integral, i.e., in the optimum,
each yi,j ∈ {0, 1

2
, 1} and each yi ∈ {0, 1}. Furthermore, the

edges (i, j) with yi,j = 1
2

form a union of edge-disjoint cycles.

PROOF. The current LP allows for selecting edges yi,j and nodes
yi to satisfy the covering constraints. We begin by transforming the
graph so that only edge constraints are necessary. LetH = (W,F),
whereW has two special nodes,W = V ∪{s, s′}. For each v ∈ V
we add an edge (v, s) with xv,s = xv . We add one extra edge
(s, s′) with xs,s′ = 0. It is easy to see that there is a one-to-one
mapping between solutions in graph H (for which yi = 0), and
solutions in G with (potentially) non-zero node constraints.

It is well known [20, p. 533] that the optimal solution to the
problem on H , i.e., the edge cover problem, is half-integral with
the half-integral edges composing edge-disjoint cycles. (While the
half-integrality is explicit in [20, p. 533], the proof yields the cy-
cle condition as well.) Therefore, each yi,j , yi ∈ {0, 1

2
, 1}. We

now show that in fact each yi ∈ {0, 1}. For any edge cover solu-
tion on H , if some edge (v1, s) was selected with weight 1

2
, then

some other edge (vk, s) must have been selected with weight 1
2

as well; this follows since half-integral edges lie on edge-disjoint
cycles. Now, let C = ((s, v1), (v1, v2), . . . , (vk, s)) be the cy-
cle including these two edges. By [20], for every e ∈ C, ye =
1
2

. Suppose k is even (the k odd case is similar). Let Codd =
((s, v1), (v2, v3), (vk, s)) and Ceven = ((v1, v2), (v3, v4), . . . ,
(vk−1, vk)). Consider two solutions

yodd
e =

1 if e ∈ Codd

0 otherwise, and yeven
e =

1 if e ∈ Ceven

0 otherwise.

Each of these solutions is feasible — since s′ is of degree 1, the
edge (s, s′) is always selected, and thus s need not be covered by
C. And since y = 1

2
yodd + 1

2
yeven, one of the two solutions is

cheaper. Therefore, an optimum solution to (4) will have each node
weight yi ∈ {0, 1}.

We now transform G to obtain a combinatorial method for solv-
ing (4). Let G′ be a graph obtained from G by adding a dis-
joint copy G̃ = (Ṽ , Ẽ), and adding for each edge (vi, vj) ∈ E
cross edges (vi, ṽj) and (ṽi, vj) with weight xi,j . Furthermore, we
add edges (vi, ṽi) with weight 2xi. Thus G′ has 2m nodes and
4|S|+m edges in total.

LEMMA 3. The cost of the minimum cost perfect matching in
G′ is twice the cost of the optimal fractional edge cover in G.

PROOF. Consider a perfect matching M in G′; it is easy to
check that a perfect matching is guaranteed to exist. We construct
a solution to (4) of half the cost. Let yi = 1 if (vi, ṽi) ∈ M and 0
otherwise. Denote by IM (e) the indicator variable for the match-
ing, i.e., IM (e) = 1 iff e ∈M . Then let

yi,j =
1

2
IM (vi, vj)+

1

2
IM (vi, ṽj)+

1

2
IM (ṽi, vj)+

1

2
IM (ṽi, ṽj).

It is easy to check that the solution y on G defined above is ex-
actly half the cost of the matching. Now we focus on the con-
straints. To see that yi +

P
j yi,j ≥ 1, observe that yi is either 1 or

0. Since M is a perfect matching, if yi = 0, there exist u, ũ such
that (vi, u) ∈ M and (ṽi, ũ) ∈ M . Thus the total edge weight
surrounding vi is at least 1, thereby satisfying the constraint in (4).

Conversely, we construct a matching M from a solution to (4).
If yi = 1, add the edge (vi, ṽi) to M . If yi,j = 1, add (vi, vj) and
(ṽi, ṽj) to the matching M . We are left with edges F ⊆ E such
that for all e ∈ F , ye = 1

2
. From Lemma 2, we know that the edges

in F form a union of edge-disjoint cycles. Orient each cycle so that
it becomes directed. For each directed edge (vi, vj) in the cycle,
add the edge (vi, ṽj) to the matching M . Again, it is easy to check
that the total cost of M is exactly twice the cost of the fractional
edge cover. To ensure that it is a matching, we appeal to Lemma
2. The edges corresponding to integral y’s never meet at a node.
The edges (vi, vj) corresponding to yi,j = 1

2
form edge-disjoint

cycles, and in G′ each node is covered exactly once: vi by the tail
of the directed edges, and ṽi by the head of the edges.

This completes the proof of Theorem 1.
Approximation algorithm. We now show a simple approximation
to (3). First, we state the following notion. The lower bound values
xS given in (3) are said to be in reduced form if they satisfy the
following two conditions: (B1) ∀i ∈ [m], xi ≤ minS∈S,S3i xS ,
and (B2) ∀S ∈ S, xS ≤

P
j∈S xj . Essentially, by reduced form

we mean that it is not possible to use some of the lower bound
values to obtain a better lower bound on some other. Now, let ψ be
the solution to (3) and recall that ` = maxS∈S |S|.

THEOREM 4. Let x′i = xi/` and let ψ′ =
Pm
i=1 x

′
i. If (B1)

and (B2) hold, then ` · ψ′ ≥ ψ ≥ ψ′.
PROOF. Consider x′′i = ` · x′i = xi. We claim that none of the

constraints in (3) is satisfied by x′′i ’s with a strict inequality. To see
this, suppose we have

P
j∈S x

′′
j � xS . Then, by (B2),X

j∈S

xj =
X
j∈S

x′′j � xS ≤
X
j∈S

xj ,

which is a contradiction. By duality,

ψ ≤
mX
i=1

x′′i = ` ·
mX
i=1

x′i = ` · ψ′.

We now show that the x′i’s satisfy every constraint in (3), i.e.,X
j∈S

x′j =
1

`
·

X
j∈S

xj ≤
1

`

X
j∈S

xS = xS
|S|
`
≤ xS ,

where the first inequality follows from (B1) and the second follows
from the definition of `. Hence, the x′i’s are a feasible solution to
(3), yielding

Pm
i=1 x

′
i = ψ′ ≤ ψ.

Thus, we obtain an easy `-approximation algorithm for the LP
given in (3). (It is important to note that this approximation fac-
tor does not translate to any approximation with respect to the effi-
ciency of TA and NRA algorithms.) As an aside, we note that this
approximation factor is tight for this algorithm. Consider a setting
where ` = 2, xi = 1 for all i, and xi,j = 1 for all i and j. Us-
ing the setting in Theorem 4, we get ψ′ = m, whereas the optimal
solution to (3) is attained by setting xi = 1/2, which results in a
bound of ψ = m/2.

3.4 Threshold algorithm
The threshold algorithm (TA) introduced by Fagin et al. [9] com-

bines sequential access to each of the lists with random accesses
to compute each element’s total aggregation score. The addition of
combination lists results in an interesting question for TA — should
we do sequential access on all of the lists, or does the traversal
of the combination list make the traversal of the individual lists a
wasted effort? For example, given that we have a list L1,2 should
we traverse lists L1 and L2? We show that to maintain instance
optimality TA must traverse all of the available lists.

We begin by recalling the TA algorithm and adapting it to the sit-
uation with the additional combination lists. We then prove match-
ing lower and upper bounds on the instance optimality ratio.

3.4.1 Algorithm
The TA algorithm begins by doing sequential accesses in parallel

into each of the available sorted lists (singleton as well as combi-
nation lists). For each object X that has been seen, the algorithm
completes the fields of X by doing random accesses into the other
lists and computes the score h(X) using the full information.

At the same time, let xS be the score of the last object seen in list
LS . We define the threshold value ψ as the solution to the mathe-
matical program presented in (2). Note that ψ is non-increasing by
monotonicity. As soon as we find at least k elements with value at
least ψ we halt and output the objects with the highest score.

For (3), we first show the following.

LEMMA 5. The lower bound values obtained at each step of TA
are in reduced form.

PROOF. Since TA scans the list in parallel, from the descending
order and non-negativity of scores, the r-th largest score inLT , i.e.,
xT , is clearly at most the r-th largest score in any list LS (i.e., xS),
for T ⊇ S. This yields (B1). Similarly, the r-th largest entry in the
list LS (i.e., xS) is at most the sum of the r-th largest in the lists
corresponding to any disjoint partition of S. This yields (B2).

Using Theorem 1 for ` = 2, and Theorem 4 otherwise (as implied
by Lemma 5), we obtain a combinatorial algorithm to determine
the stopping condition given by (3).

3.4.2 Instance optimality
Let s = |S| be the total number of lists. We show that TA is

instance optimal with optimality ratio sm. (Here, we consider cR
and cS to be constants.) We then show that this is indeed the best
ratio one can obtain.

THEOREM 6. Let h be an arbitrary monotone aggregation func-
tion. Let D be the class of all databases and A be the class of
algorithms that correctly identify the top k answers for h for ev-
ery database and do not make wild guesses2. Then TA is instance
optimal over A and D with optimality ratio sm.

The proof of this theorem parallels directly the proof of the orig-
inal TA algorithm presented in [9]. We omit it here.

THEOREM 7. Let h be an arbitrary monotone aggregation func-
tion with m arguments. Let D be the class of all databases. Let A
be the class of all algorithms that correctly find the top k answers
for h for every database and that do no make wild guesses. There is
no deterministic algorithm that is instance optimal over A and D,
with optimality ratio less than s + sm′cR/cS , where s is the total
number of lists, and m′ the minimum number of lists that together
allow us to compute the element score.

PROOF. We proceed by proving the k = 1 case, the generaliza-
tion to k > 1 is simple. Let us fix the following parameters: (1)
d, k1, k1 are integers, (2) ψ = (ds − 1)cS + (ds − 1)m′cR, and
(3) k2 > k1 > max(d, ψ/cS). Our argument follows closely the
lower bound presented in [9] in the case without combination lists.

We restrict our attention to a special family D′ of databases of
the following form. In every individual list the top k2 scores are
1, and the remaining scores are 0. In every combination list on
q elements the top k2 scores are q, which are then followed by a
number of scores of q − 1, q − 2, etc. No object appears in the top
k1 of more than one list and there is one object X which has score
1 in all of the individual lists, and s′ in all of lists on s′ elements.
This object is in the top d of exactly one list. Except for X every
object has a score of 0 in at least one of the individual lists, and
therefore has score s′ − 1 in some of the s element lists. Finally,
we claim that given sufficiently many objects, we can pick k1 and
k2 to satisfy the conditions.

As in [9], we say that an object is high in list i if it appears in
the top d of the list, and is generally high if it is high in one of the
lists. Let A ∈ A be an arbitrary deterministic algorithm. Suppose
A sees (sd− 2) high objects in total, in other words, there are two
high objects that it does not see. Then A cannot correctly decide
which one of the two remaining maximizes h, and thus A must see
at least sd− 1 objects and have cost at least (sd− 1)cS .

In counting the number of random accesses, there are two cases.
If A ever sees some object in list j that is high in list i 6= j, then it
must have scanned past k1 in list j and thus its cost is at least ψ.

Otherwise, we say that an object Y is fully randomly accessed
if after seeing it sequentially in list i, A figures out the total score
for Y . The cheapest way of doing this is observing the position of
Y in the m′ lists that together cover all of the parameters. We can
always reveal the values adversarially in such a way that all but the
last of such accesses will produce the maximum score. Therefore,
before the last access the object always has a possibility of beingX .
Again, as long as there are two high objects X1 and X2 that have
not been fully randomly accessed, the algorithm cannot determine
whether h(X1) > h(X2) or vice versa. Therefore, it needs at least
(ds − 1)(m′) random accesses with the total cost ψ. Taking d
sufficiently large, the ratio ψ

(sd−1)cS
can be made arbitrarily close

to s+ sm′cR/cS as required.

COROLLARY 8. If TA does not explore all of the possible lists,
then it is not instance optimal.

2An algorithm A makes no wild guesses if the first access to every
element is a sequential access.

PROOF. Consider the construction in Theorem 7. We can place
the top object X in position k2 in all of the lists where it is not a
high element. If the list in which the top object X appears at the
first d elements is ignored, then TA must make at least k2 accesses
with a cost of k2cS � ψ.

3.5 No random access algorithm
Unlike the TA algorithm, the NRA algorithm does not make any

random accesses throughout the list. As such, it cannot know the
full score for an element X until it has accessed all of its values
through sequential list access. In the case with no combinations,
this happens when X is accessed in all of the lists. However, for
every item X , the algorithm can maintain a range of values that X
can take on. Since we have assumed that each individual score of
X lies between 0 and 1, and the target function h is monotone, we
can always make such a computation.

Suppose, for example, that m = 6 and we have learned the val-
ues of x1, x3, and x6 forX . Then we can say that h(x1, 0, x3, 0, 0,
x6) ≤ h(x1, . . . , x6) ≤ h(x1, 1, x3, 1, 1, x6).

While we cannot improve the lower bound, we can use the fact
that we are reading the lists in decreasing order to improve the up-
per bound. Denote again by xS the last value read in list LS . Then
we can express the upper bound for h(X) similar to (2), except
with the additional constraints reflecting our current knowledge of
X . Let T be the set of variables that have been revealed.

max h(y1, . . . , ym) s.t. yi = xi,∀i ∈ T and yi ≤ xi,∀i 6∈ T
and fS({yj : j ∈ S}) ≤ xS ,∀S ∈ S, S 6⊆ T. (5)

Using (5) as a black box, we describe the new NRA algorithm.
(1) Do sequential access to each of the lists LS , S ∈ S. As

before maintain the bottom values xS encountered in list S.
(2) For each element X , compute the best and worst possible

scores for X , B(X) and W (X). We can compute B(X) using (5)
andW (X) by substituting the value 0 for all elements that we have
not yet seen.

(3) Let M be the k-th largest W value, with ties broken in favor
of higher B values.

(4) Halt when at least k objects have been seen and for every
object X that is not in the top k, B(X) > M .

Similar to the TA case, for (3), we obtain combinatorial algo-
rithms to determine the stopping condition given by (5) using The-
orem 1 for ` = 2, and Theorem 4 otherwise.

3.5.1 Instance optimality
The instance optimality of NRA relies on the algorithm having

the optimal upper bound for the range for each list. Equivalently,
there must always exist an assignment of the remaining variables
such that (i) the upper bound on the range is achieved and (ii) the
assignment is consistent with all of the available information.

This information is easy to obtain in the case when we have only
lists for individual attributes. The upper bound is obtained by set-
ting yi = xi for i ∈ T and yi = xi for i 6∈ T . In the case where
combined information is available, the situation becomes more in-
tricate. For example, if we know that x1 = a and x1 + x2 ≤ b,
then we can quickly conclude that x2 ≤ b − a. This information
can potentially be used further to obtain a bound on x3, and so on.

The mathematical program presented in (5) encapsulates all of
this information, and gives the highest possible feasible value for
h(X). The objective function is the upper bound on the range of
X and the assignment to the individual variables yi realizes this
bound and is consistent with all of the known information.

Using the observation above, the following theorem follows after
an easy adaptation of the proofs in Fagin et al. [9].

THEOREM 9. Let h be a monotone aggregation function and
let D be the class of all databases and A be those algorithms that
correctly identify the top k answers for h for every database and
make no random accesses. Then NRA is instance optimal over A
and D and no deterministic algorithm has a lower optimality ratio.

4. EMPIRICAL ANALYSIS
In this section we evaluate our early-termination query-processing

algorithms in the presence of pre-aggregated lists. We focus our at-
tention on pairwise combinations, or intersections, i.e., for a given
pair of terms, the pre-aggregated list corresponding to the pair com-
prises only those documents that have both of the terms. (In other
words, the score of a document not containing both terms is set
to −∞.) We present our evaluation in two parts. In the first part
we drill down into the special case of queries with three terms and
perform exhaustive experiments with different numbers and sets of
intersection lists being available. These experiments are run on the
TREC GOV2 data set and help quantify the benefits of having more
intersection lists. In the second part we present an evaluation of our
approach on a real-world web search index and query load.

4.1 Evaluation methodology

4.1.1 Datasets
GOV2. This is a standard data set used in the annual TREC com-
petition by IR researchers. It consists of 25.2M web pages from
the gov top-level domain crawled in early 2004. The pages consist
of HTML and text files, plus the extracted text of any pdf, word,
and postscript documents truncated to 256 KB. In addition, a set
of 100,000 queries is provided. These queries are, however, not
known to constitute a typical query load for a general web search
engine. Therefore, we will use an index constructed on this data set
to primarily provide an initial detailed analysis of our algorithms,
and then add results from another data set to get an overall view.
Web search data. In order to show the benefit of running our
algorithms under a real-world search engine query load, we use
queries presented to the Yahoo! search engine. We use a query
load of around 1B queries spanning multiple days to decide what
intersections to pre-compute; the particular method used for this is
described later in Section 4.3. From the query load of subsequent
days we randomly select a set of 10,000 queries that we use to eval-
uate the performance of our algorithms. The search index used in
these experiments was constructed to simulate query execution on
a single machine in a distributed search system. We indexed a set
of around 16M randomly selected web pages.

In order to make our experiments conform closely to real-world
settings, we tried to simulate the effects of various types of caching
performed by commercial search engines. One of the most impor-
tant ones is results caching, where the top-k results of a frequently
occurring query are cached in order to avoid processing it repeat-
edly. Results caching affords enormous advantages to commercial
search engines and reduces the number of repeated queries seen by
the query processing system. This has a significant effect on the
distribution of queries that need to actually be executed; Figure 1
shows that the average length of unique queries is larger than the
average length of all queries. We approximate the effect of result
caching by eliminating duplicate queries from the query traces used
in our evaluation. (This is known to have a similar effect as com-
mon result caching policies.)

4.1.2 Measures
Following previous work on query processing systems we will

report our results using two intuitive measures of performance.

Figure 1: Query word distribution.
Number of sequential accesses (NSEQ). Recall that our algo-
rithms involve descending a set of posting lists that each order web
pages by the score of the corresponding term in the web page’s
ranking (scored by a relevance function such as the BM25 func-
tion). The NSEQ measure captures the number of times the cur-
sor is moved forward in the posting lists and provides a straight-
forward notion of efficiency for algorithms. Clearly smaller values
of NSEQ indicate better performance.
Number of random accesses (NRND). This measure only applies
to the TA algorithm and is the number of random lookups into lists.
Once again smaller values of NRND means better performance.
Each sequential accesses in TA can lead in one or more random
lookups, depending on whether the appropriate intersections are
available or not. Also, we do not count a lookup if the object we
look for already appeared earlier in a sorted access in another list.
Because of these reasons, there is no simple relationship between
NSEQ and NRND, and we report both for the case of TA. In gen-
eral, the cost of random accesses far outweighs the cost of sequen-
tial accesses; previous work has used factors of 100 to 1000 [19].

4.1.3 Baseline algorithms
Since we are combining two different paradigms — pre-aggre-

gating posting list intersections and early termination — for speed-
ing up query evaluation, we evaluate our approaches against three
baseline algorithms described below.
No intersections (NOINT). This baseline assumes that the pre-
aggregation of posting list intersections is unavailable, and that
early-termination algorithms like TA and NRA are run on the orig-
inal posting lists for the query terms. Comparing against this ap-
proach gives an idea of how well our algorithms exploit the inter-
section lists for early termination. The efficiency of this baseline is
evaluated in terms of the above two measures.
No early termination (NOET). In this baseline we perform full
query evaluation but assume that all possible intersections are avail-
able. Note that this baseline does not scan an original list if it is cov-
ered by an intersections — this only strengthens the baseline ver-
sus our algorithms. Our TA and NRA algorithms will scan both the
original and the intersection lists, since without scanning all lists
they would not remain instance optimal (Corollary 8). Also note
that the intersections of posting lists are typically much smaller in
size than the original lists. Hence, this baseline helps us isolate
the inherent advantage to query processing when intersections of
posting lists are available. The way we measure the performance
of this baseline depends on the algorithm with which it is com-
pared. When the baseline is compared with NRA, the NSEQ mea-
sure is computed as the sum of the sizes of all lists that together
cover all the query terms. When comparing against TA, we as-
sume that structures for random lookup into individual posting lists
are available to the baseline. In this case NSEQ is the size of the
shortest posting list (including intersections) and NRND is NSEQ
times the number of query terms not covered by the shortest post-

ing list. (This is meant to account for the ability of state-of-the-art
IR query processors to perform forward skips from the shortest into
the longer lists for improved efficiency.)

No intersections, no early termination (NOINTNOET). In this
baseline we apply full query evaluation in the absence of intersec-
tions of posting lists. The performance of this baseline is scored in
the same way as for the NOET baseline.

4.2 Detailed analysis of three-word queries
In this section we dive deep into analyzing three-word queries

on an inverted index created with the TREC GOV2 data set. Given
the published, clean nature of the data set, we hope that the results
of our experiments can be used by other researchers in future work.
All results reported in this section are obtained by averaging the
results of executing 100 three-word queries in various scenarios.
Note that for the cases of one and two available intersections, there
are three possible cases of which intersections are available. For
instance, for a query with terms {A,B,C} and one available inter-
section, this available intersection could be either AB, AC, or BC,
and performance might significantly vary between these cases. For
this reason, we report results by executing all three cases and aver-
aging the numbers.

For presentation of the results, we plot the relative performance
of the algorithms with respect to the baseline NOET. The rationale
for this is twofold. First, we would like to understand and quantify
the extent to which early termination helps even in the presence
of intersection lists that are potentially very small. Second, the
absolute performance of NOET is often so far off the scale that
including it as a curve along with the other algorithms would make
the plots less readable.

Figures 2(a) and 2(b) show the performance of TA on three-word
queries. The first thing to notice is that the baseline NOINT is
orders of magnitude worse than having even a single intersection
list for both NSEQ and NRND for TA. Furthermore, additional in-
tersection lists offer a pronounced improvement; even going from
two intersections to three intersections results in a non-negligible
speedup. Second, observe the y-axis of the plots: Since we are
comparing the measures relative to NOET, even with three inter-
section lists, early termination has tremendous benefits with respect
to the NSEQ and NRND measures. Thus, having intersections only
has limited benefits, and adding early termination to the intersec-
tions results in significant additional improvements. The third as-
pect to note is that as more intersections are available, even compu-
tation of top-k results for larger values of k is highly efficient, with
a graceful degradation as k increases.

Figure 2(c) shows a similar plot for the performance of the more
realistic NRA algorithm on three-word queries. In this case, we
only have one measure, for sequential accesses (NSEQ). While the
overall trends follow the TA experiment, there are some crucial dif-
ferences. First, the gap between using no intersection lists and us-
ing one intersection list is less pronounced than in the TA case.
Second, the gap between, say, using one intersection list and two
intersection lists is more pronounced. In other words, the bene-
fits of more intersections is more significant. The third important
point to notice is the y-axis: For large values of k, the baseline
NOET actually performs better than early-termination algorithms
with intersection. (Recall that NOET scans only the intersection
lists, whereas NRA scans both the original and intersection lists.)
In other words, for NRA using only intersections is more beneficial
than doing early termination with no intersections (or one intersec-
tion, for k = 100), while for TA the opposite is true. Both TA
and NRA, however, benefit from combining intersections and early
termination, with TA achieving more significant improvements.

(a) Algorithm: TA, Measure: NSEQ (b) Algorithm: TA, Measure: NRND (c) Algorithm: NRA, Measure: NSEQ

Figure 2: Performance of TA and NRA on three-word queries on the TREC GOV2 data set. The values on the y-axis are the ratio of
the NSEQ and NRND values of the early-termination algorithms and the corresponding values for the NOET baseline.

(a) Algorithm: TA, Measure: NSEQ (b) Algorithm: TA, Measure: NRND (c) Algorithm: NRA, Measure: NSEQ

Figure 3: Performance of our early-termination approaches compared with full query execution (NOET). The x-axis represents
different amounts of precomputed intersection list data. The total index consisted of about 2.2B postings, and thus the rightmost set
of bars means an increase in index size by about a factor of 2. We note here that NOET is also subjected to the limit on available
intersections, while in Figure 2 it had access to all possible intersections.

4.3 Results on a web search index
In this section we evaluate the performance of our early-termination

algorithms on the web search data set described in Section 4.1.
Intersection selection methodology. In order to select a good set
of posting list intersections that are precomputed, we used a query
load of 1B queries seen over multiple days at the Yahoo! search en-
gine. The algorithm we used to select the posting lists to intersect
and cache is a slightly modified version of the offline algorithm
by Long and Suel [14]. The original algorithm is used to select
projections to maintain in a cache and hence considers the benefit
given by replacing a posting list by its projection. In our current
application we replace this measure by the benefit of replacing two
posting lists by their intersection. In other respects the algorithm is
exactly the same. We want to isolate the improvement obtained by
using the intersections with our approach and hence do not inves-
tigate sophisticated ways of selecting posting lists to intersect and
store. This way we can factor out the benefits of a sophisticated in-
tersection selection approach and just showcase the benefits of our
approach to processing the intersections. Note that the above men-
tioned methodology can be applied to select both full intersections
as well as fixed size prefixes of intersections.

Given the above algorithm to select intersections, the experimen-
tal setup is as follows. We fix the size of the cache and fill it with
intersections chosen according to the above algorithm. We then
run our versions of TA and NRA (both using matching-based up-
per bounds) to process a test set of 10,000 queries randomly sam-
pled from the Yahoo! search engine query logs. While executing
these queries, the generalized TA and NRA algorithms are allowed
to take advantage of all intersection lists available in the cache.

Comparison with baselines. In Figures 3(a) and 3(b) we plot the
performance of our TA algorithm when run with various numbers
of intersection lists. The performance numbers are in terms of the
raw NSEQ and NRND values averaged over the test query trace
and are plotted against increasing sizes of the intersections cache.
In all our plots the size of the intersections cache is expressed in
terms of number of posting list elements. The three bars corre-
spond to the NOET baseline, and TA for top-10 and top-100 doc-
uments. Note that the left-most bar in both plots correspond to
running NOET in the absence of any intersection lists, which is the
same as running the NOINTNOET baseline. A similar graph dis-
playing the NSEQ values for our NRA algorithm is in Figure 3(c).

We can see from the plots that for top-10 query processing un-
der all settings of sequential/random access and different amounts
of available intersections, our algorithms significantly outperform
the baseline. For example, when we run our TA algorithm with
a cache size of around 560M postings, we perform an average of
80% fewer sequential accesses (NSEQ) and 70% fewer random ac-
cesses (NRND) than the NOINTNOET baseline. For the case of
performing NRA with the same sized intersection cache the NSEQ
measure is reduced by an average of 37%. Moreover, the perfor-
mance of TA/NRA continues to improve as we increase the number
of term intersections that we cache.

For the NOET baseline, the improvement over the NOINTNOET
baseline for 560M postings is around 34% (NSEQ) and 45% (NRND)
in the TA setting and 27% for NSEQ in the NRA setting. These
numbers are significantly smaller than the corresponding numbers
for our algorithms, highlighting that caching intersections is not
enough by itself and that adding early termination gives significant
additional benefits. For the NOINT baseline, performance improve-

(a) Algorithm: TA, Measure: NSEQ (b) Algorithm: TA, Measure: NRND (c) Algorithm: NRA, Measure: NSEQ

Figure 4: Performance of our algorithms when using matching-based upper-bound computation, relative to performance when using
approximation algorithm-based upper-bound computation. That is, the values on y-axis of (a) are the ratio of NSEQ of TA using
matching-based upper bounds and NSEQ of TA using the approximation algorithm.

ments from only performing early termination are 70% (NSEQ)
and 50% (NRND) for TA and 18% (NSEQ) for NRA. Once again
these numbers are lower than the improvements in performance
seen by our approach.

These results are significant in practice because of two reasons.
First, as we mentioned earlier, our approach to selecting the in-
tersection lists is quite naive. Using better methods, we could
not only increase the coverage of intersection lists, i.e., the frac-
tion of queries that have access to at least one intersection list, but
also choose those intersections that will yield the highest value in
terms of performance. Second, in these experiments we retained
the whole intersection list. In practice, a prefix of the intersection
list should usually suffice for early termination purposes. Pruning
frees up space to store even more intersections, and therefore can
boost the performance even further. Later in this section we per-
form some initial naive experiments to show that caching prefixes
of intersection lists helps us get further performance improvements.

The results for top-100 query evaluation are overall similar. For
the NRA setting, our algorithm improves upon NOINTNOET by
35% (with 560M intersection postings), outperforming the other
baseline methods. The baselines NOINT and NOET show improve-
ments of only 14% and 27% respectively. However, for large values
of k the benefits of early termination decrease, and the performance
of TA can sometimes be worse than that of the NOET baseline. We
observed the same behavior in top-100 query evaluation in our ex-
periments with the GOV2 data set (Figure 2). As explained, since
our algorithms need to perform sequential access on all available
lists to remain instance optimal, sometimes the number of accesses
can be larger than for full query evaluation. This usually happens
when some lists consistently provide leads to web pages that do
not make it into the top-k results. This raises a question that we
investigate next.

Is it necessary to scan all posting lists? In Corollary 8, we showed
that any algorithm that works with intersection lists has to scan all
of the lists in order to remain instance optimal. However, does this
worst-case result hold in practice? What if an algorithm tries to
be clever and examines only the intersection lists (since they are
smaller) plus those original lists that are not covered by an inter-
section? We compared the performance of this algorithm, called
sub-TA, against our generalized TA algorithm on the same data set,
with 560M postings of intersection data and computing top-10 re-
sults. It turns out that sub-TA is better than TA for 89% of the
queries. In those cases, the average difference in NRND is 4,558.
This validates the belief that in majority of cases, it is not necessary
to examine all the original input lists. However, in the remaining
11% of the cases when TA performs far better than sub-TA; the av-
erage difference in NRND is 127,152. This shows that even though

sub-TA might cut down random accesses on a majority of the cases,
in the cases where it loses to TA, it loses very badly, and the average
performance of sub-TA is worse than that of TA. Thus, the worst-
case scenarios painted in Corollary 8 can actually occur in practice,
and if all the original lists were not scanned a lot of accesses may
be required to unearth a good result.

Performance of approximation based upper-bound computa-
tion. Our TA and NRA algorithms need to compute upper bounds
on the score that can be achieved by any pages that have not yet
been encountered in the posting lists. In Section 3, we presented
an exact combinatorial algorithm based on minimum cost perfect
matching, and a simple 2-approximation algorithm for (3). Us-
ing the approximation algorithm for upper bounds gives us a small
gain in speed during early termination execution, but the gain is low
since matching is typically computed on a small graph and only ex-
ecuted every few steps instead of each time. However, the overes-
timation of the upper bound by the approximation algorithm could
hurt us by delaying termination of the algorithm, and thus lead to a
larger number of sequential (and random) accesses. Here we per-
form experiments to verify if it is worth substituting the matching-
based approach for the 2-approximation algorithm when ` = 2.

In Figures 4(a)-4(c) we compare the performance of TA and
NRA with matching-based and approximate upper-bound compu-
tations. The x-axis once again represents the amount of space al-
located for intersections. The y-axis shows the ratio of the perfor-
mance of the matching-based algorithm to the performance of the
approximation. Recall that an approximation factor on the upper
bounds does not translate into an approximation factor on the total
performance. Indeed, when the number of postings (and hence in-
tersection lists) cached is large, the approximation-based TA does
almost three times more work than the matching-based TA.

Recall that the extra intersections improve the performance of re-
trieval algorithms in two ways. First, the intersection lists help the
algorithm discover new elements (an element xmay be far down in
lists Li and Lj , but near the top in list Li,j). Second, the intersec-
tion lists improve the bounds on the unseen elements as computed
by the mathematical program. A careful analysis of the approxima-
tion based approach shows that its improvement comes solely from
discovering new elements, and that the upper bounds calculated do
not even take into account the scores seen in the intersection lists.
Thus Figures 4(a)-4(c) show us the extra power gained by com-
puting tighter bounds. Overall, the improvement in performance is
well worth the small amount of additional time needed to compute
the exact solution to (3) once every 100 or more steps.

Performance when caching prefixes of intersections. As we men-
tioned earlier, we expect that the performance of our algorithms in
real-world settings can be further improved if we cache prefixes as

Figure 5: Performance of TA and NRA when prefixes of inter-
sections are cached. The x-axis denotes the size of the prefixes.
This experiment was performed with a cache size of 560M post-
ings for top-10 results. Values on y-axis are the performance of
our algorithms with prefixes of the indicated size relative to the
performance with full intersections.

opposed to full intersections. Here, we perform preliminary exper-
iments to support this assertion. As before, our objective is not to
provide the best way to pick which intersections and what length
of prefixes to cache, but to isolate the performance boosts afforded
by our algorithms in the presence of prefixes. In the experiments,
we fixed the size of the intersection cache to 560M postings. For
each experiment, we fill the cache with prefixes of intersections of a
fixed specified size. The scheme to pick intersections is the same as
the one mentioned above, which relies on the the offline algorithm
in [14]. Then, as before we execute our test set of 10,000 queries
using our generalized TA and NRA algorithms using matching-
based upper bounds.

Figure 5 plots the performance of our TA and NRA algorithms
on the top-10 task. The x-axis denotes the different sizes of the pre-
fixes, and the y-axis shows the ratio of the performance of TA/NRA
when using these prefixes to the performance when using full in-
tersections. As we can see, using only prefixes of a smaller length,
we get lower values of NSEQ and NRND indicating better per-
formance. When caching prefixes of size 5K, the TA algorithm
needs on average half as many accesses (both NSEQ and NRND)
to find the top-10, while the performance of NRA improves by only
10%. The intuition behind this result is that early-termination al-
gorithms typically only access a small prefix of cached intersection
lists. Caching smaller prefixes then means that we can use the re-
maining space to pre-aggregate more intersections, and thus have a
better chance of having one or more useful intersections available
for a query. If, however, the prefix size we select is too small, then
performance decreases because such prefixes are not long enough
to help algorithms terminate faster. This phenomenon is seen in
Figure 5 at prefix size 1K where the performance of TA becomes
worse than that with full intersections. This experiment indicates
that a more careful selection of intersections and prefix sizes could
result in significant additional improvements.

5. CONCLUSIONS AND FUTURE WORK
In this paper we obtained generalizations of the TA and NRA

algorithms to the case when some pre-aggregated intersections of
postings lists are available in addition to the original lists. Our
generalization is based on computing appropriate upper and lower
bounds implied by the available information, using a mathematical
program. For the special case of the addition aggregation function,
we obtain a matching-based algorithm for pairwise intersections,
and a linear program (that can be approximated) for intersections
over larger numbers of lists.

We conducted experiments on indices built using the TREC GOV2
data set and a few million randomly selected web pages from a

search engine. Through an in-depth analysis of our algorithms on
real-world query traces, we quantified the gains of both early ter-
mination and intersection lists. We showed that combining both
techniques results in significant performance gains over each indi-
vidual technique.

In terms of future work, an interesting open problem is to obtain
a combinatorial algorithm for determining the stopping condition
for the ` > 2 case. We would also like to characterize cases when
it is acceptable in practice to not scan all the intersections and orig-
inal lists. Finally, a good solution to the problem of which inter-
sections and which sizes of prefixes to cache might give significant
additional improvements.
Acknowledgments. We thank Prabhakar Raghavan, Eva Tardos,
and David Williamson for useful pointers.

6. REFERENCES
[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective

early termination. In Proc. 24th SIGIR, pages 35–42, 2001.
[2] V. N. Anh and A. Moffat. Compressed inverted files with reduced decoding

overheads. In Proc. 21st SIGIR, pages 290–297, 1998.
[3] V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed impact

scores. In Proc. 29th SIGIR, pages 372–379, 2006.
[4] B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan, P. Keleher, and B. Silaghi.

Efficient peer-to-peer searches using result-caching. In Proc. 2nd IWP2PS,
2003.

[5] C. Buckley and A. F. Lewit. Optimization of inverted vector searches. In Proc.
8th SIGIR, pages 970–110, 1985.

[6] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k
queries using views. In Proc. 32nd VLDB, pages 451–462, 2006.

[7] R. Fagin. Combining fuzzy information from multiple systems. JCSS,
58(1):83–99, 1999.

[8] R. Fagin. Combining fuzzy information: An overview. SIGMOD Record,
31(2):109–118, 2002.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. JCSS, 66(4):614–656, 2003.

[10] U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for
image databases. In Proc. 26th VLDB, pages 419–428, 2000.

[11] D. Harman and G. Candela. Retrieving records from a gigabyte of text on a
mini-computer using statistical ranking. JASIS, 41(8):581–589, 1990.

[12] R. Kaushik, R. Krishnamurthy, J. Naughton, and R. Ramakrishnan. On the
integration of structure indexes and inverted lists. In Proc. SIGMOD, pages
779–790, 2004.

[13] X. Long and T. Suel. Optimized query execution in large search engines with
global page ordering. In Proc. 29th VLDB, pages 129–140, 2003.

[14] X. Long and T. Suel. Three-level caching for efficient query processing in large
web search engines. In Proc. 14th WWW, pages 257–266, 2005.

[15] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[16] S. Nepal and M. V. Ramakrishna. Query processing issues in image
(multimedia) databases. In Proc. 15th ICDE, pages 22–29, 1999.

[17] A. Ntoulas and J. Cho. Pruning policies for two-tiered inverted index with
correctness guarantee. In Proc. 30th SIGIR, pages 191–198, 2007.

[18] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with
frequency-sorted indexes. JASIS, 47(10):749–764, 1996.

[19] R. Schenkel, A. Broschart, S. Hwang, M. Theobald, and G. Weikum. Efficient
text proximity search. In Proc. 14th SPIRE, pages 287–299, 2007.

[20] A. Schrijver. Combinatorial Optimization. Springer, 2003.
[21] A. Soffer, D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, and Y. S.

Maarek. Static index pruning for information retrieval systems. In Proc. 24th
SIGIR, pages 43–50, 2001.

[22] H. R. Turtle and J. Flood. Query evaluation: Strategies and optimizations. IPM,
31(6):831–850, 1995.

[23] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with combined
indexes. ACM TOIS, 22(4):573–594, 2004.

[24] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes. Morgan
Kaufmann, 1999.

[25] W. Wong and D. Lee. Implementation of partial document ranking using
inverted files. IPM, 29(5):647–669, 1993.

[26] J. Zhang and T. Suel. Efficient query evaluation on large textual collections in a
peer-to-peer environment. In Proc. 5th P2P, pages 225–233, 2005.

[27] J. Zhang and T. Suel. Optimized inverted list assignment in distributed search
engine architectures. In Proc. 21st IPDPS, pages 1–10, 2007.

