
ODISSEA: A Peer-to-Peer Architecture
for Scalable Web Search and Information Retrieval

Torsten Suel � Chandan Mathur Jo-Wen Wu Jiangong Zhang
Alex Delis Mehdi Kharrazi Xiaohui Long Kulesh Shanmugasundaram

Department of Computer and Information Science
Polytechnic University
Brooklyn, NY 11201

1. INTRODUCTION
Most major search engines are currently based on cluster archi-

tectures, with large numbers of low-cost servers located at one or
a few locations and connected by high-speed LANs [2]. Recently,
there has been a lot of interest in using peer-to-peer (P2P) archi-
tectures to provide large-scale services, and several groups have
proposed scalable substrates for P2P applications [9, 11, 13, 14].

Here, we study the problem of building a P2P-based search en-
gine for massive document collections on top of such a substrate.
We describe a prototype system called ODISSEA (Open DIStributed
Search Engine Architecture) that is currently under development in
our group. ODISSEA provides a highly distributed global indexing
and query execution service that can be used for content residing
inside or outside of a P2P network. ODISSEA is different from
most other approaches to P2P search in that it assumes a two-tier
search engine architecture and a global index structure that is dis-
tributed over the nodes of the system. In this short paper, we give
an overview of the proposed system and discuss some basic design
choices. We also discuss some preliminary simulation results for
distributed query processing on a terabyte-size web page collection
that indicate good scalability for our approach.

2. ODISSEA DESIGN OVERVIEW
ODISSEA is a distributed global indexing and query execution

service, i.e., a system that maintains a global index structure un-
der document insertions and updates and node joins and failures,
and that executes simple but general classes of search queries in
an efficient manner. This system provides the lower tier of a pro-
posed two-tier search infrastructure. In the upper tier, there are two
classes of clients that interact with this P2P-based lower tier:

1. Update clients insert new or updated documents into the sys-
tem, which stores and indexes them. Update client could be
crawlers inserting crawled pages, web servers pushing docu-
ments into the index, or nodes in a file sharing system.

2. Query clients design optimized query execution plans, based
on statistics about term frequencies and correlations, and is-
sue them to the lower tier. Ideally, query clients should be
able to use or implement various different ranking methods.

There are two main differences that distinguish ODISSEA from
other P2P search systems. First, the assumption of a two-tier ar-
chitecture that aims to give as much freedom as possible to clients

�

Contact author. Email: suel@poly.edu. Research partly sup-
ported by NSF CAREER Award NSF CCR-0093400.
Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

to implement their own policies. The second difference is our as-
sumption of a global inverted index structure. Most current ap-
proaches (see [10] for an exception) for P2P search assume a local
index, where each node maintains an index for its local documents,
and queries have to be broadcast to all, or usually at least a signifi-
cant fraction, of the nodes, in order to get the best results.

http://poly.edu index://chair

ODISSEA
WWW

Search
Server

Crawler
Client

Client
queries

index://table

queries

Figure 1: ODISSEA as a web search infrastructure, with a web
crawler as update client, and a client-based and a web service-
based search client.

Figure 1 shows the basic design. We decided to implement the
system on top of an underlying global address space provided by a
DHT structure, in particular Pastry [11]. Each object is identified
by a hash of its name, where the name is the URL of a document
or a string such as index://chair for the index structure for
the term “chair”, and is assigned a location determined by the DHT
mapping scheme. Thus, the only way to move an object is to re-
name it, resulting in a mapping to a random other node.

We have four main applications that motivate our research:

(1) to provide full-text search facilities for large document col-
lections within P2P communities.

(2) to search document collections in large intranet environments.
(3) to build a P2P-based search infrastructure for the web as an

alternative to the major search engines. (This was our initial
and probably most ambitious application.)

(4) for use as “middleware” on top of a system of local indexes
that periodically insert postings into the global index for faster
processing of certain types of queries.

3. DISCUSSION AND JUSTIFICATION
Two-tier approach: Given the increases in speed and bandwidth

of desktop systems, we see the potential for a rich variety of novel
search tools and interfaces that exploit client computing resources,



and that rely on a powerful lower-level web search infrastructure.
These tools may perform a large number of web server or search en-
gine accesses during a single user interaction, in order to prefetch,
analyze, aggregate, and render content from various sources. Early
examples of client-based tools are the Alexa and Google Toolbars,
Leticia and PowerScout [7], or tools built with the Google API.

The proposed system would provide such a lower-level search
infrastructure, with an powerful open and agnostic API that is ac-
cessed by client- and proxy-based tools. By agnostic, we mean an
API that is not limited to a single method for ranking pages (e.g.,
the Google API, which returns pages according to Google’s rank-
ing strategy), but that allows clients to implement their own rank-
ing. There clearly are limits and trade-offs to this goal. The most
general solution of performing the ranking at the client requires
large amounts of data to be transferred. On the other hand, we be-
lieve that limited but powerful classes of ranking functions can be
supported by providing appropriate “hooks” in the system.

Global vs. local index: In a local index organization, each node
creates its own index for its locally stored documents. Thus, each
node has its own postings list for common words such as “chair” or
“table”, and a query “chair table” is broadcast to all nodes and then
the results are combined. In a global index organization, each node
holds a global postings list for a subset of the words, as determined,
e.g., by hashing. Thus, a query “chair table” is first routed to the
node holding the list for “chair” (the shorter list), which then sends
its complete list to the node holding “table”.

The main problem with local indexes is that all or most nodes are
contacted for most queries, and thus they are unlikely to scale be-
yond a few hundred nodes. There have been attempts to overcome
this issue by routing queries only to nodes likely to have good re-
sults or those in the vicinity [6, 12, 4]. However, we do not believe
that this approach will work well if result quality is a major con-
cern. To see this, consider the current web, where an approach
based on local indexes at each site would be either extremely inef-
ficient or give very poor answers.

With a global index, on the other hand, large amounts of data
are transmitted, since large document collections result in lists of
megabytes or more for many common words. This problem has led
some people to reject global indexes as unrealistic for environments
with limited bandwidth. However, we believe this problem can be
overcome with smart algorithmic techniques. One technique was
recently described in [10], where Bloom filters are used to decrease
the cost of intersecting lists over the network, though this only im-
proves results by a small factor. We are currently experimenting
with distributed query execution algorithms based on ideas by Fa-
gin and others [5] that asymptotically reduce communication. We
believe that these techniques, combined with good query optimiza-
tion, will allow interactive response times on terabyte data sets.

4. QUERY PROCESSING IN ODISSEA
Search engines typically process queries by computing a score

for each document containing all the query terms, and then return-
ing the

�
documents with the highest score. There are many factors

that may contribute to this score, including standard term-based
scores, global page scores due to Pagerank [3] and similar meth-
ods, or distances between search terms in the documents. The sim-
plest approach is to evaluate the score function for all documents
in the intersection of the inverted lists for the search terms, result-
ing in transmissions of multiple megabytes. However, recent work
by several groups [5] shows how to evaluate top-

�
queries without

scanning over the entire intersection. The algorithms, originally
proposed for multimedia queries (e.g., image retrieval) presort the
inverted lists by the term-specific scores that contribute to the fi-

nal score, and then attempt to determine the top
�

results by only
accessing a small prefix of the lists and performing a limited num-
ber of random lookups on the list. We note that slightly similar
techniques has also been proposed in the IR community [1, 8], but
these usually access a much larger fraction of each list as they seek
to avoid any random lookups.

shortest 20% middle 20% longest 20%

Lists 20,277 401,553 4,859,241
A to B 3,229 12,902 3,508
B to A 2,502 7,256 3,223
Total bytes sent 45,847 161,267 53,850
Time in ms 629 1,206 669

Table 1: Communication costs of the protocol.

We have designed a simple distributed protocol based on these
techniques, and have measured the performance of this protocol
based on a trace from the Excite web search engine and a real data
set of ����� million web pages that we crawled from the web. Table 1
shows average results for ����� queries with two keywords, exclud-
ing stop words. There are three columns of data, corresponding
to queries with a very small, median, and very large length of the
shorter of the two lists. The first line shows the average length
of the shorter lists, which is the cost of the basic algorithm. The
next lines show the number of postings sent from the shorter to
the longer list, and vice versa. The final two lines were computed
by assuming � bytes per posting, a total latency of 	
��� ms for the
two messages, and a bandwidth of ����� KB/s. The score function
used was a standard cosine measure, and similar results are ob-
tained when including a normalized Pagerank score.

5. REFERENCES
[1] V. Anh, O. Kretser, and A. Moffat. Vector-space ranking with

effective early termination. In Proc. of the 24th Annual SIGIR Conf.,
pages 35–42, 2001.

[2] E. Brewer. Lessons from giant scale services. IEEE Internet
Computing, pages 46–55, August 2001.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Proc. of the Seventh World Wide Web Conf., 1998.

[4] F. Cuenca-Acuna and T. Nguyen. Text-based content search and
retrieval in ad hoc p2p communities. In Proc. of The Int. Workshop
on Peer-to-Peer Computing, May 2002.

[5] R. Fagin. Combining fuzzy information: an overview. SIGMOD
Record, 31(2):109–118, June 2002.

[6] A. Kronfol. FASD: a fault-tolerant, adaptive, scalable, distributed
search engine. June 2002. Unpub. manuscript.

[7] H. Lieberman, C. Fry, and L. Weitzman. Exploring the web with
reconnaissance agents. Comm. of the ACM, 44(8), August 2001.

[8] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval
with frequency-sorted indexes. J. of the American Society for
Information Science, 47(10):749–764, May 1996.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proc. of the ACM
SIGCOMM Conf., 2001.

[10] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword
searching. February 2002. Unpublished manuscript.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Int. Conf. on Distributed Systems Platforms, 2001.

[12] Y. Shen and D. L. Lee. An mdp-based peer-to-peer search server
network. In Proc. of the 3th International Conf. on Web Information
Systems Engineering, pages 269–278, 2002.

[13] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. of ACM SIGCOMM Conf., 2001.

[14] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. TR
UCB//CSD-01-1141, UC Berkeley, 2000.


