
processor. Using simple geometric arguments, it can be shown that all of these elementsreach their destination row in time.Next, consider the set of elements that have to travel a distance between n=4 and 3n=8.There are � n=8 of these elements, and they will leave the topmost processor between timen=2 and time 3n=4. It can be shown that these elements also reach their destination row intime. Similarly, it can be shown that the set of elements that have to travel a distance ofless than 3n=16 can be routed to their destination rows between time 3n=4 and time n. Theremaining problem is now to �nd a way to route those elements that have to travel a distancebetween 3n=16 and n=4. We can solve this problem by observing that the capacity reservedfor the column elements between time n=2 and 3n=4 is not completely used up by theseelements. The reason is that the rows from which the column elements turn into the columnare evenly distributed over the topmost n=4 rows of the quadrant. Hence, many of the slotsreserved for these elements will not be immediately claimed by the column elements, and wecan use these empty slots to route row elements that only have to travel a short distance.It can be shown that all remaining row elements can be routed in this way, and that theyreach their destination row in time.This proves that all packets reach their destination row in time under distribution �1.A similar argument can be given for distribution �2. 2
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are given by the destination rows, while the priorities of the elements are determined bythe total Manhattan distances to the destination blocks. We identify every processor in thelower right quadrant by a pair of coordinates (x; y), where (0; 0) denotes the center of themesh and (n=2�1; 0) denotes the upper right corner of the quadrant. Only the n=4 columnspassing through the upper left subquadrant are used in this phase. Note that the routingin column i, 0 � i < n=4, is started i steps after the routing in column 0. It can be shownthat the time for routing the row elements in column n=4 � 1 to their destination blocksgives an upper bound for the time it would take to route the same set of elements in anyother column, within a lower order additive term. Hence, in the following we will limit ourattention to the routing in column n=4 � 1.By Claim (1), we know that there are � n=2 row elements in the topmost n=4 processorsof the column, and that the destinations of these elements are evenly distributed over alldestination blocks in the quadrant. However, we do not know anything about the distributionof these elements inside the column at the beginning of the routing. Some processors couldhold up to 8 row elements, while others could have none. In the following, we will limitour attention to the following two distributions of the elements inside the column. In the�rst distribution �1, all � n=2 elements are initially located in the topmost processor of thecolumn, with coordinates (n=4� 1; 0). In the second distribution �2, all � n=2 elements areinitially located in processor (n=4 � 1; n=4 � 1). Note that neither �1 nor �2 can actuallyoccur in the algorithm, since a single processor will have at most 8 row elements at thebeginning of the routing. We consider these two distributions here because they provide anupper bound for the routing time of all other distributions. More precisely, the following canbe shown. Let � be an arbitrary distribution of the elements in the column, and let T (e;�)denote the time to route an element e to its destination row under distribution �. Then itcan be shown that the inequality T (e;�) � maxfT (e;�1); T (e;�2)g holds for all elementse. Thus, if all packets arrive at their destination rows in time under both �1 and �2, thenthey will also arrive in time under any other distribution.Now consider distribution �1, where initially all � n=2 elements are located in thetopmost processor of the column. The Start signal will arrive at this processor n=4�1 stepsafter it was broadcast from the center. Now the elements will start moving towards theirdestination row, where priority is given to those elements that have the farthest distance totravel. In any step up to time n=2, one row element will leave the topmost processor andmove towards its destination row. Once an element has started moving, it will not be delayeduntil it reaches its destination row. Between time n=2 and 3n=4, only one row element willleave the topmost processor in any two consecutive steps, and from time 3n=4 to the end ofthe routing, three elements will leave the topmost processor in any four consecutive steps.As before, an element will move to its destination row without being delayed once it has leftthe topmost processor.Now consider the set of elements that have to travel a total distance of at least 3n=8.Due to Claim (1), there will be � n=4 such elements in the column. Since these elementshave a higher priority than the rest, all these elements will leave the topmost processorbetween time n=4 and n=2. By Claim (1), the destination blocks of these elements areevenly distributed over the area of the quadrant that is at least 3n=8 away from the topmost30



destinations of these elements are evenly distributed among all destination blocks in thatcolumn.Proof: Since the accuracy of the splitters is O(n2��), every destination block will receiven2��O(n2��) elements. By Lemma 4.2, approximately half of these elements will be columnelements. It was shown in the proof of Claim (2) that in any block of n� consecutive rows,� 2n2��1 column elements of any particular destination block turn into any of the n� columnspassing through that block. Multiplying this by the number of blocks of n� consecutive rowsin the subquadrant (which is 14n1��), we conclude that every column receives� 12n� elementswith any particular destination block. Multiplying this term by the number of destinationblocks in the same column (which is 12n1��), we can infer that every column receives � n4elements. 2Claim (4): If a row element reaches its destination row by time n � r + o(n), where r isthe distance it has to travel inside the destination row, then the element will arrive at itsdestination block by time n+ o(n).Proof: (Sketch) Consider a routing problem on a linear array with n=2 processors andn=2 packets, where each processor is the destination of exactly one packet. It is well knownthat a greedy routing strategy that gives priority to the packets with farther distance totravel will deliver all packets within time n=2 � 1, even if processors may initially hold anarbitrary number of packets (see, for example, [20, Section 1.7.1]). It can be shown by asimple induction on the number of routing steps that this remains true even if we imposethe additional constraint that a packet may not move before time n=2 � r, where r is thedistance the packet has to travel. We can interpret the routing of the column elements insidethe column as such a routing problem on a linear array that is started at time n=2 + o(n).In this case, we have n=2 processors, but only n=4 packets. Hence, half of the capacity willsu�ce to route all packets. Since the routing problem has the additional properties that allpackets start in the �rst n=4 processors, and that the destinations of the packets in everylarge block of processors are evenly distributed over the entire array, it can be shown thatthe capacity required for this routing problem can be reduced to a quarter after the �rst n=4steps. 2We have now established that the elements will reach their destination blocks by timen+ o(n), provided that they are not delayed too much in the �rst phase of the routing. Theremainder of the proof will give an analysis of this �rst phase, in which the row elements arerouted inside their column. The lemma then follows immediately from Claim (4) and thefollowing result.Claim (5): Every row element will reach its destination row by time n� r + o(n), where ris the distance the element has to travel in the destination row.Proof: (Sketch) Note that the routing of the row elements inside any particular column isindependent of the routing in any other column. Thus, we can interpret this routing phaseas a routing problem on a linear array, where the destinations of the elements in the array29



destination block D will di�er by at most 316n2�2� between the row elements in any columnof blocks and the column elements in any row of blocks of the subquadrant. After all 16subquadrants have been overlapped into a single subquadrant, this becomes 3n2�2� = o(n�).Hence, in each block of size n��n�, the sorting in Step (8a) has the e�ect of distributing therow elements with destination block D evenly over the n� columns, and the column elementsevenly over the n� rows, up to a di�erence of one. Since there are 12n1�� such blocks ineach column of blocks in the quadrant, the number of elements destined to any particulardestination block will di�er by at most 12n1�� between the row elements in any column andthe column elements in any row. Since there are only 14n2�2� destination blocks in eachquadrant, every column will have n2 �O(n3���2�) row elements. 2Claim (2): The queue size remains constant during the routing in Step (9).Proof: The proof of this claim is similar to the argument of Subsection 3.2. Assumethe same assignment of o�set values to the counters as in the routing algorithm. It followsfrom Claim (1) that every column contains � 2n2��1 elements destined for any particulardestination block. Hence, the counter technique will guarantee that at most 2 row elementsturn into a row in any processor. More precisely, if every column were to contain exactly2n2��1 elements for each destination block, then exactly one row element would turn in anyprocessor, since no two counters corresponding to the same column and the same row ofdestination blocks would ever have the same value. Due to the low-order variations in thenumber of elements, we get a bit of overlap between the counters.Next, we have to show that the initial assignment of values to the counters ensures thatnot too many row elements enter their destination block across the same row. Consider a�xed destination block D, and any set of n� consecutive columns. We will show that thevalues assumed by those 2n� counters in our set of columns that correspond to destinationblock D are evenly distributed from 0 to n��1. Note that the initial values of these countersare evenly distributed from 0 to n� � 1. Claim (1) can then be used to show that � 2n2��1elements with destination block D turn into any particular row. Hence, � 12n� elementsenter destination block D through any particular row. If, after entering D, each elementstops in the �rst processor that has not yet received a row element, then every processorin D will receive at most one row element. This proves that the routing step achieves aconstant queue size. 2Note that in the rest of the sorting algorithm the maximumqueue size is clearly boundedby some constant � 16. At the beginning of Step (9), some processors can hold up to 16elements. During the �rst phase of the routing, some processors may temporarily have tohold up to 18 packets. In addition, up to 2 row elements and up to 2 column elements mighthave to turn in the processor. Also, a processor could become the destination of at most onerow element and one column element in the second phase of the routing. Another memoryslot will be needed for the broadcast of the exact splitter ranks in Step (10) of the algorithm.Thus, the total queue size is bounded by 25. This bound could probably be slightly improvedby a more careful analysis and implementation.Claim (3): Every column receives � n=4 column elements in the second phase, and the28



A Proof of Lemma 4.5Lemma 4.5 The greedy routing to destination blocks in Step (9) runs in time n+ o(n) withconstant queue size.Proof: The routing in Step (9) is initiated by a Start signal that is broadcast from thecenter of the mesh at time n+ o(n). All time bounds stated in the following are with respectto the moment at which this signal was sent out. In the following analysis of the routing,we will restrict our attention to the lower right quadrant of the mesh.As stated in the algorithm, we will assume the same routing scheme as in the optimalrandomized algorithm. In this scheme, every element moves to its destination block in twophases. In the �rst phase, row elements move inside their current column to their destinationrow, while column elements move inside their current row to their destination column. Inthe second phase, the elements move to their destination blocks. If several packets that arein the same phase contend for an edge, priority will be given to the element with the farthestdistance to travel. In the following, we will only consider the routing of the row elementsduring their �rst phase, and the routing of the column elements during their second phase.Thus, we will only be concerned with the problem of routing inside the columns; a symmetricargument holds for the routing inside the rows.Until time 0:5n, we reserve the entire edge capacity of the columns for row elementsthat are in their �rst phase. At time 0:5n, we start reserving half of the bandwidth of eachcolumn for column elements in their second phase. More precisely, starting at time 0:5n, wereserve half of the capacity of the topmost column edge for column elements in their secondphase. Starting in the next step, we reserve half of the capacity of the next column edge forthe column elements, until at time 0:75n all column edges in the center subquadrant T3 havehalf of their capacity reserved for the column elements. At time 0:75n, we start reservingonly a quarter of the capacity for column elements. As before, this change is initially appliedonly in the topmost column, and then propagated downwards. It will be seen that thisguarantees that, once an element has started moving, it will never be delayed until it reachesits destination.Assuming the above routing scheme, we establish Lemma 4.5 through a series of �veclaims. The proof of Claim (5) is based on an informal explanation of the correspondingproof for the optimal randomized sorting algorithm in [6], given to the author by ChristosKaklamanis.Claim (1): During the �rst phase of the routing, there are n2 � o(n) row elements in each ofthe leftmost n=4 columns of the quadrant, and the destinations of the row elements in eachcolumn are evenly distributed over all destination blocks.Proof: Consider any �xed subquadrant of the mesh after Step (3) of the algorithm. ByLemma 4.2, the number of row elements in the subquadrant that are destined to a particularn� � n� destination block di�ers by at most 116n2�2� from the number of column elementsdestined to that block. Lemma 4.1 then guarantees that, after the �n1��4 �-way unshu�e ofthe row and column elements in Step (4), the number of elements destined to any particular27



[28] I. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLSI models of compu-tation. IEEE Transactions on Computers, 38:238{249, 1989.[29] C. P. Schnorr and A. Shamir. An optimal sorting algorithm for mesh-connected com-puters. In Proceedings of the 18th ACM Symposium on Theory of Computing, pages255{263, May 1986.[30] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel computer.CACM, 20:263{271, 1977.[31] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. InProceedings of the 13th Annual ACM Symposium on Theory of Computing, pages 263{277, May 1981.

26



[14] M. Kunde. Routing and sorting on mesh{connected arrays. In J. H. Reif, editor, VLSIAlgorithms and Architectures: Proceedings of the 3rd Aegean Workshop on Computing,Lecture Notes in Computer Science, volume 319, pages 423{433. Springer, 1988.[15] M. Kunde. Packet routing on grids of processors. In H. Djidjev, editor, Workshop onOptimal Algorithms, Lecture Notes in Computer Science, volume 401, pages 254{265.Springer, 1989.[16] M. Kunde. Balanced routing: Towards the distance bound on grids. In Proceedingsof the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, pages260{271, July 1991.[17] M. Kunde. Concentrated regular data streams on grids: Sorting and routing near to thebisection bound. In Proceedings of the 32st Annual IEEE Symposium on Foundationsof Computer Science, pages 141{150, October 1991.[18] M. Kunde. Block gossiping on grids and tori: Deterministic sorting and routing matchthe bisection bound. In First Annual European Symposium on Algorithms, September1993. To appear.[19] H. W. Lang, M. Schimmler, H. Schmeck, and H. Schr�oder. Systolic sorting on a mesh-connected network. IEEE Transactions on Computers, 34:652{658, 1984.[20] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Treesand Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.[21] F. T. Leighton, F. Makedon, and I. G. Tollis. A 2n � 2 step algorithm for routingin an n � n array with constant queue sizes. In Proceedings of the 1st Annual ACMSymposium on Parallel Algorithms and Architectures, pages 328{335, July 1989.[22] L. Narayanan. Selection, Sorting, and Routing on Mesh-Connected Processor Arrays.PhD thesis, Department of Computer Science, University of Rochester, Rochester, NY,May 1992.[23] D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel computer. IEEETransactions on Computers, C{28:2{7, 1979.[24] S. E. Orcutt. Computer Organization and Algorithms for Very-High Speed Computa-tions. PhD thesis, Department of Computer Science, Stanford University, September1974.[25] S. Rajasekaran and R. Overholt. Constant queue routing on a mesh. Journal of Paralleland Distributed Computing, 15:160{166, 1992.[26] S. Rajasekaran and T. Tsantilas. Optimal routing algorithms for mesh-connected pro-cessor arrays. Algorithmica, 8:21{38, 1992.[27] K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected processor array.Journal of Parallel and Distributed Computing, 3:389{410, 1986.25



References[1] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPSSpring Joint Computer Conference, vol. 32, pages 307{314, 1968.[2] S. Cheung and F. C. M. Lau. Mesh permutation routing with locality. InformationProcessing Letters, 43:101{105, 1992.[3] R. Cole and C. K. Yap. A parallel median algorithm. Information Processing Letters,20:137{139, 1985.[4] A. Condon and L. Narayanan. Upper and lower bounds for selection on the mesh.Unpublished manuscript, 1993.[5] Y. Han, Y. Igarashi, and M. Truszczynski. Indexing functions and time lower boundsfor sorting on a mesh-connected computer. Discrete Applied Mathematics, 36:141{152,1992.[6] C. Kaklamanis and D. Krizanc. Optimal sorting on mesh-connected processor arrays.In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Archi-tectures, pages 50{59, July 1992.[7] C. Kaklamanis, D. Krizanc, L. Narayanan, and T. Tsantilas. Randomized sorting andselection on mesh-connected processor arrays. In Proceedings of the 3rd Annual ACMSymposium on Parallel Algorithms and Architectures, pages 17{28, July 1991.[8] C. Kaklamanis, D. Krizanc, and S. Rao. Simple path selection for optimal routingon processor arrays. In Proceedings of the 4th Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 23{30, July 1992.[9] M. Kaufmann, S. Rajasekaran, and J. F. Sibeyn. Matching the bisection bound forrouting and sorting on the mesh. In Proceedings of the 4th Annual ACM Symposium onParallel Algorithms and Architectures, pages 31{40, July 1992.[10] D. Krizanc and L. Narayanan. Optimal algorithms for selection on a mesh-connectedprocessor array. In Fourth Annual IEEE Symposium on Parallel and Distributed Pro-cessing, December 1992.[11] D. Krizanc, L. Narayanan, and R. Raman. Fast deterministic selection on mesh-connected processor arrays. In 11th Conference on Foundations of Software Technologyand Theoretical Computer Science, pages 336{346, December 1991.[12] M. Kumar and D. S. Hirschberg. An e�cient implementation of Batcher's odd-evenmerge algorithm and its application in parallel sorting schemes. IEEE Transactions onComputers, 32:254{264, 1983.[13] M. Kunde. Bounds for 1-selection and related problems on grids of processors. InFourth International Workshop on Parallel Processing by Cellular Automata and Arrays(PARCELLA), pages 298{307. Springer, 1988.24



models of the mesh. However, even for these fairly restricted models, a large gap remainsbetween the best upper and lower bounds.7 Summary and Open ProblemsIn this paper, we have introduced a new technique that allows us to \derandomize" manyof the randomized algorithms for routing and sorting on meshes that have been proposedin recent years. By applying this technique, we have obtained optimal or improved deter-ministic algorithms for a number of routing and sorting problems on meshes and relatednetworks. The new technique is very general and seems to apply to most of the randomizedalgorithms that have been proposed in the literature. In fact, as a result of this work, weare currently not aware of any randomized algorithm for routing and sorting on meshes andrelated networks whose running time cannot be matched, within a lower order additive term,by a corresponding deterministic algorithm.This naturally raises the question whether randomization is of any help at all in thedesign of routing and sorting algorithms for these types of networks. In this context, wepoint out that many of the randomized algorithms still have a simpler control structure andsmaller lower order terms than their deterministic counterparts, which repeatedly performlocal sorting within blocks. Also, the results in this paper would not have been possiblewithout the extensive study of randomized schemes for routing and sorting by a number ofother authors, which has resulted in a variety of fast randomized algorithms [6, 7, 8, 9, 26].It is an interesting open question whether our \derandomization" technique can be usedto obtain improved deterministic algorithms for other classes of networks, and perhaps evenother types of problems. It seems that our techniques are most suitable for networks withlarge diameter, since we repeatedly sort fairly large subsets of the input. A straightfor-ward application of our technique to networks with small diameter, such as the hypercubicnetworks, would lead to a blow-up in the running time due to the time spent on local sorting.In the case of our optimal algorithms for routing and sorting, any further reduction ofthe queue size would be an interesting improvement. Another possible direction for futureresearch is to try to design algorithms with a simpler control structure than those presentedin this paper. In the case of sorting, it is an interesting open question whether there existsan optimal algorithm that does not make any copies of elements, or whether a general lowerbound can be shown for this case.An important open question that remains unsettled is whether there exist optimal algo-rithms for routing and sorting in r-dimensional meshes, r > 3. For large r, the best algo-rithms currently known are still nearly a factor of 2 away from the diameter lower bound.Finally, it is a challenging open problem to determine the complexity, within a lower orderadditive term, of the problem of selection on the standard mesh.Acknowledgements: I would like to thank Christos Kaklamanis, Greg Plaxton, and Raj-mohan Rajaraman for helpful discussions. 23



s1 and s2 with Rank (s1; S) = 12n2�� and Rank (s2; S) = 12n2�� + n2�2� as bracketingelements (i.e., upper and lower bounds) for the median. Using Lemma 4.3, it is easy toshow that Rank (s2;X) � Rank (s1;X) = O(n2��), and that the median lies betweens1 and s2. Sorting the center block and selecting s1 and s2 will take o(n) time.(5) Broadcast s1 and s2 in the entire middle diamond of radius 0:11n. This takes time0:11n, and is thus completed at the same time as the concentration of the elementsinto the diamond of radius 0:11n described in Step (3).(6) Every element between s1 and s2 routes itself towards the center. At the same time,the exact ranks of s1 and s2 in X are computed by a pre�x computation that countsthose elements that are smaller than s1, and those that are larger than s2. This takesanother 0:11n time steps, after which both the elements between s1 and s2 and theglobal ranks of s1 and s2 are located in a block of size o(n) at the center of the mesh.(7) Choose the median from among the elements that were routed to the center in theprevious step. This can be done by sorting these elements, and takes time o(n).The total running time of the above algorithm is approximately 1:22n. Ignoring lowerorder terms, this time consists of n steps to route the sample to the center, 0:11n stepsto broadcast the bracketing elements in the middle diamond, plus another 0:11n steps tocollect the results of the broadcast in the center. Hence, an obvious strategy for improvingthe running time would be to try to concentrate the packets into a middle diamond ofradius smaller than 0:11n. However, Krizanc, Narayanan, and Raman [11] have shown thatconcentrating n2 packets into a smaller diamond would actually increase the running time,since, due to the limited number of edges on the perimeter of the diamond, the concentrationcould not be completed in time for the broadcast in Step (5).The main di�erence between this and the previously best deterministic algorithm is inthe technique used to select the bracketing elements s1 and s2. The 1:44n step algorithmselects a sample of size o(n); this means that an additional broadcast of all sample elementsinto the middle diamond is needed to determine the ranks of the sample elements. Onlyafter this is done, can the bracketing elements be selected from the sample.For the mesh with diagonals, we can obtain a lower bound of 0:5n + n48. This lowerbound is based on the observation that in a mesh with diagonals, a large number of elementsinitially have a distance close to the radius from the center point. If all of these elementshave a rank close to the median, then there will not be enough bandwidth available to routeall median candidates towards the center. We are not aware of any general lower bounds forselection on other mesh-related networks.Very recently, Condon and Narayanan [4] have given an improved randomized algorithmfor selection that runs in 1:19n steps. Using the techniques described in this paper, we canconvert their algorithm into a deterministic algorithm with the same running time. Theconstruction is slightly more complicated than in the case of the 1:22n time algorithm, anduses both the deterministic sampling technique and the unshu�e operation. Condon andNarayanan also show a number of lower bounds for selection which hold for various restricted22



computation and broadcasting of the splitter set in parallel with the �rst r phases of unshu�eoperations, then we can obtain a deterministic algorithm for k{k sorting that matches therunning time of our routing algorithm up to o(rn) steps.6 Improved Deterministic Algorithms for SelectionUsing the sampling technique described in Subsection 4.2, we can also obtain improved deter-ministic algorithms for selection on meshes, tori, and meshes with diagonal edges. The algo-rithms are based on a number of randomized algorithms proposed by Kaklamanis, Krizanc,Narayanan, and Tsantilas [7], and by Narayanan [22]. For the two-dimensional mesh, weobtain an algorithm running in time 1:22n. The best deterministic algorithm previouslyknown required 1:44n steps [11]. The new algorithm can easily be adapted to the three-dimensional mesh, the torus, and the mesh with diagonal edges. In each case, the runningtime will match that of the best known randomized algorithm, given by 1:94n, 1:13n, and0:65n, respectively [22]. For meshes with diagonals, we can show a lower bound of 0:5n+ n48.In the following, we describe our improved deterministic algorithm for selection on thetwo-dimensional mesh. We will restrict our attention to the problem of selecting the medianelement at the center processor of the mesh. It was shown by Krizanc and Narayanan [10]that selection can be performed within the distance bound if the rank of the selected elementis o(n2), or if we select at a processor with a distance of at least n=2 from the center.Fortunately, the randomized selection algorithm of Kaklamanis, Krizanc, Narayanan,and Tsantilas is much simpler than the algorithms for sorting [6, 7], and the use of random-ization is limited to only a few steps. Furthermore, a deterministic version of this selectionalgorithm was already described by Krizanc, Narayanan, and Raman [11]; due to a weakerdeterministic sampling technique, their algorithm achieves only a running time of 1:44n. Wewill be able to reuse most parts of their algorithm, and hence in the following we will focus onthe di�erences between the two algorithms. The improved algorithm works in the followingseven steps:Algorithm SELECT:(1) Select a sample set of size n2�� by sorting blocks of size n� � n� into row-major orderand putting the elements in the �rst column of each block into the sample. This takestime O(n�) = o(n).(2) Route the sample elements into a block of side length n1��=2 at the center of the mesh.This can be done in n steps with the routing scheme employed in Step (2) of the sortingalgorithm in Subsection 4.3.(3) Concentrate all n2 packets into a diamond of radius p6�24 n � 0:11n around the centerof the mesh. As shown in [11], this operation can be completed in time 1:11n.(4) Sort the sample set in the center block using any standard sorting algorithm for themesh, for example the algorithm of Schnorr and Shamir [29]. Then select the elements21



5 Optimal Multi-Packet Routing and SortingThe techniques presented in this paper can also be used to obtain optimal deterministicalgorithms for k{k routing on r-dimensional meshes. In a k{k routing problem, a processorcan initially hold up to k packets, and can receive up to k packets during the routing. Fork{k routing, as well as for the related problem of k{k sorting, there exists a lower bound of kn2due to the bisection width of the network. Kaufmann, Rajasekaran, and Sibeyn [9] recentlyobtained randomized algorithms for k{k routing and sorting that match this lower bound,within a lower order additive term. Subsequently, Kunde [18] described a deterministicalgorithm that achieves a similar bound.Using the unshu�e operation and the counter scheme, we can design a deterministic al-gorithm for k{k routing that matches the running time of Kunde's algorithm. The algorithmcan be seen as a deterministic variant of one of the randomized algorithms in [9], and showsan interesting relation between randomization and the unshu�e operation.Consider the following uni-axial algorithm consisting of 2r phases. During each phasei, 1 � i � r, we perform an unshu�e operation with respect to the ith dimension. Thisis done by locally sorting blocks of side length n� and subsequently performing an (n1��)-way unshu�e operation along each linear array in direction of the ith dimension. Duringeach phase i, r + 1 � i � 2r, we route the packets along dimension i � r towards theirdestinations, using the counter scheme to distribute the packets evenly in their destinationsubcubes. Finally, we use local routing to bring all packets to their �nal destinations. Usingthe fact that a k{k relation can be routed in time kn2 + o(kn) on a linear array, it is easyto see that the above algorithm routes any k{k routing problem in time krn + o(krn) onan r-dimensional mesh of side length n. Hence, by running r such uniaxial algorithmssimultaneously, we can obtain an algorithm that runs in time kn + o(krn). Before runningthis algorithm, we have to partition the packets of the k{k relation into r similar subsets;this can be done in the same way as the partitioning of the packets of a 2{2 relation into 2sets performed in the algorithm of Lemma 3.2.Note that this is still a factor of 2 away from the lower bound. In [9], Kaufmann,Rajasekaran, and Sibeyn overcome this problem by showing that a k{k relation can berandomized on a linear array in time kn4 + o(kn), with high probability. We can use a verysimilar idea to prove that the above algorithm runs in time kn2 + o(krn). In the following,we say that an approximate k{k relation � on n positions 0; : : : ; n � 1 is 
-normal if forany block B of 
(n) consecutive positions, the destinations of the elements originating fromB and the origins of the elements with destination in B are both evenly distributed overall blocks of size 
(n). Using similar arguments as in [9], it can be shown that any 
-normal k{k relation can be routed on a linear array in time kn4 + o(kn), for 
 = o(n). Notsurprisingly, a randomization of a k{k relation is a 
-normal approximate k{k relation, withhigh probability. Also, both the unshu�e operations in phases 1 to r and the resultingrouting problems in phases r+1 to 2r of our algorithm are 
-normal k{k relations, for some
 = O(n1��). This implies that the above algorithm runs in time kn2 + o(krn).Using the deterministic sampling technique described in Subsection 4.2, we can convertour k{k routing algorithm into an algorithm for the k{k sorting problem. If we schedule the20



delayed by at most o(n) steps by simply reserving these edges for the sample elements, andrestricting the other packets to the remaining rows and columns. 2Lemma 4.5 The greedy routing to destination blocks in Step (9) runs in time n+o(n) withconstant queue size.The proof of Lemma 4.5 is given in the appendix. Together, Lemma 4.4 and Lemma 4.5establish the following result.Theorem 4.2 There exists a deterministic algorithm for sorting on the n � n mesh withrunning time 2n+ o(n) and constant queue size.It is not di�cult to see that the above algorithm will still work if we sort with respectto a slightly di�erent indexing scheme, in which the blocks of size n��n� are ordered alongthe diagonals rather than along the rows. This is somewhat interesting in that there existsa lower bound of 4n � o(n) in the single-packet model for this modi�ed indexing scheme.Thus, an indexing scheme that is good in one model may not be good at all in the othermodel.4.4 ExtensionsIn [6], Kaklamanis and Krizanc extend their results to three-dimensional meshes and two-dimensional and three-dimensional tori. These extensions also hold for the deterministiccase, and we get the following results.Theorem 4.3 There exists a deterministic algorithm for sorting on the three-dimensionalmesh with running time 3:5n+ o(n) and constant queue size.Theorem 4.4 There exists a deterministic algorithm for sorting on the two-dimensionaltorus with running time 1:25n + o(n) and constant queue size.Theorem 4.5 There exists a deterministic algorithm for sorting on the three-dimensionaltorus with running time 2n+ o(n) and constant queue size.The best deterministic algorithms previously known for these problems required runningtimes of 5n + o(n), 2n + o(n) and 3n + o(n), respectively. Using the above algorithms forthree-dimensional meshes and tori as subroutines, we can obtain improved algorithms forsorting on r-dimensional meshes and tori, r � 4, with running times of (2r � 2:5)n + o(n)and (r � 1)n + o(n), respectively. The best deterministic algorithms previously known forthese networks required (2r � 1)n steps on the mesh and rn + o(n) on the torus [14].19



Note that this step will take timeO(n�) = o(n) per block, from the moment the splitterfront enters the block until the sorting of the row and column elements in the block iscompleted. Thus, we can initiate the routing in the following Step (9) by broadcastinga Start signal from the center of the meshO(n�) steps after the broadcast of the splitterset.(9) After the arrival of the Start signal, every element routes itself greedily towards itsdestination block. Row elements go �rst along the columns until they reach theirdestination row, and column elements travel �rst along their row until they reach theirdestination column. We can employ the same priority scheme that is used in therandomized algorithm. Note that up to this moment, the exact destinations of theelements inside their destination blocks have not yet been determined. This will bedone during the routing, in the following Step (9a). It will be established in Lemma 4.5that the routing terminates in n+o(n) steps with constant queue size. A more detaileddescription of the routing is given in the proof of the lemma.(9a) Use the counter scheme described in the routing algorithm in Subsection 3.2 todistribute the elements evenly over the rows and columns of the destination blocks.(10) This step is the same as in the randomized algorithm. The exact ranks of the splitterelements are broadcast from the center of each quadrant 0:5n steps after the splitterswere sent out from the center. After another 0:5n steps, all elements have received thesplitter ranks.(11) We now perform local routing over a distance of O(n�) to bring each element to its�nal destination. This takes time O(n�).Our claim is that this algorithm runs in time 2n + o(n) with constant queue size. Theexact bound for the queue size is at most 25; we will elaborate on this issue brie
y in theproof of Claim 5 in Appendix A. We will establish our result in the following two lemmas.Lemma 4.4 The sample set of size n2�� selected in Step (1) can be routed in n steps to ablock of size n1��=2 � n1��=2 around the center of the mesh, without delaying the routing inStep (5) by more than o(n) steps.Proof: Since our sample set is of size !(n), we have to be a bit careful in the design ofthis routing step to make sure that the movement of the splitters towards the center doesnot delay the movement of the packets in Step (5). We propose the following solution. AfterStep (1), all elements in the sample set are located in the �rst column of their respectiven� � n� block. Now move all sample elements located in a block that is in the ith row ofblocks into the ith column of that block, for i = 1; : : : ; n1��. This can be done in o(n) timeby locally routing inside each block. Now use column routing to move all sample elementsto the n� middle rows of the mesh. This will be completed in 0:5n steps. Next, we userow routing to move the sample elements into the block in the center, which takes another0:5n steps. Observe that in the routing we have only used edges in n2�2� = o(n) columnsand n� = o(n) rows of the mesh. Hence, we can guarantee that the routing of Step (5) is18



(2) Route a copy of the sample set to a block B of size n1��=2�n1��=2 at the center of themesh. This can be completed in n steps; the details of this routing step are given inthe proof of Lemma 4.4.(3) Divide the n2 elements into n2=2 row elements and n2=2 column elements as describedin Subsection 4.2. This operation takes time O(n�) = o(n).(4) In each block of size n� � n�, sort the row elements into row-major order. Nowselect for each row element a new location in its row, within its current subquadrant,corresponding to an (n1��4 )-way unshu�e operation on the columns, as described inSubsection 3.1. Similarly, sort the column elements in each block into column-majororder, and select new locations according to an (n1��4 )-way unshu�e operation on therows. Again, as in the randomized algorithm, the elements will not actually move tothe chosen locations in this step. This will be done in Step (5).(5) This step is the same as in the randomized algorithm. We route copies of each elementto the locations in the four subquadrants T0 to T3 corresponding to the locations chosenin Step (4). This step will take time 1:25n, but every copy will reach its location beforethe arrival of the splitter elements.(6) This step is also the same as in the randomized case. The sample set is sorted in thecenter block B, and n� elements of equidistant ranks are chosen as splitters. This takestime O(n1��=2) = o(n), and Theorem 4.1 guarantees that every splitter can determineits global rank to within O(n2��).(7) This step is again the same as in the randomized algorithm. The splitters are broadcastin each of the subquadrants T0 to T3, and the exact global ranks of the splitter elementsare computed. This takes time 0:5n.(8) Each element hit by the splitter front can determine its rank to within a range ofO(n2��) ranks. This enables the element to determine the block of side length n� thatwill contain most of the elements within this range in the �nal sorted order. If thatblock is outside its current quadrant, then the element kills itself. Note that an elementmay actually not end up in this block in the �nal sorted order, but the properties of ourindexing scheme guarantee that the chosen block will be close to its �nal destination.Now, before routing the elements to their approximate destinations, we perform thefollowing additional step:(8a) Divide the mesh into blocks of size n� � n�. As soon as such a block has beencompletely traversed by the splitter front, the row elements in the block are sortedinto row-major order by their n� � n� destination blocks, where the ordering ofthe destination blocks can be arbitrary. Similarly, the column elements in theblock are sorted into column-major order by destination blocks. The purpose ofthis step is to distribute the row (column) elements with a common destinationblock evenly among the columns (rows) of the n� � n� block.17



de�nes a partition of the input set X, and that each of the n2�� sets T (s) contains exactlyn� elements.Now let s1 2 Si and s2 2 Sj be two arbitrary sample elements. If s1 < s2, then everyelement of T (s2) must be larger than s1. There are jSj � Rank (s1; S) elements s2 withs1 < s2 in S; hence Rank (s1;X) < Rank (s1; S) � n�. If s2 � s1, then we have the followingtwo cases:(a) If s2 is the largest element in Sj with s2 � s1, then all elements in T (s2), except for s2itself, can be either smaller or larger than s1.(b) If s2 is not the largest element in Sj with s2 � s1, then all elements in T (s2) must besmaller than s1.Note that there are Rank (s1; S) elements s2 2 S with s2 � s1, and at most n2�2� of thesefall under case (a), including s1 itself. Hence, at least (Rank (s1; S)� n2�2�) � n� elements inX are smaller than s1. 2The following theorem establishes a way of selecting a set of \good" splitters from thesample. It can be proved by a simple application of the above lemma.Theorem 4.1 Let D be the splitter set of size n� consisting of all s 2 S with Rank (s; S) =i � n2�2� + 1, for some nonnegative integer i. Then D is a set of \good" splitters, that is, itsatis�es conditions (1) and (2) stated above.Note that this sampling technique can guarantee good splitters because the sample setis su�ciently large, that is, contains !(n) elements. On the other hand, the splitter setselected from the sample is of size o(n). The latter fact will be used in the step of our sortingalgorithm where the entire splitter set is broadcast to every packet in the mesh.4.3 Optimal Deterministic Sorting on Two-Dimensional MeshesIn the following description of the deterministic sorting algorithm, we will maintain thenumbering of the steps used in the randomized algorithm. Some of the steps in the algorithmcan be taken directly from the randomized algorithm, but others will have to be substantiallychanged. The algorithm sorts with respect to the \column-major indexing nested inside arow-major indexing" de�ned in Section 1, where the size of the blocks in the indexing is n�,for some constant �. The size of the sample and splitter sets is determined by a constant �,already used in the description of the sampling technique in the previous subsection. Finally,we have to choose a constant � that determines the size of the blocks used by the unshu�eoperation. These constants have to be chosen such that 23 < �,�,� < 1.Algorithm SORT:(1) Select a sample set of size n2�� by sorting blocks of size n� � n� and taking the �rstcolumn in each block. This takes time O(n�) = o(n).16



with odd ranks as column elements. We remark that this technique is closely related to theunshu�e operation. More precisely, the following analogue of Lemma 4.1 holds.Lemma 4.2 Let A be any sequence of consecutive values in f1; : : : ; n2g, and let the numberof row elements and column elements whose global rank among all n2 elements is in A bedenoted by Nr and Nc, respectively. Then we have jNr �Ncj � n2�2�.The last ingredient needed for our deterministic algorithm is a deterministic samplingtechnique that results in a set of \good" splitter elements. Our technique is essentially asimpli�ed version of a more sophisticated sampling technique used in the parallel selectionalgorithm of Cole and Yap [3]. Our goal is to deterministically select a set of approximatelyevenly spaced splitters from a set of keysX of cardinality n2. More precisely, we are interestedin selecting a set of splitter elements D = fd0; : : : ; dt�1g with di+1 > di, such that thefollowing properties hold for all i:(1) Rank (di+1;X)� Rank (di;X) � 2n2t(2) (i�1)n2t + 1 � Rank (di;X) � in2t + 1To achieve this, we will select our sample set using the following two steps:(i) Partition the mesh into blocks of size n��n�, 23 < � < 1, and sort the elements in eachblock.(ii) Select n� equidistant elements from each sorted block as sample elements, starting withthe smallest element and going up to the (n�)th largest element. If the elements weresorted into row-major order in the �rst step, then we can simply select the elementsin the �rst column of each block.The sample set selected in the above two steps will contain n2�� elements, which arerouted to the center of the mesh and sorted. We claim that the global rank of each sampleelement can now be computed to within an additive term of n2��. More precisely thefollowing lemma holds.Lemma 4.3 Let S be a sample set of size n2�� chosen from a set X of size n2 in the mannerdescribed above. Then for any s 2 S with Rank (s; S) = i we have(i� n2�2�) � n� < Rank (s;X) < i � n�:Proof: LetXi denote the set of elements in block i of the mesh, 0 � i < n2�2�. Partition thesample set S into n2�2� subsets Si, 0 � i < n2�2�, where each Si consists of those elementsof S that were drawn from subset Xi in the �rst phase of the sampling algorithm. Nowassociate with each s 2 Si the set T (s) consisting of all elements x 2 Xi with s � x < s0,where s0 is next larger sample element drawn from the same subset Xi. Note that this15



algorithm. The randomized algorithm uses randomization in a number of di�erent phases,and for a number of di�erent purposes, which are informally described in the following.� Randomization is used in Step (1) of the algorithm to select a sample set that, with highprobability, will yield a set of \good", that is, roughly evenly spaced, splitters. In thissubsection, we will describe a deterministic sampling technique that guarantees such aset of \good" splitters, and which can be substituted for the randomized sampling inStep (1).� In Step (3), elements use a coin 
ip to identify themselves as either row elements orcolumn elements. The e�ect of this coin 
ipping technique is that, with high probabil-ity, about half of the elements become row elements (resp. column elements), and thatthe set of row elements (resp. column elements) is spread out evenly over the range ofinput values. This can be achieved deterministically by sorting locally and taking theelements with even ranks as row elements, and the elements with odd ranks as columnelements, as in the algorithm underlying Lemma 3.2.� In Step (4), every row element chooses a random position in its row inside its subquad-rant, and every column element chooses a random position inside its column. This hasthe e�ect that, with high probability, the row elements (column elements) of similarrank and, hence, similar �nal destination, are evenly distributed among the columns(rows) of their subquadrant. This is needed in Step (9) of the algorithm to make surethat the routing of the elements to their destination blocks is �nished within the re-quired time bounds and with constant queue size. The e�ect of this randomizationstep will be \simulated" with the unshu�e operation described in Subsection 3.1.� Finally, in Step (8) every element selects a random location within its destination block.Here, randomization is used to assure that not too many elements route themselves tothe same location in their destination block. As demonstrated in the previous section,this can be achieved deterministically by using our counter scheme.As in the routing algorithm of Subsection 3.2, we will divide the mesh into blocks of sizen� �n�, with 23 < � < 1. When applying the unshu�e operation to simulate Step (4) of therandomized algorithm, we will sort the row elements (column elements) in each block by theirvalues, rather than by their destination blocks (which are not yet known during Step (4) ofthe algorithm), and then perform an (n1��4 )-way unshu�e operation on the columns (rows)of each subquadrant. The e�ect of this operation is described in the following lemma, whichis a simple generalization of Lemma 3.1.Lemma 4.1 Let B1 and B2 be any pair of n��n� blocks located in the same row (column)of blocks of some subquadrant Ti, 0 � i � 15, and let A be any set of consecutive values inf1; : : : ; n2g. Let Nj denote the number of elements in Bj whose global rank among all n2elements is in A, for 1 � j � 2. Then we have jN1 �N2j � n1��4 .To simulate the e�ect of Step (3) of the randomized algorithm, we will sort each blockof size n� � n�, and label all elements with even ranks as row elements, and all elements14



(10) The exact ranks of the splitter elements are broadcast in each quadrant, starting at thecenter of the quadrant after completion of Step (7). Hence, every element will receivethe exact splitter ranks within n + o(n) steps after the splitters were broadcast fromthe center.(11) Now local routing over a distance of O(n1��=2) can be used to bring each element toits �nal location in time o(n).The above algorithm can be scheduled in time 2n+o(n). For a more complete descriptionof the algorithm, and a proof of the stated time bounds, we refer the reader to the paper byKaklamanis and Krizanc [6]. Here, we only add the following remarks considered importantin the present context.� The algorithm sorts with respect to an indexing scheme with the property that pro-cessors whose indices di�er by O(n2��) are at most O(n1��=2) steps apart. If thiscondition is not satis�ed, as, for example, in row-major indexing, then the elementswill not be able to compute good approximate destinations from their approximateranks in Step (8).� One of the purposes of the randomization in Steps (2),(3), and (4) is to get a goodbound on the queue size. However, randomization alone will only guarantee a queuesize of O(lg n) with high probability. To reduce the queue size to a constant, thealgorithm uses a packet redistribution technique described in [26] and attributed toLeighton.� The routing in Step (5) of the algorithm is done according to a rather ingenious scheduledescribed in [6]. In this schedule, the row elements and column elements of a subquad-rant may move along di�erent paths. However, all row elements (column elements) of asubquadrant will move in lock step until they enter their destination subquadrant. Therouting to the random locations selected in Step (4) is done either before the elementsstart to move according to the schedule, or upon entering the destination subquad-rant, or after they have already reached the destination subquadrant. While we willnot go into the details of this routing schedule, it is nonetheless important to realizethat Step (5) is deterministic, since the random locations of the elements were alreadychosen in the preceding step. The routing in Step (5) would work equally well if thosedestinations had been chosen according to some deterministic strategy. Hence, we willbe able to use this schedule in our deterministic algorithm without modi�cation.� Finally, note that the routing in Step (5) has to take at least 1:25n steps, and thuswill not be completely �nished when the set of splitters is broadcast at time n+ o(n).However, it can be shown that all elements reach their destination before the arrivalof the splitter front.4.2 Getting a Deterministic AlgorithmIn this subsection we will explain the modi�cations that have to be made in the randomizedalgorithm described in the previous subsection in order to get an optimal deterministic13



will assume that the four subquadrants located around the center are labeled T0 to T3. Inaddition, a block B of side length o(n) around the center of the mesh will be used to sortthe sample elements and select the splitters.Algorithm RANDOMSORT:(1) Select a random sample set S of size o(n) from the n2 elements using coin 
ipping.(2) Each sample element picks a random location in the block B at the center of the mesh,and routes a copy of itself greedily towards that location. To make sure that the routingis completed in n steps, we give the sample elements priority over all other elements.(3) Each of the n2 packets in the mesh 
ips a coin, and, depending on the outcome, declaresitself either a row element or a column element.(4) Each row element selects a random location between 1 and n=4 in its row, insideits current subquadrant. Similarly, each column element selects a random locationbetween 1 and n=4 in its column. Note that in this step, the elements do not actuallygo to their selected destination. Thus, Step (4) takes time o(n).(5) Now copies of each element are routed to the locations in the four subquadrants T0 toT3 corresponding to the locations randomly selected in Step (4). This means that eachof the four subquadrants T0 to T3 receives copies of all n2 elements in the mesh.(6) The sample set is sorted in the center block B, and n� elements of equidistant ranksare chosen as splitters. This takes time o(n).(7) The n� splitters are broadcast in the middle subquadrants T0 to T3. During the broad-cast, the global ranks of the splitters are computed using a pipelined pre�x computationthat counts, for each splitter, the number of elements that are smaller. The results ofthis computation will arrive at the center points of the four quadrants after 0:5n+o(n)steps.(8) Each element, upon receiving the splitter elements broadcast from the center of themesh, can determine its rank to within O(n2��), the accuracy of the splitters. Fromthis approximate rank, the element can compute the block of side length O(n1��=2)most likely to contain its �nal destination. If this block is outside its current quadrant,the element kills itself. Otherwise, it selects a random location within this block.(9) All surviving elements route themselves to the chosen location. The routing is done ina greedy fashion, where row elements �rst route along their column to the correct row,while column elements �rst route along their row to the correct column. However, aslightly more complicated priority scheme than the usual \farthest distance to travel�rst" is required in this routing step. The same priority scheme will also be employedin our deterministic algorithm; a description of this scheme is given in the proof ofLemma 4.5. It can be shown that every element will reach its approximate destinationwithin time n+ o(n) after the splitters were broadcast from the center of the mesh.12



column uniformly at random from all l with jl � ij + jl � i0j � n � 1. If several packetscontend for an edge, priority will be given to the packet with the farther distance to travel.Using the techniques described in the previous subsection, it is not di�cult to convert thisalgorithm into a deterministic algorithm with a running time of 2n+ o(n); the queue size isconstant, but slightly higher than that of the �rst algorithm.Finally, Kaklamanis, Krizanc, and Rao give an optimal randomized algorithm for thetwo-dimensional torus that has a very similar structure. In this algorithm, one half of thepackets is routed on row-column-row paths, and the other half on column-row-column paths.A packet that is routed on a row-column-row path, and that originates in column i and isdestined for column i0, chooses its intermediate column uniformly at random from all l withjl� ij+ jl� i0j � n2 �1. The case of the packets that are routed on column-row-column pathsis symmetric. If several packets contend for an edge, priority is given to the packet with thefarther distance to travel. This algorithm can also be converted into a deterministic one,and we obtain the following theorem (the exact queue size of our algorithm is between 10and 15).Theorem 3.3 There exists a deterministic algorithm for permutation routing on the n� ntorus with a running time of n+ o(n) and constant queue size.4 Optimal Deterministic SortingIn this section, we will apply the techniques described in Section 3 to a class of randomizedsorting algorithms recently proposed by Kaklamanis and Krizanc [6]. As a result, we obtainthe �rst optimal deterministic sorting algorithm for two-dimensional meshes, as well asimproved deterministic algorithms for the three-dimensional mesh and the two-dimensionaland three-dimensional torus.In the �rst subsection, we give a description of the optimal randomized sorting algorithmproposed in [6]. In Subsection 4.2 we describe the modi�cations required to convert thisrandomized algorithm into a deterministic one. Subsection 4.3 contains the deterministicalgorithm and a proof of the claimed bounds on time and queue size. Finally, Subsection 4.4gives a few extensions.4.1 An Optimal Randomized AlgorithmIn this subsection we will give a high level description of a randomized algorithm withrunning time 2n + o(n) and constant queue size proposed by Kaklamanis and Krizanc [6].Their algorithm is based on an earlier 2:5n + o(n) time algorithm of Kaklamanis, Krizanc,Narayanan, and Tsantilas [7]. The complete structure of the algorithm is quite complicated,and so our description will necessarily ignore a number of important details. For a fulldescription the reader is referred to [6].The following description of the algorithm uses a slightly di�erent numbering of the stepsthan the original description. The mesh is divided into four quadrants Q0; Q1; Q2, and Q3.The four quadrants are again divided into a total of 16 subquadrants, labeled T0 to T15. We11



Lemma 3.2 Any 2{2 relation can be routed deterministically in time 2n+o(n) with a queuesize of 10.The algorithm proceeds as follows. First, we partition the packets into two sets suchthat all packets with a common destination block are evenly divided between the two sets.This can be done deterministically by sorting the packets in each block of size n� � n�by destination blocks, and taking the two sets as the packets with odd and even ranks,respectively. We then route both sets simultaneously, using the deterministic algorithmgiven above. One of the sets will be routed on row-column-row paths, and the other one oncolumn-row-column paths. Due to the overlap between the three phases of the algorithm, itis possible that packets in di�erent phases of the algorithm contend for the same edge. Thesecontentions will be resolved by giving priority to the packet in the lower numbered phase.In [8], Kaklamanis, Krizanc, and Rao show that their randomized algorithm will route any2{2 relation in time 2n+ o(n), with high probability. It can be checked that their proof alsoextends to our deterministic algorithm.3.3 ExtensionsKaklamanis, Krizanc, and Rao also give optimal randomized and o�-line algorithms for toriand three-dimensional meshes. In this subsection, we will give similar extensions for thedeterministic case. Due to space constraints, we can only state the results and make afew informal remarks about the constructions. The �rst extension, an optimal algorithm forthree-dimensional meshes, is achieved by a reduction to the problem of routing a 2{2 relationon a two-dimensional submesh, described in [8]. Together with Lemma 3.2 this gives thefollowing result.Theorem 3.2 There exists a deterministic algorithm for permutation routing on the three-dimensional mesh with a running time of 3n + o(n) and a queue size of 13.The fastest deterministic algorithm previously known for this problem has a running timeof (3+ 13)n and is due to Kunde [16]. Our approach can also be used to obtain deterministicalgorithms for routing in r-dimensional meshes with r > 3. Using the unshu�e operation andthe counter scheme, we can convert the randomized algorithm of Valiant and Brebner [31]into a deterministic algorithm with a running time of (2r�1)n+o(n). This can be improvedto (2r�3)n+o(n) by using the above algorithm for three-dimensional meshes as a subroutine.For r = 4, this gives a slight improvement over the fastest previously known algorithm [16],which achieved a running time of (5 + �)n and a queue size of O(1=�). For r � 5, the bestupper bounds continue to be given by an algorithm of Kunde [16], which has a running timeof (r + (r � 2)(1=r)1=(r�2) + �)n and a queue size of O((r2=�)r�1).In [8], Kaklamanis, Krizanc, and Rao give a second optimal randomized algorithm forthe two-dimensional mesh that has a slightly simpler structure than the one described in theprevious subsection. As before, all packets are routed on row-column-row paths. A packetthat originates in column i and whose destination is in column i0 chooses its intermediate10



local sort in Step (5), and start with the column routing in Step (6). This routing problemis an approximate 2{2 relation on a linear array, and can hence be routed in n + o(n) steps(see [8]). Thus, Step (6) of the algorithm will terminate between time 1:5n + o(n) and1:75n+o(n), depending on the location of the column in the mesh. Assuming that Step (6a)has distributed the packets evenly over the incoming rows of each destination block, Step (7)can be interpreted as the problem of routing an approximate 2{1 relation on a linear arrayof length n=2, where packets that have a distance of d to travel are not allowed to movebefore time n=2 � d. This routing process is started at time 1:5n+ o(n) and will terminateat time 2n+ o(n). Thus, the above algorithm runs in time 2n + o(n).It remains to show that the packets are indeed evenly distributed over the incomingrows of each destination block, and that the total queue size is bounded by 5. Consider adestination block D and two n� � n� blocks B1 and B2 located in the same quarter and thesame row of blocks. Lemma 3.1 says that the number of packets with destination block Dwill di�er by at most n1�� = o(n�) between B1 and B2, after Step (4). This implies thatafter Step (5), the number of packets with destination block D will di�er by at most 2n1��between any two columns in the quarter. There are at most n2� packets with destinationblock D in the quarter. Hence, any of the n4 columns in the quarter can contain at mostn2�n4 + 2n1�� =� 4n2��1packets with destination block D, which are evenly distributed among 2n2��1 rows by thecounter technique (up to a di�erence of 1). Due to the assignment of o�set values to thecounters, packets with di�erent destination blocks always turn in di�erent processors. Thisimplies that at most 3 packets turn in any single processor. If we limit our attention toa single column, then all packets with destination block D in that column will only bedistributed over a small fraction of the incoming rows of D. However, if we look at blocksof n� consecutive columns, then the elements in these columns will be evenly distributedamong all incoming rows of D, due to the n� di�erent o�set values of the 2n� counterscorresponding to D. This implies that every processor of D will receive at most 2 packets.The maximum possible queue size of the algorithm is given by a scenario in which 3 packetshave to turn in a given processor, while 2 other packets are temporarily passing through theprocessor during the routing in Step (6).One issue we have ignored so far is that a packet may already be located in a row passingthrough its destination block before Step (6). Such a packet will not pass any counter on itsway along the column. We can assign destination rows to these packets before the start ofthe column routing, and set the initial values of the counters accordingly. This can be donelocally during Step (5) of the algorithm. Altogether, we have shown the following result.Theorem 3.1 There exists a deterministic routing algorithm for two-dimensional mesheswith a running time of 2n + o(n) and a queue size of 5.Kaklamanis, Krizanc, and Rao [8] also gave a randomized algorithm that routes any 2{2relation in time 2n + o(n), and a corresponding o�-line scheme with a running time of 2nand a queue size of 8. For the deterministic case, we can show the following result.9



(5) Again sort the packets in each n��n� block by their destination blocks, into row-majororder.(6) In each column of the mesh, route every packet to a row passing through its destinationblock. Note that up to this point, we have not yet determined the exact row acrosswhich a packet will enter its destination block. This will be done during the columnrouting, using the counter scheme brie
y described in the previous subsection. Thisscheme is described in more depth in the following Step (6a). It will be shown that atmost 3 packets turn in any single processor.(6a) In order to get to its destination block, a packet traveling along its column couldturn in any of the n� consecutive rows passing through that block. To make surethat the row elements are distributed evenly among these rows, we maintain ineach column n2�2� counters, two for each of the 12n2�2� destination blocks in thehalf of the mesh that contains the column (note that all packets are already in thecorrect half of the mesh before Step (6)). The n1�� counters for any particular rowof 12n1�� destination blocks are located in the 12n1�� processors immediately aboveand below the n� rows passing through these destination blocks. Whenever a rowelement destined for a particular block arrives at one of the two correspondingcounters, this counter is either increased by one, modulo 2n2��1 (in the case ofthe counters above the destination rows), or decreased by one, modulo 2n2��1 (inthe case of the counters below the destination rows). The row across which thepacket will enter its destination block is determined by the sum, modulo n�, ofthe new counter value and a �xed o�set value associated with each counter. Acounter in column i of the half, 0 � i < n=2, that corresponds to a destinationblock in the jth column of destination blocks, 0 � j < 12n1��, is assigned theo�set value (i+ j � 2n2��1) mod n�.(7) Route the packets along the rows into their destinations blocks in a greedy fashion,giving priority to the element with the farther distance to travel. After entering itsdestination block, a packet will stop at the �rst processor that has a free memory slotfor an additional packet. It will be shown below that, due to the counter scheme inStep (6a), the incoming packets are evenly distributed over the rows of any destinationblock.(8) Perform local routing over a distance of O(n�) to bring every element to its �naldestination.Let us �rst analyze the running time of the above algorithm. Clearly, each of the Steps(1), (2), (5), and (8) will only take time o(n). Step (3) and Step (4) can be overlapped asfollows. Rather than �rst performing the unshu�e operation in Step (3), and then doing theoverlapping in Step (4), we can send the packets directly to the locations they will assumeafter Step (4). This means that all blocks in Q0 and Q3, as well as those blocks in Q1and Q2 that are close to the center column, will have received all of their elements by time0:5n+o(n), while it takes up to time 0:75n+o(n) for the other blocks in Q1 and Q2 to receiveall of their packets. As soon as a block has received all of its packets, it can perform the8



intermediate destination, where it turns into a column. In this column, the packet moves toits destination row, and then in the destination row to its �nal destination. The intermediatedestination is chosen randomly according to the following rules:(1) Packets in Q0 and Q1 with a destination in Q0 or Q1 choose an intermediate positionin Q0.(2) Packets in Q0 and Q1 with a destination in Q2 or Q3 choose an intermediate positionin Q2.(3) Packets in Q2 and Q3 with a destination in Q0 or Q1 choose an intermediate positionin Q1.(4) Packets in Q2 and Q3 with a destination in Q2 or Q3 choose an intermediate positionin Q3.It is shown in [8] that this routing scheme results in a running time of 2n + O(lg n) and aqueue size of O(lg n), with high probability (the queue size can be improved to O(1) withsome modi�cations in the algorithm). An o�-line version of the algorithm runs in time 2n�1with a queue size of 4.The high-level structure of our deterministic algorithm is very similar. As in the ran-domized algorithm, all packets are �rst routed along the rows to intermediate locations, thenalong the columns to their destination rows, and �nally along the rows to their �nal destina-tions. The intermediate locations also satisfy the above four rules, but are now determinedby an unshu�e operation on the columns of the mesh, rather than being chosen at random.We also need a few additional steps for local sorting and routing, and the counter scheme.All in all, our deterministic algorithm consists of the following steps.Algorithm ROUTE:(1) Partition the mesh into destination blocks of size n� � n�, and let every packet deter-mine its destination block.(2) Partition the mesh into blocks of size n� � n�, and sort the packets in each block bytheir destination blocks, into row-major order. Here, it is assumed that the set ofdestination blocks is ordered in some arbitrary �xed way, say according to a row-majorordering of the blocks.(3) In each quarter Qi, perform an (n1��4 )-way unshu�e operation on the columns.(4) Route all packets in Q1 whose destination is in Q0 or Q1 into Q0. Route all packets inQ0 and Q1 whose destination is in Q2 or Q3 into Q2. Route all packets in Q2 and Q3whose destination is in Q0 or Q1 into Q1. Route all packets in Q2 whose destination isin Q2 or Q3 into Q3. The routing is done in such a way that only row edges are used,and that every packet travels a distance that is a multiple of n=4.7



holds after performing an (n1��)-way unshu�e operation on the columns of the mesh.Lemma 3.1 Let B1 and B2 be any pair of n��n� blocks located in the same row of blocks,and let D be a destination block of size n��n�. Let Ni denote the number of packets in Bithat have a destination in D, for 1 � i � 2. Then we have jN1 �N2j � n1��.The proof of the above lemma is straightforward and hence omitted. A similar lemmacan be shown in the context of sorting (see Lemma 4.1). Informally speaking, the abovelemma says that all elements with a common destination block will be evenly distributedover all blocks that are located in the same row of blocks. By repeating the local sortingof the blocks after the unshu�e operation, we can then make sure that all elements with acommon destination block are evenly distributed over the columns of the mesh.When routing the packets into their destination blocks, we have to make sure that not toomany packets enter across the same edge, and that no processor of the block receives too manypackets. In a randomized setting, this can be achieved by routing each packet to a randomlocation within its destination block (see, for example, the randomized sorting algorithm ofKaklamanis and Krizanc described in Subsection 4.1). In our deterministic algorithms, wewill use the counter scheme mentioned above. To explain the idea behind this technique,we consider a routing scheme in which all packets are routed along the columns, until theyturn into the rows and enter their destination blocks across the row edges. We assume that,after entering its destination block, each packet keeps on moving in its current direction untilit encounters a processor with a free slot in memory. Thus, if we can make sure that allpackets with a common destination block are evenly distributed among the incoming rows ofthe block, then no processor of the block will receive too many packets. The counter schemedistributes the packets in each column with a common destination block evenly among theentering rows using a system of counters. In every column, we maintain one counter foreach destination block of the mesh. All counters are initially set to zero. Whenever a packetheaded for a certain destination block arrives at the location of the corresponding counter,this counter is increased. (More precisely, we have two counters for each destination block,one located above the destination block and counting forward, and one located below thedestination block and counting backward.) The new value of the counter, together with a�xed o�set value assigned to each counter, determines the row that the packet should chooseto enter its destination block. It will be shown that this scheme distributes the packets evenlyamong the incoming rows of any destination block, provided that we assign an appropriatepattern of o�set values to the counters.3.2 Routing on Two-Dimensional MeshesIn this subsection, we show how the above techniques can be used to obtain an optimaldeterministic algorithm for n� n meshes with a queue size of 5. The algorithm is based onan optimal randomized algorithm proposed by Kaklamanis, Krizanc, and Rao [8]. We will�rst give a brief description of their algorithm, which has a very simple structure.Partition the mesh vertically into four quarters Q0 to Q3, where Qi contains the columnsin4 to (i + 1)n4 � 1. In the algorithm every packet is then �rst routed along the row to an6



tion 3.2, we apply the technique to obtain a (fairly) simple optimal routing algorithm fortwo-dimensional meshes. Subsection 3.3 shows how to extend this result to get optimalalgorithms for tori and three-dimensional meshes.3.1 The Basic IdeaIn this subsection, we describe the basic idea underlying our technique for converting ran-domized into deterministic algorithms. All of our routing and sorting algorithms have theproperty that they �rst route each packet to an approximate location, and then use localrouting to bring each packet to its correct �nal destination. More precisely, we partition thenetwork into destination blocks of size n��n�, with 23 < � < 1. Every packet is then routedto some position inside the destination block containing its destination address (in the caseof sorting, some packets will actually be routed to neighboring destination blocks). Oncethis has been completed, we can then use local routing over a distance of O(n�) to bring thepackets to their �nal destinations. Algorithms for the local routing problem with a runningtime of O(n�) have been described by Kunde [15] and Cheung and Lau [2].Hence, in the following we are only concerned with the problem of moving the packetsinto their destination blocks. To solve this problem deterministically, we use two fundamentaloperations, which we will refer to as the unshu�e operation and the counter scheme. Wewill use the unshu�e operation to distribute packets with the same destination block evenlyover a su�ciently large region of the network. The counter scheme will be employed to makesure that the incoming packets are evenly distributed over the processors of each destinationblock.Formally, for any m;k > 0 with m mod k = 0, the k-way unshu�e operation on mpositions 0; : : : ;m � 1 is de�ned as the permutation �k that moves the element in positioni to position �k(i) def= (i mod k) � m=k + bi=kc. We say that we perform a k-way unshu�eoperation on the columns (rows) of a block of the mesh, if we move all elements locatedin column (row) i of the block to the corresponding positions in column (row) �k(i) of theblock, for all i.The utility of the unshu�e operation for sorting on meshes was previously observed bySchnorr and Shamir, who used it in the design of their 3n + o(n) sorting algorithm in thesingle-packet model. In the following, we will demonstrate that the unshu�e operation canin many cases be employed as a \substitute" for the use of randomness. Following a generalscheme originally proposed by Valiant and Brebner [31], many randomized algorithms forrouting on meshes start out by moving all packets to random intermediate locations inside thecurrent row (or column). This has the e�ect of distributing packets with similar destinationsevenly over the columns (rows) of the network, with high probability. We observe thatthis e�ect can be achieved deterministically by partitioning the mesh into blocks, locallysorting the packets in each block by their destination blocks, and then applying an unshu�eoperation to the sorted blocks. Here, we assume that the set of destination blocks is orderedin some arbitrary �xed way, say according to a row-major ordering of the blocks.Formally, if we partition a mesh into blocks of size n� � n�, 23 < � < 1, and sort thepackets in each block by their destination blocks into row-major ordering, then the following5



we obtain the �rst optimal deterministic algorithm for routing on three-dimensional meshes,thus answering an open question posed by Leighton [20, p. 271]. Furthermore, we get the�rst optimal deterministic algorithm for routing on the two-dimensional torus, and a slightlyimproved algorithm for four-dimensional meshes.Next, we apply our new technique to the optimal randomized algorithm for sorting on thetwo-dimensional mesh proposed by Kaklamanis and Krizanc [6]. We obtain a deterministicalgorithm that runs in time 2n+o(n) with a queue size of about 25. The fastest deterministicalgorithm previously known for this problem [17] achieved a running time of 2:5n+ o(n) anda queue size of 2. As an extension of this result, we also obtain improved algorithms forsorting on three-dimensional meshes and on two-dimensional and three-dimensional tori. Wethen describe algorithms for multi-packet routing and sorting that match the bounds of theoptimal deterministic algorithm recently proposed by Kunde [18]. Finally, we give improveddeterministic algorithms for selection on meshes and related networks.The paper is organized as follows. Section 2 de�nes some terminology. Section 3 describesthe main idea behind our technique, and applies it to obtain improved algorithms for routing.Section 4 contains our results for sorting. Section 5 describes an application of our techniqueto multi-packet routing and sorting. Section 6 contains our results for selection. Finally,Section 7 lists some open questions for future research.2 TerminologyThroughout the paper, we will frequently have to reason about quantities that are determinedto within a lower order additive term. We use the notation � f(n) (\approximately f(n)")to refer to a term in the range between f(n)� o(f(n)) and f(n)+ o(f(n)). Also, we say thata set of k elements is evenly distributed among m sets if every set contains � k=m elements.For k1; k2 � 1, a k1{k2 relation is a routing problem in which each processor is the source ofat most k1 packets and the destination of at most k2 packets. An approximate k1{k2 relationon a linear array is a routing problem in which each block of m consecutive processors is thesource of at most mk1 + o(n) packets and the destination of at most mk2 + o(n) packets.Given a partition of the mesh into blocks of equal size, we use the terms row of blocksand column of blocks to refer to the sets of blocks with common vertical and horizontalcoordinates, respectively. Finally, we say that an algorithm is optimal if its running time is� l, where l is the best lower bound.3 Optimal Routing with Small Queue SizeIn this section we describe a number of deterministic algorithms for permutation routing onmeshes and tori. Our algorithms are based on a class of randomized routing schemes recentlyproposed by Kaklamanis, Krizanc, and Rao [8]. We describe a technique that allows us toconvert these randomized algorithms into deterministic algorithms with the same runningtime, within a lower order additive term.In the �rst subsection, we give an informal description of this technique. In Subsec-4



A 2:5n + o(n) time randomized algorithm for this model was given by Kaklamanis,Krizanc, Narayanan, and Tsantilas [7]. Their algorithm requires a queue size of at least 8(the queue size is the maximumnumber of packets located in a single processor at any time).Using very di�erent techniques, Kunde [17] designed a deterministic algorithm matching the2:5n+ o(n) randomized bound. Apart from being deterministic, Kunde's algorithm also hasa number of other advantages over that of Kaklamanis, Krizanc, Narayanan, and Tsantilas.The algorithm has a fairly regular structure, and no processor holds more than 2 packets atany point in time. The algorithm does not make any copies of packets, and it generalizesnicely to meshes of arbitrary dimension and to multi-packet sorting problems. Moreover, theelements are sorted into snake-like row-major order, while the randomized algorithm sortswith respect to the somewhat more complicated indexing scheme mentioned earlier.However, if one is interested in developing an algorithm that comes closer to the distancebound of 2n � 2, or in faster algorithms for selection, then it seems very di�cult to applythe techniques used in Kunde's deterministic algorithm. In fact, Narayanan [22] has shownthat any deterministic algorithm for sorting into row-major order that achieves a queue sizeof 2, and that does not make any copies of elements, must take at least 2:125n steps. Theapproach taken in the randomized algorithm [7], on the other hand, was subsequently usedby Kaklamanis and Krizanc [6] to design an optimal randomized sorting algorithm, with arunning time of 2n + o(n) and constant queue size.For the permutation routing problem, Valiant and Brebner [31] proposed a randomizedalgorithm with a running time of (2r � 1)n + o(n) and a queue size of O(lg n) on the r-dimensional mesh, r � 2. A deterministic algorithm for the two-dimensional mesh with arunning time of (2+�)n and a queue size of O(1=�) was described by Kunde [15]. A random-ized routing algorithm with running time 2n + o(n) and constant queue size was obtainedby Rajasekaran and Tsantilas [26]. Subsequently, Leighton, Makedon, and Tollis [21] gave adeterministic algorithm for routing that runs in 2n�2 steps with constant queue size. How-ever, the exact value for the queue size is rather large. Rajasekaran and Overholt [25] gavean improved construction that reduced the queue size to about 112. Very recently, Kakla-manis, Krizanc, and Rao have obtained several fairly simple optimal randomized and o�-linealgorithms for the two-dimensional and three-dimensional mesh, and for the two-dimensionaltorus.1.2 Overview of the PaperIn this paper, we introduce a new \derandomization" technique for meshes that allows us toconvert several recently proposed randomized algorithms for routing and sorting into deter-ministic algorithms that achieve the same running time, within a lower order additive term.We describe the main ideas behind the technique and then apply it to an optimal random-ized algorithm for routing on two-dimensional meshes proposed by Kaklamanis, Krizanc,and Rao [8]. As a result, we obtain a deterministic algorithm for permutation routing ontwo-dimensional meshes with a running time of 2n + o(n) and a queue size of 5. The onlyoptimal deterministic algorithm previously known for this problem [21, 25] had a runningtime of 2n � 2 and a queue size of at least 112. Extending our result to other networks,3



algorithms on the mesh are usually designed with a particular indexing scheme in mind, andtechniques used for one particular indexing scheme may not work well for others. In thispaper, we will assume an indexing scheme which can be described as a snake-like column-major indexing nested inside a snake-like row-major indexing, and which was also used in thealgorithms in [6, 7]. This indexing scheme is de�ned by partitioning the mesh into blocks ofsize n��n�, and using snake-like column-major indexing inside each block, while the blocksare ordered in the mesh according to snake-like row-major indexing.1.1 Previous ResultsThe study of sorting on the two-dimensional mesh was initiated by Orcutt [24] and Thompsonand Kung [30], who gave algorithms based on Batcher's Bitonic Sort [1] with running times ofO(n lg n) and 6n+ o(n), respectively. In the following years, a number of sorting algorithmswere proposed for the mesh (see, for example, [12, 19, 23, 27, 28]); these algorithms makea variety of di�erent assumptions about the power of the underlying model of the mesh.More recently, most of the work has focused on variants of the two models described in thefollowing, which we will refer to as the single-packet model and the multi-packet model.The single-packet model (also often referred to as the Schnorr-Shamir model ) assumesthat a processor can hold only a single packet at any point in time, plus some unboundedamount of additional information. This unbounded additional information may be used todecide the next action taken by the processor; however, it may not be used to create a newpacket and substitute it for the currently held packet. At any step in the computation, asingle packet plus an unbounded amount of header information may be transmitted acrosseach directed edge; a comparison-exchange operation on adjacent packets may be performedin a single step.For this model of the mesh, Schnorr and Shamir [29] showed an upper bound of 3n+o(n)for sorting into row-major order. They also proved a lower bound of 3n�o(n), independentlydiscovered by Kunde [13]. The same proof technique has also been used to show lower boundsfor arbitrary indexing schemes [13]; the best general lower bound is currently 2:27n [5].Interestingly, the upper bound does not make use of the unbounded local memory andheader information permitted in the model, while the lower bounds hold even under theserather unrealistic assumptions. Thus, the power of the model seems to be mainly determinedby the restriction to a single packet per processor. It has been argued that such a restrictiondoes not re
ect the capabilities of existing parallel machines, and that one should allow anyconstant number of packets to be stored in a single node.This has motivated the followingmulti-packet model of the mesh (also sometimes referredto as the MIMD model ). In this model, a processor may hold a constant number of packetsat any point in time, and packets may be copied or deleted. In any step of the computation, asingle packet plus O(lg n) header information can be transmitted across each directed edge,and local memory is restricted to O(lg n) bits. The only general lower bound for sortingand routing on the multi-packet model of the mesh is given by the diameter of the network,and several groups of authors have recently described sorting algorithms for this model thatachieve a running time of less than 3n. 2



1 IntroductionThe mesh-connected array of processors is one of the most thoroughly investigated inter-connection schemes for parallel processing. While it has a large diameter in comparison tothe various hypercubic networks, it is nonetheless of great importance due to its simple ande�cient layout and its good performance in practice. Consequently, a number of parallelmachines with mesh topology have been designed and built, and a variety of algorithmicproblems have been analyzed as to their complexity on theoretical models of the mesh.Probably the two most extensively studied problems are those of routing and sorting. Foran introduction into these problems, and a formal de�nition of the networks considered inthis paper, we refer the reader to [20].In this paper, we give improved algorithms for a number of routing and sorting problemson meshes and related networks. In our presentation, we will mostly focus on the case of thetwo-dimensional mesh. We will also state a number of results for higher-dimensional meshesand related networks, but due to space constraints we will omit most of the proofs of theseresults. We will mainly be concerned with the problems of 1{1 routing and 1{1 sorting,where before and after the operation each processor holds a single element.In the following, we assume an n � n mesh-connected array of synchronous processors.Each of the n2 processors will be identi�ed by its row and column coordinates. Everyprocessor is connected to each of its four neighbors through a bidirectional link, and abounded amount of information can be transmitted in either direction in a single step ofa computation. The routing problem is the problem of rearranging a set of packets in anetwork, such that every packet ends up at the processor speci�ed in its destination address.A routing problem in which every processor is the source and destination of at most onepacket is called a 1{1 routing problem or permutation routing problem. In the 1{1 sortingproblem, we assume that every processor initially holds a single packet, where each packetcontains a key drawn from a totally ordered set. Our goal is to rearrange the packets in sucha way that the packet with the key of rank k is moved to the unique processor with indexk, for all k. The index of a processor in the mesh is determined by an indexing scheme.Formally, an indexing scheme for an n � n mesh is a bijection I from f1; : : : ; ng �f1; : : : ; ng to f1; : : : ; n2g. If I(i; j) = k for some processor (i; j) 2 f1; : : : ; ng � f1; : : : ; ngand some k 2 f1; : : : ; n2g, then we say that processor (i; j) has index k. The problem ofsorting an input with respect to an indexing scheme I is to move every element y of theinput to the processor with index I(Rank (y;X)), where Rank (y;X) def= jfx 2 X j x � ygjand X denotes the set of all input elements. An example of a simple indexing scheme is therow-major indexing scheme, or row-major order, which is given by indexing the processorsfrom the left to the right, and from the top row to the bottom row. It can be formallyde�ned by I(i1; j1) < I(i2; j2), (i1 < i2) _ [(i1 = i2) ^ (j1 < j2)] :A related indexing scheme is the snake-like row-major ordering de�ned byI(i1; j1) < I(i2; j2), (i1 < i2)_[(i1 = i2) ^ ([(i1 odd ) ^ (j1 < j2)] _ [(i1 even ) ^ (j1 > j2)])] :Similarly, one can de�ne the column-major and snake-like column-major orderings. Sorting1



Optimal Deterministic Routing and Sortingon Mesh-Connected Arrays of ProcessorsTorsten Suel�Department of Computer SciencesUniversity of Texas at Austintorsten@cs.utexas.eduAbstractIn this paper we introduce a new \derandomization" technique for mesh-connectedarrays of processors that allows us to convert several recently proposed randomizedalgorithms for routing and sorting into deterministic algorithms that achieve the samerunning time, within a lower order additive term. By applying this technique, weobtain a number of optimal or improved deterministic algorithms for meshes and relatednetworks. Among our main results are the �rst optimal deterministic algorithms forsorting on the two-dimensional mesh and for routing on the two-dimensional torusand the three-dimensional mesh, as well as an optimal deterministic routing algorithmfor the two-dimensional mesh that achieves a queue size of 5. The new technique isvery general and seems to apply to most of the randomized algorithms for routing andsorting on meshes and related networks that have been proposed so far.
�Supported by Texas Advanced Research Program (TARP) Award #003658480.


