processor. Using simple geometric arguments, it can be shown that all of these elements
reach their destination row in time.

Next, consider the set of elements that have to travel a distance between n/4 and 3n/8.
There are ~ n/8 of these elements, and they will leave the topmost processor between time
n/2 and time 3n/4. It can be shown that these elements also reach their destination row in
time. Similarly, it can be shown that the set of elements that have to travel a distance of
less than 3n/16 can be routed to their destination rows between time 3n/4 and time n. The
remaining problem is now to find a way to route those elements that have to travel a distance
between 3n/16 and n/4. We can solve this problem by observing that the capacity reserved
for the column elements between time n/2 and 3n/4 is not completely used up by these
elements. The reason is that the rows from which the column elements turn into the column
are evenly distributed over the topmost n/4 rows of the quadrant. Hence, many of the slots
reserved for these elements will not be immediately claimed by the column elements, and we
can use these empty slots to route row elements that only have to travel a short distance.
It can be shown that all remaining row elements can be routed in this way, and that they
reach their destination row in time.

This proves that all packets reach their destination row in time under distribution A;.
A similar argument can be given for distribution A,. O

31

are given by the destination rows, while the priorities of the elements are determined by
the total Manhattan distances to the destination blocks. We identify every processor in the
lower right quadrant by a pair of coordinates (x,y), where (0,0) denotes the center of the
mesh and (n/2—1,0) denotes the upper right corner of the quadrant. Only the n/4 columns
passing through the upper left subquadrant are used in this phase. Note that the routing
in column 7, 0 < ¢ < n/4, is started ¢ steps after the routing in column 0. It can be shown
that the time for routing the row elements in column n/4 — 1 to their destination blocks
gives an upper bound for the time it would take to route the same set of elements in any
other column, within a lower order additive term. Hence, in the following we will limit our
attention to the routing in column n/4 — 1.

By Claim (1), we know that there are ~ n/2 row elements in the topmost n/4 processors
of the column, and that the destinations of these elements are evenly distributed over all
destination blocks in the quadrant. However, we do not know anything about the distribution
of these elements inside the column at the beginning of the routing. Some processors could
hold up to 8 row elements, while others could have none. In the following, we will limit
our attention to the following two distributions of the elements inside the column. In the
first distribution Ay, all ~ n/2 elements are initially located in the topmost processor of the
column, with coordinates (n/4 —1,0). In the second distribution Ay, all ~ n/2 elements are
initially located in processor (n/4 —1,n/4 — 1). Note that neither A; nor Ay can actually
occur in the algorithm, since a single processor will have at most 8 row elements at the
beginning of the routing. We consider these two distributions here because they provide an
upper bound for the routing time of all other distributions. More precisely, the following can
be shown. Let A be an arbitrary distribution of the elements in the column, and let T'(e, A)
denote the time to route an element e to its destination row under distribution A. Then it
can be shown that the inequality T'(e, A) < max{T (e, A1), T (e, Az)} holds for all elements
e. Thus, if all packets arrive at their destination rows in time under both A; and A,, then
they will also arrive in time under any other distribution.

Now consider distribution Aj, where initially all ~ n/2 elements are located in the
topmost processor of the column. The Start signal will arrive at this processor n/4 —1 steps
after it was broadcast from the center. Now the elements will start moving towards their
destination row, where priority is given to those elements that have the farthest distance to
travel. In any step up to time n/2, one row element will leave the topmost processor and
move towards its destination row. Once an element has started moving, it will not be delayed
until it reaches its destination row. Between time n/2 and 3n/4, only one row element will
leave the topmost processor in any two consecutive steps, and from time 3n/4 to the end of
the routing, three elements will leave the topmost processor in any four consecutive steps.
As before, an element will move to its destination row without being delayed once it has left
the topmost processor.

Now consider the set of elements that have to travel a total distance of at least 3n/8.
Due to Claim (1), there will be ~ n/4 such elements in the column. Since these elements
have a higher priority than the rest, all these elements will leave the topmost processor
between time n/4 and n/2. By Claim (1), the destination blocks of these elements are
evenly distributed over the area of the quadrant that is at least 3n/8 away from the topmost

30

destinations of these elements are evenly distributed among all destination blocks in that
column.

Proof: Since the accuracy of the splitters is O(n?~%), every destination block will receive

n?* 4+ 0(n*7%) elements. By Lemma 4.2, approximately half of these elements will be column
elements. It was shown in the proof of Claim (2) that in any block of n® consecutive rows,

20=1 column elements of any particular destination block turn into any of the n® columns

~ 2n
passing through that block. Multiplying this by the number of blocks of n® consecutive rows
in the subquadrant (which is inl_a), we conclude that every column receives ~ %na elements
with any particular destination block. Multiplying this term by the number of destination
blocks in the same column (which is %nl_a), we can infer that every column receives ~ %
elements. O

Claim (4): If a row element reaches its destination row by time n — r + o(n), where r is
the distance it has to travel inside the destination row, then the element will arrive at its
destination block by time n + o(n).

Proof: (Sketch) Consider a routing problem on a linear array with n/2 processors and
n/2 packets, where each processor is the destination of exactly one packet. It is well known
that a greedy routing strategy that gives priority to the packets with farther distance to
travel will deliver all packets within time n/2 — 1, even if processors may initially hold an
arbitrary number of packets (see, for example, [20, Section 1.7.1]). It can be shown by a
simple induction on the number of routing steps that this remains true even if we impose
the additional constraint that a packet may not move before time n/2 — r, where r is the
distance the packet has to travel. We can interpret the routing of the column elements inside
the column as such a routing problem on a linear array that is started at time n/2 + o(n).
In this case, we have n/2 processors, but only n/4 packets. Hence, half of the capacity will
suffice to route all packets. Since the routing problem has the additional properties that all
packets start in the first n/4 processors, and that the destinations of the packets in every
large block of processors are evenly distributed over the entire array, it can be shown that
the capacity required for this routing problem can be reduced to a quarter after the first n/4
steps. U

We have now established that the elements will reach their destination blocks by time
n + o(n), provided that they are not delayed too much in the first phase of the routing. The
remainder of the proof will give an analysis of this first phase, in which the row elements are
routed inside their column. The lemma then follows immediately from Claim (4) and the
following result.

Claim (5): Every row element will reach its destination row by time n — r + o(n), where r
is the distance the element has to travel in the destination row.

Proof: (Sketch) Note that the routing of the row elements inside any particular column is
independent of the routing in any other column. Thus, we can interpret this routing phase
as a routing problem on a linear array, where the destinations of the elements in the array

29

destination block D will differ by at most %nZ_w between the row elements in any column
of blocks and the column elements in any row of blocks of the subquadrant. After all 16
subquadrants have been overlapped into a single subquadrant, this becomes 3n%=2% = o(n").
Hence, in each block of size n” x n”, the sorting in Step (8a) has the effect of distributing the
row elements with destination block D evenly over the n” columns, and the column elements
evenly over the n? rows, up to a difference of one. Since there are %nl_ﬁ such blocks in
each column of blocks in the quadrant, the number of elements destined to any particular
destination block will differ by at most %nl_ﬁ between the row elements in any column and

2—2«a

the column elements in any row. Since there are only in destination blocks in each

quadrant, every column will have 5 4 O(n*=#=2%) row elements. O
Claim (2): The queue size remains constant during the routing in Step (9).

Proof: The proof of this claim is similar to the argument of Subsection 3.2. Assume
the same assignment of offset values to the counters as in the routing algorithm. It follows
from Claim (1) that every column contains ~ 2n**~! elements destined for any particular
destination block. Hence, the counter technique will guarantee that at most 2 row elements
turn into a row in any processor. More precisely, if every column were to contain exactly
2n%e=1 elements for each destination block, then exactly one row element would turn in any
processor, since no two counters corresponding to the same column and the same row of
destination blocks would ever have the same value. Due to the low-order variations in the

number of elements, we get a bit of overlap between the counters.

Next, we have to show that the initial assignment of values to the counters ensures that
not too many row elements enter their destination block across the same row. Consider a
fixed destination block D, and any set of n® consecutive columns. We will show that the
values assumed by those 2n® counters in our set of columns that correspond to destination
block D are evenly distributed from 0 to n® —1. Note that the initial values of these counters
are evenly distributed from 0 to n® — 1. Claim (1) can then be used to show that ~ 2n**~!
elements with destination block D turn into any particular row. Hence, ~ %na elements
enter destination block D through any particular row. If, after entering D, each element
stops in the first processor that has not yet received a row element, then every processor
in D will receive at most one row element. This proves that the routing step achieves a

constant queue size. O

Note that in the rest of the sorting algorithm the maximum queue size is clearly bounded
by some constant > 16. At the beginning of Step (9), some processors can hold up to 16
elements. During the first phase of the routing, some processors may temporarily have to
hold up to 18 packets. In addition, up to 2 row elements and up to 2 column elements might
have to turn in the processor. Also, a processor could become the destination of at most one
row element and one column element in the second phase of the routing. Another memory
slot will be needed for the broadcast of the exact splitter ranks in Step (10) of the algorithm.
Thus, the total queue size is bounded by 25. This bound could probably be slightly improved
by a more careful analysis and implementation.

Claim (3): Every column receives ~ n/4 column elements in the second phase, and the

28

A Proof of Lemma 4.5

Lemma 4.5 The greedy routing to destination blocks in Step (9) runs in time n+ o(n) with
constant queue size.

Proof: The routing in Step (9) is initiated by a Start signal that is broadcast from the
center of the mesh at time n+o(n). All time bounds stated in the following are with respect
to the moment at which this signal was sent out. In the following analysis of the routing,
we will restrict our attention to the lower right quadrant of the mesh.

As stated in the algorithm, we will assume the same routing scheme as in the optimal
randomized algorithm. In this scheme, every element moves to its destination block in two
phases. In the first phase, row elements move inside their current column to their destination
row, while column elements move inside their current row to their destination column. In
the second phase, the elements move to their destination blocks. If several packets that are
in the same phase contend for an edge, priority will be given to the element with the farthest
distance to travel. In the following, we will only consider the routing of the row elements
during their first phase, and the routing of the column elements during their second phase.
Thus, we will only be concerned with the problem of routing inside the columns; a symmetric
argument holds for the routing inside the rows.

Until time 0.5n, we reserve the entire edge capacity of the columns for row elements
that are in their first phase. At time 0.5n, we start reserving halt of the bandwidth of each
column for column elements in their second phase. More precisely, starting at time 0.5n, we
reserve half of the capacity of the topmost column edge for column elements in their second
phase. Starting in the next step, we reserve half of the capacity of the next column edge for
the column elements, until at time 0.75n all column edges in the center subquadrant 75 have
half of their capacity reserved for the column elements. At time 0.75n, we start reserving
only a quarter of the capacity for column elements. As before, this change is initially applied
only in the topmost column, and then propagated downwards. It will be seen that this
guarantees that, once an element has started moving, it will never be delayed until it reaches
its destination.

Assuming the above routing scheme, we establish Lemma 4.5 through a series of five
claims. The proof of Claim (5) is based on an informal explanation of the corresponding
proof for the optimal randomized sorting algorithm in [6], given to the author by Christos
Kaklamanis.

Claim (1): During the first phase of the routing, there are £ 4 o(n) row elements in each of
the leftmost n/4 columns of the quadrant, and the destinations of the row elements in each
column are evenly distributed over all destination blocks.

Proof: Consider any fixed subquadrant of the mesh after Step (3) of the algorithm. By
Lemma 4.2, the number of row elements in the subquadrant that are destined to a particular

n® x n® destination block differs by at most 11—6n2_25 from the number of column elements
1—

destined to that block. Lemma 4.1 then guarantees that, after the (%) -way unshuffle of

the row and column elements in Step (4), the number of elements destined to any particular

27

[28] I. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLSI models of compu-
tation. [FEFE Transactions on Computers, 38:238-249, 1989.

[29] C. P. Schnorr and A. Shamir. An optimal sorting algorithm for mesh-connected com-
puters. In Proceedings of the 18th ACM Symposium on Theory of Computing, pages
255263, May 1986.

[30] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel computer.
CACM, 20:263-271, 1977.

[31] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In
Proceedings of the 13th Annual ACM Symposium on Theory of Computing, pages 263—
277, May 1981.

26

[14]

[15]

[16]

[17]

18]

[22]

23]

[24]

[25]

[26]

M. Kunde. Routing and sorting on mesh—connected arrays. In J. H. Reif, editor, VLSI
Algorithms and Architectures: Proceedings of the 3rd Aegean Workshop on Computing,
Lecture Notes in Computer Science, volume 319, pages 423-433. Springer, 1988.

M. Kunde. Packet routing on grids of processors. In H. Djidjev, editor, Workshop on
Optimal Algorithms, Lecture Notes in Computer Science, volume 401, pages 254-265.
Springer, 1989.

M. Kunde. Balanced routing: Towards the distance bound on grids. In Proceedings
of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, pages
260-271, July 1991.

M. Kunde. Concentrated regular data streams on grids: Sorting and routing near to the
bisection bound. In Proceedings of the 32st Annual IEEE Symposium on Foundations
of Computer Science, pages 141-150, October 1991.

M. Kunde. Block gossiping on grids and tori: Deterministic sorting and routing match
the bisection bound. In First Annual European Symposium on Algorithms, September
1993. To appear.

H. W. Lang, M. Schimmler, H. Schmeck, and H. Schroder. Systolic sorting on a mesh-
connected network. IEFE Transactions on Computers, 34:652-658, 1984.

F. T. Leighton. [Introduction to Parallel Algorithms and Architectures: Arrays, Trees
and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.

F. T. Leighton, F. Makedon, and I. G. Tollis. A 2n — 2 step algorithm for routing
in an n X n array with constant queue sizes. In Proceedings of the 1st Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 328-335, July 1989.

L. Narayanan. Selection, Sorting, and Routing on Mesh-Connected Processor Arrays.
PhD thesis, Department of Computer Science, University of Rochester, Rochester, NY,
May 1992.

D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel computer. IFEE
Transactions on Computers, C-28:2-7, 1979.

S. E. Orcutt. Computer Organization and Algorithms for Very-High Speed Computa-
tions. PhD thesis, Department of Computer Science, Stanford University, September
1974.

S. Rajasekaran and R. Overholt. Constant queue routing on a mesh. Journal of Parallel
and Distributed Computing, 15:160-166, 1992.

S. Rajasekaran and T. Tsantilas. Optimal routing algorithms for mesh-connected pro-
cessor arrays. Algorithmica, 8:21-38, 1992.

K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected processor array.
Journal of Parallel and Distributed Computing, 3:389-410, 1986.

25

References

[1]

2]

[10]

[11]

K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS
Spring Joint Computer Conference, vol. 32, pages 307-314, 1968.

S. Cheung and F. C. M. Lau. Mesh permutation routing with locality. Information
Processing Letters, 43:101-105, 1992.

R. Cole and C. K. Yap. A parallel median algorithm. Information Processing Letters,
20:137-139, 1985.

A. Condon and L. Narayanan. Upper and lower bounds for selection on the mesh.
Unpublished manuscript, 1993.

Y. Han, Y. Igarashi, and M. Truszczynski. Indexing functions and time lower bounds
for sorting on a mesh-connected computer. Discrete Applied Mathematics, 36:141-152,
1992.

C. Kaklamanis and D. Krizanc. Optimal sorting on mesh-connected processor arrays.
In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 5059, July 1992.

C. Kaklamanis, D. Krizanc, L. Narayanan, and T. Tsantilas. Randomized sorting and
selection on mesh-connected processor arrays. In Proceedings of the 3rd Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 17-28, July 1991.

C. Kaklamanis, D. Krizanc, and S. Rao. Simple path selection for optimal routing
on processor arrays. In Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 23-30, July 1992.

M. Kaufmann, S. Rajasekaran, and J. F. Sibeyn. Matching the bisection bound for
routing and sorting on the mesh. In Proceedings of the 4th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 31-40, July 1992.

D. Krizanc and L. Narayanan. Optimal algorithms for selection on a mesh-connected
processor array. In Fourth Annual IEEE Symposium on Parallel and Distributed Pro-
cessing, December 1992.

D. Krizanc, L. Narayanan, and R. Raman. Fast deterministic selection on mesh-
connected processor arrays. In 11th Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 336-346, December 1991.

M. Kumar and D. S. Hirschberg. An efficient implementation of Batcher’s odd-even
merge algorithm and its application in parallel sorting schemes. IEEE Transactions on
Computers, 32:254-264, 1983.

M. Kunde. Bounds for 1-selection and related problems on grids of processors. In
Fourth International Workshop on Parallel Processing by Cellular Automata and Arrays
(PARCELLA), pages 298-307. Springer, 1988.

24

models of the mesh. However, even for these fairly restricted models, a large gap remains
between the best upper and lower bounds.

7 Summary and Open Problems

In this paper, we have introduced a new technique that allows us to “derandomize” many
of the randomized algorithms for routing and sorting on meshes that have been proposed
in recent years. By applying this technique, we have obtained optimal or improved deter-
ministic algorithms for a number of routing and sorting problems on meshes and related
networks. The new technique is very general and seems to apply to most of the randomized
algorithms that have been proposed in the literature. In fact, as a result of this work, we
are currently not aware of any randomized algorithm for routing and sorting on meshes and
related networks whose running time cannot be matched, within a lower order additive term,
by a corresponding deterministic algorithm.

This naturally raises the question whether randomization is of any help at all in the
design of routing and sorting algorithms for these types of networks. In this context, we
point out that many of the randomized algorithms still have a simpler control structure and
smaller lower order terms than their deterministic counterparts, which repeatedly perform
local sorting within blocks. Also, the results in this paper would not have been possible
without the extensive study of randomized schemes for routing and sorting by a number of
other authors, which has resulted in a variety of fast randomized algorithms [6, 7, 8, 9, 26].

It is an interesting open question whether our “derandomization” technique can be used
to obtain improved deterministic algorithms for other classes of networks, and perhaps even
other types of problems. It seems that our techniques are most suitable for networks with
large diameter, since we repeatedly sort fairly large subsets of the input. A straightfor-
ward application of our technique to networks with small diameter, such as the hypercubic
networks, would lead to a blow-up in the running time due to the time spent on local sorting.

In the case of our optimal algorithms for routing and sorting, any further reduction of
the queue size would be an interesting improvement. Another possible direction for future
research is to try to design algorithms with a simpler control structure than those presented
in this paper. In the case of sorting, it is an interesting open question whether there exists
an optimal algorithm that does not make any copies of elements, or whether a general lower
bound can be shown for this case.

An important open question that remains unsettled is whether there exist optimal algo-
rithms for routing and sorting in r-dimensional meshes, r > 3. For large r, the best algo-
rithms currently known are still nearly a factor of 2 away from the diameter lower bound.
Finally, it is a challenging open problem to determine the complexity, within a lower order
additive term, of the problem of selection on the standard mesh.

Acknowledgements: I would like to thank Christos Kaklamanis, Greg Plaxton, and Raj-
mohan Rajaraman for helpful discussions.

23

s1 and sy with Rank (s, 5) = %nQ_‘S and Rank (s2,95) = %nQ_‘S + n?7% as bracketing

elements (i.e., upper and lower bounds) for the median. Using Lemma 4.3, it is easy to
show that Rank (sy, X) — Rank (s;, X) = O(n?*7?%), and that the median lies between

s1 and sy. Sorting the center block and selecting s and sy will take o(n) time.

(5) Broadcast sy and s in the entire middle diamond of radius 0.11n. This takes time
0.11n, and is thus completed at the same time as the concentration of the elements
into the diamond of radius 0.11n described in Step (3).

(6) Every element between s; and sp routes itself towards the center. At the same time,
the exact ranks of s; and s, in X are computed by a prefix computation that counts
those elements that are smaller than s;, and those that are larger than s;. This takes
another 0.11n time steps, after which both the elements between s; and sy and the
global ranks of s; and sy are located in a block of size o(n) at the center of the mesh.

(7) Choose the median from among the elements that were routed to the center in the
previous step. This can be done by sorting these elements, and takes time o(n).

The total running time of the above algorithm is approximately 1.22n. Ignoring lower
order terms, this time consists of n steps to route the sample to the center, 0.11n steps
to broadcast the bracketing elements in the middle diamond, plus another 0.11n steps to
collect the results of the broadcast in the center. Hence, an obvious strategy for improving
the running time would be to try to concentrate the packets into a middle diamond of
radius smaller than 0.11n. However, Krizanc, Narayanan, and Raman [11] have shown that
concentrating n? packets into a smaller diamond would actually increase the running time,
since, due to the limited number of edges on the perimeter of the diamond, the concentration
could not be completed in time for the broadcast in Step (5).

The main difference between this and the previously best deterministic algorithm is in
the technique used to select the bracketing elements s; and s;. The 1.44n step algorithm
selects a sample of size o(n); this means that an additional broadcast of all sample elements
into the middle diamond is needed to determine the ranks of the sample elements. Only
after this is done, can the bracketing elements be selected from the sample.

For the mesh with diagonals, we can obtain a lower bound of 0.5n + I—S. This lower
bound is based on the observation that in a mesh with diagonals, a large number of elements
initially have a distance close to the radius from the center point. If all of these elements
have a rank close to the median, then there will not be enough bandwidth available to route
all median candidates towards the center. We are not aware of any general lower bounds for
selection on other mesh-related networks.

Very recently, Condon and Narayanan [4] have given an improved randomized algorithm
for selection that runs in 1.19n steps. Using the techniques described in this paper, we can
convert their algorithm into a deterministic algorithm with the same running time. The
construction is slightly more complicated than in the case of the 1.22n time algorithm, and
uses both the deterministic sampling technique and the unshuffle operation. Condon and
Narayanan also show a number of lower bounds for selection which hold for various restricted

22

computation and broadcasting of the splitter set in parallel with the first r phases of unshuffle
operations, then we can obtain a deterministic algorithm for k—% sorting that matches the
running time of our routing algorithm up to o(rn) steps.

6 Improved Deterministic Algorithms for Selection

Using the sampling technique described in Subsection 4.2, we can also obtain improved deter-
ministic algorithms for selection on meshes, tori, and meshes with diagonal edges. The algo-
rithms are based on a number of randomized algorithms proposed by Kaklamanis, Krizanc,
Narayanan, and Tsantilas [7], and by Narayanan [22]. For the two-dimensional mesh, we
obtain an algorithm running in time 1.22n. The best deterministic algorithm previously
known required 1.44n steps [11]. The new algorithm can easily be adapted to the three-
dimensional mesh, the torus, and the mesh with diagonal edges. In each case, the running
time will match that of the best known randomized algorithm, given by 1.94n, 1.13n, and
0.65n, respectively [22]. For meshes with diagonals, we can show a lower bound of 0.5n + .

In the following, we describe our improved deterministic algorithm for selection on the
two-dimensional mesh. We will restrict our attention to the problem of selecting the median
element at the center processor of the mesh. It was shown by Krizanc and Narayanan [10]
that selection can be performed within the distance bound if the rank of the selected element
is o(n?), or if we select at a processor with a distance of at least n/2 from the center.

Fortunately, the randomized selection algorithm of Kaklamanis, Krizanc, Narayanan,
and Tsantilas is much simpler than the algorithms for sorting [6, 7], and the use of random-
ization is limited to only a few steps. Furthermore, a deterministic version of this selection
algorithm was already described by Krizanc, Narayanan, and Raman [11]; due to a weaker
deterministic sampling technique, their algorithm achieves only a running time of 1.44n. We
will be able to reuse most parts of their algorithm, and hence in the following we will focus on
the differences between the two algorithms. The improved algorithm works in the following
seven steps:

Algorithm SELECT:

(1) Select a sample set of size n>~% by sorting blocks of size n® x n’ into row-major order

and putting the elements in the first column of each block into the sample. This takes
time O(n®) = o(n).

1-9/2 4t the center of the mesh.

(2) Route the sample elements into a block of side length n
This can be done in n steps with the routing scheme employed in Step (2) of the sorting

algorithm in Subsection 4.3.

(3) Concentrate all n? packets into a diamond of radius @n ~ 0.11n around the center

of the mesh. As shown in [11], this operation can be completed in time 1.11n.

(4) Sort the sample set in the center block using any standard sorting algorithm for the
mesh, for example the algorithm of Schnorr and Shamir [29]. Then select the elements

21

5 Optimal Multi-Packet Routing and Sorting

The techniques presented in this paper can also be used to obtain optimal deterministic
algorithms for k—k routing on r-dimensional meshes. In a k—k routing problem, a processor
can initially hold up to k packets, and can receive up to k packets during the routing. For
k—k routing, as well as for the related problem of k—k sorting, there exists a lower bound of %”
due to the bisection width of the network. Kaufmann, Rajasekaran, and Sibeyn [9] recently
obtained randomized algorithms for k—k routing and sorting that match this lower bound,
within a lower order additive term. Subsequently, Kunde [18] described a deterministic
algorithm that achieves a similar bound.

Using the unshuffle operation and the counter scheme, we can design a deterministic al-
gorithm for k—k routing that matches the running time of Kunde’s algorithm. The algorithm
can be seen as a deterministic variant of one of the randomized algorithms in [9], and shows
an interesting relation between randomization and the unshuffle operation.

Consider the following uni-axial algorithm consisting of 2r phases. During each phase
2, 1 < ¢ < r, we perform an unshuffle operation with respect to the ¢th dimension. This
is done by locally sorting blocks of side length n? and subsequently performing an (n'=")-
way unshuffle operation along each linear array in direction of the :th dimension. During
each phase 7, r + 1 < ¢ < 2r, we route the packets along dimension ¢ — r towards their
destinations, using the counter scheme to distribute the packets evenly in their destination
subcubes. Finally, we use local routing to bring all packets to their final destinations. Using
the fact that a k—k relation can be routed in time %” + o(kn) on a linear array, it is easy
to see that the above algorithm routes any k—k routing problem in time krn + o(krn) on
an r-dimensional mesh of side length n. Hence, by running r such uniaxial algorithms
simultaneously, we can obtain an algorithm that runs in time kn + o(krn). Before running
this algorithm, we have to partition the packets of the k—k relation into r similar subsets;
this can be done in the same way as the partitioning of the packets of a 2-2 relation into 2
sets performed in the algorithm of Lemma 3.2.

Note that this is still a factor of 2 away from the lower bound. In [9], Kaufmann,
Rajasekaran, and Sibeyn overcome this problem by showing that a k—k relation can be
randomized on a linear array in time %” + o(kn), with high probability. We can use a very
similar idea to prove that the above algorithm runs in time %” + o(krn). In the following,
we say that an approximate k—Fk relation x on n positions 0,...,n — 1 is y-normal if for
any block B of v(n) consecutive positions, the destinations of the elements originating from
B and the origins of the elements with destination in B are both evenly distributed over
all blocks of size v(n). Using similar arguments as in [9], it can be shown that any ~-
normal k—k relation can be routed on a linear array in time %” + o(kn), for v = o(n). Not
surprisingly, a randomization of a k—k relation is a y-normal approximate k—k relation, with
high probability. Also, both the unshuffle operations in phases 1 to r and the resulting
routing problems in phases r 4+ 1 to 2r of our algorithm are ~-normal k—k relations, for some
v = O(n'~). This implies that the above algorithm runs in time %” + o(krn).

Using the deterministic sampling technique described in Subsection 4.2, we can convert
our k—k routing algorithm into an algorithm for the k—k sorting problem. If we schedule the

20

delayed by at most o(n) steps by simply reserving these edges for the sample elements, and
restricting the other packets to the remaining rows and columns. O

Lemma 4.5 The greedy routing to destination blocks in Step (9) runs in time n 4 o(n) with
constant queue size.

The proof of Lemma 4.5 is given in the appendix. Together, Lemma 4.4 and Lemma 4.5
establish the following result.

Theorem 4.2 There exists a deterministic algorithm for sorting on the n x n mesh with
running time 2n + o(n) and constant queue size.

It is not difficult to see that the above algorithm will still work if we sort with respect
to a slightly different indexing scheme, in which the blocks of size n® x n® are ordered along
the diagonals rather than along the rows. This is somewhat interesting in that there exists
a lower bound of 4n — o(n) in the single-packet model for this modified indexing scheme.
Thus, an indexing scheme that is good in one model may not be good at all in the other
model.

4.4 Extensions

In [6], Kaklamanis and Krizanc extend their results to three-dimensional meshes and two-
dimensional and three-dimensional tori. These extensions also hold for the deterministic
case, and we get the following results.

Theorem 4.3 There exists a deterministic algorithm for sorting on the three-dimensional
mesh with running time 3.5n + o(n) and constant queue size.

Theorem 4.4 There exists a deterministic algorithm for sorting on the two-dimensional
torus with running time 1.25n 4 o(n) and constant queue size.

Theorem 4.5 There exists a deterministic algorithm for sorting on the three-dimensional
torus with running time 2n + o(n) and constant queue size.

The best deterministic algorithms previously known for these problems required running
times of 5n 4 o(n), 2n + o(n) and 3n + o(n), respectively. Using the above algorithms for
three-dimensional meshes and tori as subroutines, we can obtain improved algorithms for
sorting on r-dimensional meshes and tori, » > 4, with running times of (2r — 2.5)n + o(n)
and (r — 1)n + o(n), respectively. The best deterministic algorithms previously known for
these networks required (2r — 1)n steps on the mesh and rn + o(n) on the torus [14].

19

Note that this step will take time O(n”) = o(n) per block, from the moment the splitter
front enters the block until the sorting of the row and column elements in the block is
completed. Thus, we can initiate the routing in the following Step (9) by broadcasting
a Start signal from the center of the mesh O(n?) steps after the broadcast of the splitter
set.

(9) After the arrival of the Start signal, every element routes itself greedily towards its
destination block. Row elements go first along the columns until they reach their
destination row, and column elements travel first along their row until they reach their
destination column. We can employ the same priority scheme that is used in the
randomized algorithm. Note that up to this moment, the exact destinations of the
elements inside their destination blocks have not yet been determined. This will be
done during the routing, in the following Step (9a). It will be established in Lemma 4.5
that the routing terminates in n+o(n) steps with constant queue size. A more detailed
description of the routing is given in the proot of the lemma.

(9a) Use the counter scheme described in the routing algorithm in Subsection 3.2 to
distribute the elements evenly over the rows and columns of the destination blocks.

(10) This step is the same as in the randomized algorithm. The exact ranks of the splitter
elements are broadcast from the center of each quadrant 0.5n steps after the splitters
were sent out from the center. After another 0.5n steps, all elements have received the
splitter ranks.

(11) We now perform local routing over a distance of O(n®) to bring each element to its
final destination. This takes time O(n®).

Our claim is that this algorithm runs in time 2n 4 o(n) with constant queue size. The
exact bound for the queue size is at most 25; we will elaborate on this issue briefly in the
proof of Claim 5 in Appendix A. We will establish our result in the following two lemmas.

Lemma 4.4 The sample set of size n?~% selected in Step (1) can be routed in n steps to a
block of size n'=%/2 x n'=%/? around the center of the mesh, without delaying the routing in
Step (5) by more than o(n) steps.

Proof: Since our sample set is of size w(n), we have to be a bit careful in the design of
this routing step to make sure that the movement of the splitters towards the center does
not delay the movement of the packets in Step (5). We propose the following solution. After
Step (1), all elements in the sample set are located in the first column of their respective
n® x n® block. Now move all sample elements located in a block that is in the ith row of
blocks into the ith column of that block, for + = 1,...,n'~%. This can be done in o(n) time
by locally routing inside each block. Now use column routing to move all sample elements
to the n® middle rows of the mesh. This will be completed in 0.5n steps. Next, we use
row routing to move the sample elements into the block in the center, which takes another
0.5n steps. Observe that in the routing we have only used edges in n?~% = o(n) columns

and n° = o(n) rows of the mesh. Hence, we can guarantee that the routing of Step (5) is

18

(2)

Route a copy of the sample set to a block B of size n'=%/2 x n'=%/2 at the center of the
mesh. This can be completed in n steps; the details of this routing step are given in
the proot of Lemma 4.4.

Divide the n? elements into n?/2 row elements and n?/2 column elements as described
in Subsection 4.2. This operation takes time O(n”) = o(n).

In each block of size n” x n”, sort the row elements into row-major order. Now

select for each row element a new location in its row, within its current subquadrant,
nl=

4
Subsection 3.1. Similarly, sort the column elements in each block into column-major

B)—Way unshuffle operation on the

corresponding to an (ﬁ)—way unshuffle operation on the columns, as described in

order, and select new locations according to an (*

rows. Again, as in the randomized algorithm, the elements will not actually move to

the chosen locations in this step. This will be done in Step (5).

This step is the same as in the randomized algorithm. We route copies of each element
to the locations in the four subquadrants Ty to 75 corresponding to the locations chosen
in Step (4). This step will take time 1.25n, but every copy will reach its location before
the arrival of the splitter elements.

This step is also the same as in the randomized case. The sample set is sorted in the
center block B, and n® elements of equidistant ranks are chosen as splitters. This takes
time O(n'~%/2) = o(n), and Theorem 4.1 guarantees that every splitter can determine
its global rank to within O(n?~%).

This step 1s again the same as in the randomized algorithm. The splitters are broadcast
in each of the subquadrants Tj to 75, and the exact global ranks of the splitter elements
are computed. This takes time 0.5n.

Each element hit by the splitter front can determine its rank to within a range of
O(n*7%) ranks. This enables the element to determine the block of side length n® that
will contain most of the elements within this range in the final sorted order. If that
block is outside its current quadrant, then the element kills itself. Note that an element
may actually not end up in this block in the final sorted order, but the properties of our
indexing scheme guarantee that the chosen block will be close to its final destination.
Now, before routing the elements to their approximate destinations, we perform the
following additional step:

(8a) Divide the mesh into blocks of size n” x n”. As soon as such a block has been
completely traversed by the splitter front, the row elements in the block are sorted
into row-major order by their n® x n® destination blocks, where the ordering of
the destination blocks can be arbitrary. Similarly, the column elements in the
block are sorted into column-major order by destination blocks. The purpose of
this step is to distribute the row (column) elements with a common destination
block evenly among the columns (rows) of the n” x n” block.

17

defines a partition of the input set X, and that each of the n?=% sets T(s) contains exactly
n® elements.

Now let s € S; and s; € S; be two arbitrary sample elements. If s; < sy, then every
element of T'(sy) must be larger than s;. There are |S| — Rank (s1,S5) elements sy with
51 < 83 in S; hence Rank (s1, X) < Rank (s1,5) - n’. If s5 < 51, then we have the following
two cases:

(a) If sy is the largest element in S; with sy < 1, then all elements in T'(s3), except for sy
itself, can be either smaller or larger than s;.

(b) If sy is not the largest element in S; with sy < sy, then all elements in T'(s3) must be
smaller than sy.

Note that there are Rank (s1,5) elements sy € S with s3 < s1, and at most n?=2% of these
fall under case (a), including s; itself. Hence, at least (Rank (s, 5) — n*72%) - n® elements in

X are smaller than s;. O

The following theorem establishes a way of selecting a set of “good” splitters from the
sample. It can be proved by a simple application of the above lemma.

Theorem 4.1 Let D be the splitter set of size n’ consisting of all s € S with Rank (s, S) =
¢ -n?72 4+ 1, for some nonnegative integer :. Then D is a set of “good” splitters, that is, it
satisfies conditions (1) and (2) stated above.

Note that this sampling technique can guarantee good splitters because the sample set
is sufficiently large, that is, contains w(n) elements. On the other hand, the splitter set
selected from the sample is of size o(n). The latter fact will be used in the step of our sorting
algorithm where the entire splitter set is broadcast to every packet in the mesh.

4.3 Optimal Deterministic Sorting on Two-Dimensional Meshes

In the following description of the deterministic sorting algorithm, we will maintain the
numbering of the steps used in the randomized algorithm. Some of the steps in the algorithm
can be taken directly from the randomized algorithm, but others will have to be substantially
changed. The algorithm sorts with respect to the “column-major indexing nested inside a
row-major indexing” defined in Section 1, where the size of the blocks in the indexing is n®,
for some constant «. The size of the sample and splitter sets is determined by a constant 6,
already used in the description of the sampling technique in the previous subsection. Finally,
we have to choose a constant (that determines the size of the blocks used by the unshuffle
operation. These constants have to be chosen such that % < a,3,0 <1.

Algorithm SORT:

(1) Select a sample set of size n?~% by sorting blocks of size n® x n’ and taking the first
column in each block. This takes time O(n®) = o(n).

16

with odd ranks as column elements. We remark that this technique is closely related to the
unshuffle operation. More precisely, the following analogue of Lemma 4.1 holds.

Lemma 4.2 Let A be any sequence of consecutive values in {1,...,n?}, and let the number
of row elements and column elements whose global rank among all n? elements is in A be
denoted by N, and N., respectively. Then we have |N, — N,| < n?72%,

The last ingredient needed for our deterministic algorithm is a deterministic sampling
technique that results in a set of “good” splitter elements. Our technique is essentially a
simplified version of a more sophisticated sampling technique used in the parallel selection
algorithm of Cole and Yap [3]. Our goal is to deterministically select a set of approximately
evenly spaced splitters from a set of keys X of cardinality n2. More precisely, we are interested
in selecting a set of splitter elements D = {dy,...,d;—1} with d;1y > d;, such that the
following properties hold for all 2:

(1) Rank (diy1, X) — Rank (d;, X) < 222
(2) 620 11 < Rank(d;, X) < 2 41
To achieve this, we will select our sample set using the following two steps:

(i) Partition the mesh into blocks of size n® x n®, % < 6 < 1, and sort the elements in each

block.

(ii) Select n’ equidistant elements from each sorted block as sample elements, starting with
the smallest element and going up to the (n’)th largest element. If the elements were
sorted into row-major order in the first step, then we can simply select the elements
in the first column of each block.

The sample set selected in the above two steps will contain n?~% elements, which are
routed to the center of the mesh and sorted. We claim that the global rank of each sample
element can now be computed to within an additive term of n27%. More precisely the

following lemma holds.

Lemma 4.3 Let S be a sample set of size n?~% chosen from a set X of size n? in the manner
described above. Then for any s € S with Rank (s,5) = ¢ we have

(1 —n?"%) - n® < Rank (s, X) <i-n’.

Proof: Let X, denote the set of elementsin block ¢ of the mesh, 0 < ¢ < n?7%. Partition the
sample set S into n?7% subsets S;, 0 <7 < n?7?°, where each S; consists of those elements
of S that were drawn from subset X; in the first phase of the sampling algorithm. Now
associate with each s € S; the set T'(s) consisting of all elements @ € X; with s < v < ¢/,
where s’ is next larger sample element drawn from the same subset X;. Note that this

15

algorithm. The randomized algorithm uses randomization in a number of different phases,
and for a number of different purposes, which are informally described in the following.

e Randomization is used in Step (1) of the algorithm to select a sample set that, with high
probability, will yield a set of “good”, that is, roughly evenly spaced, splitters. In this
subsection, we will describe a deterministic sampling technique that guarantees such a
set of “good” splitters, and which can be substituted for the randomized sampling in

Step (1).

e In Step (3), elements use a coin flip to identify themselves as either row elements or
column elements. The effect of this coin flipping technique is that, with high probabil-
ity, about half of the elements become row elements (resp. column elements), and that
the set of row elements (resp. column elements) is spread out evenly over the range of
input values. This can be achieved deterministically by sorting locally and taking the
elements with even ranks as row elements, and the elements with odd ranks as column
elements, as in the algorithm underlying Lemma 3.2.

e In Step (4), every row element chooses a random position in its row inside its subquad-
rant, and every column element chooses a random position inside its column. This has
the effect that, with high probability, the row elements (column elements) of similar
rank and, hence, similar final destination, are evenly distributed among the columns
(rows) of their subquadrant. This is needed in Step (9) of the algorithm to make sure
that the routing of the elements to their destination blocks is finished within the re-
quired time bounds and with constant queue size. The effect of this randomization
step will be “simulated” with the unshuffle operation described in Subsection 3.1.

e Finally, in Step (8) every element selects a random location within its destination block.
Here, randomization is used to assure that not too many elements route themselves to
the same location in their destination block. As demonstrated in the previous section,
this can be achieved deterministically by using our counter scheme.

As in the routing algorithm of Subsection 3.2, we will divide the mesh into blocks of size
n” x n”, with 2 < 8 < 1. When applying the unshuffle operation to simulate Step (4) of the
randomized algorithm, we will sort the row elements (column elements) in each block by their
values, rather than by their destination blocks (which are not yet known during Step (4) of
the algorithm), and then perform an (”14_/3)-way unshuffle operation on the columns (rows)
of each subquadrant. The effect of this operation is described in the following lemma, which

is a simple generalization of Lemma 3.1.

Lemma 4.1 Let B; and B, be any pair of n” x n” blocks located in the same row (column)
of blocks of some subquadrant T;, 0 < < 15, and let A be any set of consecutive values in
{1,...,n*}. Let N; denote the number of elements in B; whose global rank among all n?

elements is in A, for 1 < j < 2. Then we have |[N; — Ny| < n:ﬁ-

To simulate the effect of Step (3) of the randomized algorithm, we will sort each block
of size n? x nP, and label all elements with even ranks as row elements, and all elements

14

(10) The exact ranks of the splitter elements are broadcast in each quadrant, starting at the

center of the quadrant after completion of Step (7). Hence, every element will receive
the exact splitter ranks within n + o(n) steps after the splitters were broadcast from
the center.

(11) Now local routing over a distance of O(n'~%/?) can be used to bring each element to

its final location in time o(n).

The above algorithm can be scheduled in time 2n+o(n). For a more complete description

of the algorithm, and a proof of the stated time bounds, we refer the reader to the paper by
Kaklamanis and Krizanc [6]. Here, we only add the following remarks considered important
in the present context.

4.2

o The algorithm sorts with respect to an indexing scheme with the property that pro-

cessors whose indices differ by O(n?~%) are at most O(n'~%/2) steps apart. If this
condition is not satisfied, as, for example, in row-major indexing, then the elements
will not be able to compute good approximate destinations from their approximate
ranks in Step (8).

One of the purposes of the randomization in Steps (2),(3), and (4) is to get a good
bound on the queue size. However, randomization alone will only guarantee a queue
size of O(lgn) with high probability. To reduce the queue size to a constant, the
algorithm uses a packet redistribution technique described in [26] and attributed to
Leighton.

The routing in Step (5) of the algorithm is done according to a rather ingenious schedule
described in [6]. In this schedule, the row elements and column elements of a subquad-
rant may move along different paths. However, all row elements (column elements) of a
subquadrant will move in lock step until they enter their destination subquadrant. The
routing to the random locations selected in Step (4) is done either before the elements
start to move according to the schedule, or upon entering the destination subquad-
rant, or after they have already reached the destination subquadrant. While we will
not go into the details of this routing schedule, it is nonetheless important to realize
that Step (5) is deterministic, since the random locations of the elements were already
chosen in the preceding step. The routing in Step (5) would work equally well if those
destinations had been chosen according to some deterministic strategy. Hence, we will
be able to use this schedule in our deterministic algorithm without modification.

Finally, note that the routing in Step (5) has to take at least 1.25n steps, and thus
will not be completely finished when the set of splitters is broadcast at time n + o(n).
However, it can be shown that all elements reach their destination before the arrival
of the splitter front.

Getting a Deterministic Algorithm

In this subsection we will explain the modifications that have to be made in the randomized
algorithm described in the previous subsection in order to get an optimal deterministic

13

will assume that the four subquadrants located around the center are labeled Ty to 73. In
addition, a block B of side length o(n) around the center of the mesh will be used to sort
the sample elements and select the splitters.

Algorithm RANDOMSORT:

(1)
(2)

(3)

Select a random sample set S of size o(n) from the n? elements using coin flipping.

Each sample element picks a random location in the block B at the center of the mesh,
and routes a copy of itself greedily towards that location. To make sure that the routing
is completed in n steps, we give the sample elements priority over all other elements.

Each of the n? packets in the mesh flips a coin, and, depending on the outcome, declares
itself either a row element or a column element.

Each row element selects a random location between 1 and n/4 in its row, inside
its current subquadrant. Similarly, each column element selects a random location
between 1 and n/4 in its column. Note that in this step, the elements do not actually
go to their selected destination. Thus, Step (4) takes time o(n).

Now copies of each element are routed to the locations in the four subquadrants Ty to
T corresponding to the locations randomly selected in Step (4). This means that each
of the four subquadrants T, to T5 receives copies of all n? elements in the mesh.

The sample set is sorted in the center block B, and n® elements of equidistant ranks
are chosen as splitters. This takes time o(n).

The n® splitters are broadcast in the middle subquadrants Ty to Ts. During the broad-
cast, the global ranks of the splitters are computed using a pipelined prefix computation
that counts, for each splitter, the number of elements that are smaller. The results of
this computation will arrive at the center points of the four quadrants after 0.5n 4 o(n)
steps.

Each element, upon receiving the splitter elements broadcast from the center of the
mesh, can determine its rank to within O(n*7%), the accuracy of the splitters. From
this approximate rank, the element can compute the block of side length O(n'=%/2)
most likely to contain its final destination. If this block is outside its current quadrant,
the element kills itself. Otherwise, it selects a random location within this block.

All surviving elements route themselves to the chosen location. The routing is done in
a greedy fashion, where row elements first route along their column to the correct row,
while column elements first route along their row to the correct column. However, a
slightly more complicated priority scheme than the usual “farthest distance to travel
first” is required in this routing step. The same priority scheme will also be employed
in our deterministic algorithm; a description of this scheme is given in the proof of
Lemma 4.5. It can be shown that every element will reach its approximate destination
within time n + o(n) after the splitters were broadcast from the center of the mesh.

12

column uniformly at random from all [with |l —¢| + |l —¢'| < n — 1. If several packets
contend for an edge, priority will be given to the packet with the farther distance to travel.
Using the techniques described in the previous subsection, it is not difficult to convert this
algorithm into a deterministic algorithm with a running time of 2n + o(n); the queue size is
constant, but slightly higher than that of the first algorithm.

Finally, Kaklamanis, Krizanc, and Rao give an optimal randomized algorithm for the
two-dimensional torus that has a very similar structure. In this algorithm, one half of the
packets is routed on row-column-row paths, and the other half on column-row-column paths.
A packet that is routed on a row-column-row path, and that originates in column ¢ and is
destined for column 7', chooses its intermediate column uniformly at random from all [with
|l —i|4|l—¢| < 5 —1. The case of the packets that are routed on column-row-column paths
is symmetric. If several packets contend for an edge, priority is given to the packet with the
farther distance to travel. This algorithm can also be converted into a deterministic one,
and we obtain the following theorem (the exact queue size of our algorithm is between 10
and 15).

Theorem 3.3 There exists a deterministic algorithm for permutation routing on the n x n
torus with a running time of n + o(n) and constant queue size.

4 Optimal Deterministic Sorting

In this section, we will apply the techniques described in Section 3 to a class of randomized
sorting algorithms recently proposed by Kaklamanis and Krizanc [6]. As a result, we obtain
the first optimal deterministic sorting algorithm for two-dimensional meshes, as well as
improved deterministic algorithms for the three-dimensional mesh and the two-dimensional
and three-dimensional torus.

In the first subsection, we give a description of the optimal randomized sorting algorithm
proposed in [6]. In Subsection 4.2 we describe the modifications required to convert this
randomized algorithm into a deterministic one. Subsection 4.3 contains the deterministic
algorithm and a proof of the claimed bounds on time and queue size. Finally, Subsection 4.4
gives a few extensions.

4.1 An Optimal Randomized Algorithm

In this subsection we will give a high level description of a randomized algorithm with
running time 2n + o(n) and constant queue size proposed by Kaklamanis and Krizanc [6].
Their algorithm is based on an earlier 2.5n + o(n) time algorithm of Kaklamanis, Krizanc,
Narayanan, and Tsantilas [7]. The complete structure of the algorithm is quite complicated,
and so our description will necessarily ignore a number of important details. For a full
description the reader is referred to [6].

The following description of the algorithm uses a slightly different numbering of the steps
than the original description. The mesh is divided into four quadrants Qq, @1, @2, and Qs.
The four quadrants are again divided into a total of 16 subquadrants, labeled Tj to Ty5. We

11

Lemma 3.2 Any 2-2 relation can be routed deterministically in time 2n+o(n) with a queue
size of 10.

The algorithm proceeds as follows. First, we partition the packets into two sets such
that all packets with a common destination block are evenly divided between the two sets.
This can be done deterministically by sorting the packets in each block of size n® x n”
by destination blocks, and taking the two sets as the packets with odd and even ranks,
respectively. We then route both sets simultaneously, using the deterministic algorithm
given above. One of the sets will be routed on row-column-row paths, and the other one on
column-row-column paths. Due to the overlap between the three phases of the algorithm, it
is possible that packets in different phases of the algorithm contend for the same edge. These
contentions will be resolved by giving priority to the packet in the lower numbered phase.
In [8], Kaklamanis, Krizanc, and Rao show that their randomized algorithm will route any
2-2 relation in time 2n + o(n), with high probability. It can be checked that their proof also
extends to our deterministic algorithm.

3.3 Extensions

Kaklamanis, Krizanc, and Rao also give optimal randomized and off-line algorithms for tori
and three-dimensional meshes. In this subsection, we will give similar extensions for the
deterministic case. Due to space constraints, we can only state the results and make a
few informal remarks about the constructions. The first extension, an optimal algorithm for
three-dimensional meshes, is achieved by a reduction to the problem of routing a 2-2 relation
on a two-dimensional submesh, described in [8]. Together with Lemma 3.2 this gives the
following result.

Theorem 3.2 There exists a deterministic algorithm for permutation routing on the three-
dimensional mesh with a running time of 3n + o(n) and a queue size of 13.

The fastest deterministic algorithm previously known for this problem has a running time
of (3+ 1)n and is due to Kunde [16]. Our approach can also be used to obtain deterministic
algorithms for routing in r-dimensional meshes with r > 3. Using the unshuffle operation and
the counter scheme, we can convert the randomized algorithm of Valiant and Brebner [31]
into a deterministic algorithm with a running time of (2r —1)n+o(n). This can be improved
to (2r—3)n+o(n) by using the above algorithm for three-dimensional meshes as a subroutine.
For r = 4, this gives a slight improvement over the fastest previously known algorithm [16],
which achieved a running time of (5 + €)n and a queue size of O(1/€). For r > 5, the best
upper bounds continue to be given by an algorithm of Kunde [16], which has a running time

of (r+ (r— 2)(1/7“)1/(7"_2) + €)n and a queue size of O((r?/e) ™).

In [8], Kaklamanis, Krizanc, and Rao give a second optimal randomized algorithm for
the two-dimensional mesh that has a slightly simpler structure than the one described in the
previous subsection. As before, all packets are routed on row-column-row paths. A packet
that originates in column ¢ and whose destination is in column ¢’ chooses its intermediate

10

local sort in Step (5), and start with the column routing in Step (6). This routing problem
is an approximate 2-2 relation on a linear array, and can hence be routed in n + o(n) steps
(see [8]). Thus, Step (6) of the algorithm will terminate between time 1.5n 4 o(n) and
1.75n 4 o(n), depending on the location of the column in the mesh. Assuming that Step (6a)
has distributed the packets evenly over the incoming rows of each destination block, Step (7)
can be interpreted as the problem of routing an approximate 2—1 relation on a linear array
of length n/2, where packets that have a distance of d to travel are not allowed to move
before time n/2 — d. This routing process is started at time 1.5n + o(n) and will terminate
at time 2n + o(n). Thus, the above algorithm runs in time 2n + o(n).

It remains to show that the packets are indeed evenly distributed over the incoming
rows of each destination block, and that the total queue size is bounded by 5. Consider a
destination block D and two n” x n® blocks By and B, located in the same quarter and the
same row of blocks. Lemma 3.1 says that the number of packets with destination block D
will differ by at most n'=™ = o(n®) between B; and By, after Step (4). This implies that
after Step (5), the number of packets with destination block D will differ by at most 2n!="
between any two columns in the quarter. There are at most n*® packets with destination
block D in the quarter. Hence, any of the § columns in the quarter can contain at most

20
nT + o0 =~ 42t
4

packets with destination block D, which are evenly distributed among 2n**~! rows by the

counter technique (up to a difference of 1). Due to the assignment of offset values to the
counters, packets with different destination blocks always turn in different processors. This
implies that at most 3 packets turn in any single processor. If we limit our attention to
a single column, then all packets with destination block D in that column will only be
distributed over a small fraction of the incoming rows of D. However, if we look at blocks
of n® consecutive columns, then the elements in these columns will be evenly distributed
among all incoming rows of D, due to the n® different offset values of the 2n® counters
corresponding to D. This implies that every processor of D will receive at most 2 packets.
The maximum possible queue size of the algorithm is given by a scenario in which 3 packets
have to turn in a given processor, while 2 other packets are temporarily passing through the
processor during the routing in Step (6).

One issue we have ignored so far is that a packet may already be located in a row passing
through its destination block before Step (6). Such a packet will not pass any counter on its
way along the column. We can assign destination rows to these packets before the start of
the column routing, and set the initial values of the counters accordingly. This can be done
locally during Step (5) of the algorithm. Altogether, we have shown the following result.

Theorem 3.1 There exists a deterministic routing algorithm for two-dimensional meshes
with a running time of 2n + o(n) and a queue size of 5.

Kaklamanis, Krizanc, and Rao [8] also gave a randomized algorithm that routes any 2-2
relation in time 2n + o(n), and a corresponding off-line scheme with a running time of 2n
and a queue size of 8. For the deterministic case, we can show the following result.

(5) Again sort the packets in each n” x n” block by their destination blocks, into row-major
order.

(6) In each column of the mesh, route every packet to a row passing through its destination
block. Note that up to this point, we have not yet determined the exact row across
which a packet will enter its destination block. This will be done during the column
routing, using the counter scheme briefly described in the previous subsection. This
scheme is described in more depth in the following Step (6a). It will be shown that at
most 3 packets turn in any single processor.

(6a) In order to get to its destination block, a packet traveling along its column could
turn in any of the n® consecutive rows passing through that block. To make sure
that the row elements are distributed evenly among these rows, we maintain in
each column n%72% counters, two for each of the %n2—2a destination blocks in the
half of the mesh that contains the column (note that all packets are already in the
correct half of the mesh before Step (6)). The n'~* counters for any particular row
of %nl_a destination blocks are located in the %nl_a processors immediately above
and below the n® rows passing through these destination blocks. Whenever a row
element destined for a particular block arrives at one of the two corresponding
counters, this counter is either increased by one, modulo 2r**~! (in the case of
the counters above the destination rows), or decreased by one, modulo 2n**~! (in

the case of the counters below the destination rows). The row across which the

packet will enter its destination block is determined by the sum, modulo n®, of

the new counter value and a fixed offset value associated with each counter. A

counter in column ¢ of the half, 0 < ¢ < n/2, that corresponds to a destination

block in the jth column of destination blocks, 0 < j < in'=°, is assigned the

2
offset value (¢ 4 j - 2n?*~!) mod n*.

(7) Route the packets along the rows into their destinations blocks in a greedy fashion,
giving priority to the element with the farther distance to travel. After entering its
destination block, a packet will stop at the first processor that has a free memory slot
for an additional packet. It will be shown below that, due to the counter scheme in
Step (6a), the incoming packets are evenly distributed over the rows of any destination

block.

8) Perform local routing over a distance of O(n®) to brin EVery element to its final
g g
destination.

Let us first analyze the running time of the above algorithm. Clearly, each of the Steps
(1), (2), (5), and (8) will only take time o(n). Step (3) and Step (4) can be overlapped as
follows. Rather than first performing the unshuffle operation in Step (3), and then doing the
overlapping in Step (4), we can send the packets directly to the locations they will assume
after Step (4). This means that all blocks in Q¢ and Qs, as well as those blocks in @4
and @, that are close to the center column, will have received all of their elements by time
0.5n+4o(n), while it takes up to time 0.75n4o(n) for the other blocks in @1 and @3 to receive
all of their packets. As soon as a block has received all of its packets, it can perform the

intermediate destination, where it turns into a column. In this column, the packet moves to
its destination row, and then in the destination row to its final destination. The intermediate
destination is chosen randomly according to the following rules:

(1) Packets in Qo and @4 with a destination in Qg or @ choose an intermediate position

iD.(?O

(2) Packets in Qg and @4 with a destination in @3 or @3 choose an intermediate position

iD.(?Q

(3) Packets in Q2 and @3 with a destination in Qo or @ choose an intermediate position

iD.(?l

(4) Packets in Q2 and Q3 with a destination in @y or @3 choose an intermediate position

iD.(?g

It is shown in [8] that this routing scheme results in a running time of 2n + O(lgn) and a
queue size of O(lgn), with high probability (the queue size can be improved to O(1) with
some modifications in the algorithm). An off-line version of the algorithm runs in time 2n—1
with a queue size of 4.

The high-level structure of our deterministic algorithm is very similar. As in the ran-
domized algorithm, all packets are first routed along the rows to intermediate locations, then
along the columns to their destination rows, and finally along the rows to their final destina-
tions. The intermediate locations also satisfy the above four rules, but are now determined
by an unshuffle operation on the columns of the mesh, rather than being chosen at random.
We also need a few additional steps for local sorting and routing, and the counter scheme.
All in all, our deterministic algorithm consists of the following steps.

Algorithm ROUTE:

(1) Partition the mesh into destination blocks of size n® x n®, and let every packet deter-
mine its destination block.

(2) Partition the mesh into blocks of size n” x n”, and sort the packets in each block by
their destination blocks, into row-major order. Here, it is assumed that the set of
destination blocks is ordered in some arbitrary fixed way, say according to a row-major
ordering of the blocks.

ni—#
4

(3) In each quarter Q;, perform an ()-way unshuffle operation on the columns.

(4) Route all packets in @1 whose destination is in Qg or @1 into Qo. Route all packets in
Qo and @) whose destination is in 5 or Q3 into @),. Route all packets in @, and Q3
whose destination is in Qg or @1 into Q1. Route all packets in), whose destination is
in @, or Q3 into Q3. The routing is done in such a way that only row edges are used,
and that every packet travels a distance that is a multiple of n/4.

holds after performing an (n'~")-way unshuffle operation on the columns of the mesh.

Lemma 3.1 Let B; and B, be any pair of n? x n” blocks located in the same row of blocks,
and let D be a destination block of size n® x n®. Let N; denote the number of packets in B;
that have a destination in D, for 1 < ¢ < 2. Then we have |N; — Ny| < n'=7,

The proof of the above lemma is straightforward and hence omitted. A similar lemma
can be shown in the context of sorting (see Lemma 4.1). Informally speaking, the above
lemma says that all elements with a common destination block will be evenly distributed
over all blocks that are located in the same row of blocks. By repeating the local sorting
of the blocks after the unshuffle operation, we can then make sure that all elements with a
common destination block are evenly distributed over the columns of the mesh.

When routing the packets into their destination blocks, we have to make sure that not too
many packets enter across the same edge, and that no processor of the block receives too many
packets. In a randomized setting, this can be achieved by routing each packet to a random
location within its destination block (see, for example, the randomized sorting algorithm of
Kaklamanis and Krizanc described in Subsection 4.1). In our deterministic algorithms, we
will use the counter scheme mentioned above. To explain the idea behind this technique,
we consider a routing scheme in which all packets are routed along the columns, until they
turn into the rows and enter their destination blocks across the row edges. We assume that,
after entering its destination block, each packet keeps on moving in its current direction until
it encounters a processor with a free slot in memory. Thus, if we can make sure that all
packets with a common destination block are evenly distributed among the incoming rows of
the block, then no processor of the block will receive too many packets. The counter scheme
distributes the packets in each column with a common destination block evenly among the
entering rows using a system of counters. In every column, we maintain one counter for
each destination block of the mesh. All counters are initially set to zero. Whenever a packet
headed for a certain destination block arrives at the location of the corresponding counter,
this counter is increased. (More precisely, we have two counters for each destination block,
one located above the destination block and counting forward, and one located below the
destination block and counting backward.) The new value of the counter, together with a
fixed offset value assigned to each counter, determines the row that the packet should choose
to enter its destination block. It will be shown that this scheme distributes the packets evenly
among the incoming rows of any destination block, provided that we assign an appropriate
pattern of offset values to the counters.

3.2 Routing on Two-Dimensional Meshes

In this subsection, we show how the above techniques can be used to obtain an optimal
deterministic algorithm for n x n meshes with a queue size of 5. The algorithm is based on
an optimal randomized algorithm proposed by Kaklamanis, Krizanc, and Rao [8]. We will
first give a brief description of their algorithm, which has a very simple structure.

Partition the mesh vertically into four quarters Qg to @3, where @), contains the columns
5 to (1 4+1)% — 1. In the algorithm every packet is then first routed along the row to an

6

tion 3.2, we apply the technique to obtain a (fairly) simple optimal routing algorithm for
two-dimensional meshes. Subsection 3.3 shows how to extend this result to get optimal
algorithms for tori and three-dimensional meshes.

3.1 The Basic Idea

In this subsection, we describe the basic idea underlying our technique for converting ran-
domized into deterministic algorithms. All of our routing and sorting algorithms have the
property that they first route each packet to an approximate location, and then use local
routing to bring each packet to its correct final destination. More precisely, we partition the
network into destination blocks of size n® x n®, with % < «a < 1. Every packet is then routed
to some position inside the destination block containing its destination address (in the case
of sorting, some packets will actually be routed to neighboring destination blocks). Once
this has been completed, we can then use local routing over a distance of O(n®) to bring the
packets to their final destinations. Algorithms for the local routing problem with a running
time of O(n®) have been described by Kunde [15] and Cheung and Lau [2].

Hence, in the following we are only concerned with the problem of moving the packets
into their destination blocks. To solve this problem deterministically, we use two fundamental
operations, which we will refer to as the unshuffle operation and the counter scheme. We
will use the unshuffle operation to distribute packets with the same destination block evenly
over a sufficiently large region of the network. The counter scheme will be employed to make
sure that the incoming packets are evenly distributed over the processors of each destination

block.

Formally, for any m,k > 0 with m mod k£ = 0, the k-way unshuffle operation on m
positions 0,...,m — 1 is defined as the permutation 7, that moves the element in position
i to position 74(7) = (¢ mod k) - m/k + |i/k]. We say that we perform a k-way unshuffle
operation on the columns (rows) of a block of the mesh, if we move all elements located
in column (row) ¢ of the block to the corresponding positions in column (row) m4(z) of the

block, for all z.

The utility of the unshuffle operation for sorting on meshes was previously observed by
Schnorr and Shamir, who used it in the design of their 3n + o(n) sorting algorithm in the
single-packet model. In the following, we will demonstrate that the unshuffle operation can
in many cases be employed as a “substitute” for the use of randomness. Following a general
scheme originally proposed by Valiant and Brebner [31], many randomized algorithms for
routing on meshes start out by moving all packets to random intermediate locations inside the
current row (or column). This has the effect of distributing packets with similar destinations
evenly over the columns (rows) of the network, with high probability. We observe that
this effect can be achieved deterministically by partitioning the mesh into blocks, locally
sorting the packets in each block by their destination blocks, and then applying an unshuffle
operation to the sorted blocks. Here, we assume that the set of destination blocks is ordered
in some arbitrary fixed way, say according to a row-major ordering of the blocks.

Formally, if we partition a mesh into blocks of size n® x n”, % < B < 1, and sort the
packets in each block by their destination blocks into row-major ordering, then the following

we obtain the first optimal deterministic algorithm for routing on three-dimensional meshes,
thus answering an open question posed by Leighton [20, p. 271]. Furthermore, we get the
first optimal deterministic algorithm for routing on the two-dimensional torus, and a slightly
improved algorithm for four-dimensional meshes.

Next, we apply our new technique to the optimal randomized algorithm for sorting on the
two-dimensional mesh proposed by Kaklamanis and Krizanc [6]. We obtain a deterministic
algorithm that runs in time 2n+o(n) with a queue size of about 25. The fastest deterministic
algorithm previously known for this problem [17] achieved a running time of 2.5n + o(n) and
a queue size of 2. As an extension of this result, we also obtain improved algorithms for
sorting on three-dimensional meshes and on two-dimensional and three-dimensional tori. We
then describe algorithms for multi-packet routing and sorting that match the bounds of the
optimal deterministic algorithm recently proposed by Kunde [18]. Finally, we give improved
deterministic algorithms for selection on meshes and related networks.

The paper is organized as follows. Section 2 defines some terminology. Section 3 describes
the main idea behind our technique, and applies it to obtain improved algorithms for routing.
Section 4 contains our results for sorting. Section 5 describes an application of our technique
to multi-packet routing and sorting. Section 6 contains our results for selection. Finally,
Section 7 lists some open questions for future research.

2 Terminology

Throughout the paper, we will frequently have to reason about quantities that are determined
to within a lower order additive term. We use the notation ~ f(n) (“approximately f(n)”)
to refer to a term in the range between f(n)—o(f(n)) and f(n)+o(f(n)). Also, we say that
a set of k elements is evenly distributed among m sets if every set contains ~ k/m elements.
For ki, ks > 1, a ky—k, relation is a routing problem in which each processor is the source of
at most k; packets and the destination of at most &y packets. An approximate ki—kq relation
on a linear array is a routing problem in which each block of m consecutive processors is the
source of at most mky + o(n) packets and the destination of at most mky + o(n) packets.

Given a partition of the mesh into blocks of equal size, we use the terms row of blocks
and column of blocks to refer to the sets of blocks with common vertical and horizontal
coordinates, respectively. Finally, we say that an algorithm is optimal if its running time is
~ [, where [is the best lower bound.

3 Optimal Routing with Small Queue Size

In this section we describe a number of deterministic algorithms for permutation routing on
meshes and tori. Our algorithms are based on a class of randomized routing schemes recently
proposed by Kaklamanis, Krizanc, and Rao [8]. We describe a technique that allows us to
convert these randomized algorithms into deterministic algorithms with the same running
time, within a lower order additive term.

In the first subsection, we give an informal description of this technique. In Subsec-

A 2.5n + o(n) time randomized algorithm for this model was given by Kaklamanis,
Krizanc, Narayanan, and Tsantilas [7]. Their algorithm requires a queue size of at least 8
(the queue size is the maximum number of packets located in a single processor at any time).
Using very different techniques, Kunde [17] designed a deterministic algorithm matching the
2.5n 4+ o(n) randomized bound. Apart from being deterministic, Kunde’s algorithm also has
a number of other advantages over that of Kaklamanis, Krizanc, Narayanan, and Tsantilas.
The algorithm has a fairly regular structure, and no processor holds more than 2 packets at
any point in time. The algorithm does not make any copies of packets, and it generalizes
nicely to meshes of arbitrary dimension and to multi-packet sorting problems. Moreover, the
elements are sorted into snake-like row-major order, while the randomized algorithm sorts
with respect to the somewhat more complicated indexing scheme mentioned earlier.

However, if one is interested in developing an algorithm that comes closer to the distance
bound of 2n — 2, or in faster algorithms for selection, then it seems very difficult to apply
the techniques used in Kunde’s deterministic algorithm. In fact, Narayanan [22] has shown
that any deterministic algorithm for sorting into row-major order that achieves a queue size
of 2, and that does not make any copies of elements, must take at least 2.125n steps. The
approach taken in the randomized algorithm [7], on the other hand, was subsequently used
by Kaklamanis and Krizanc [6] to design an optimal randomized sorting algorithm, with a
running time of 2n 4+ o(n) and constant queue size.

For the permutation routing problem, Valiant and Brebner [31] proposed a randomized
algorithm with a running time of (2r — 1)n 4 o(n) and a queue size of O(lgn) on the r-
dimensional mesh, r > 2. A deterministic algorithm for the two-dimensional mesh with a
running time of (2+ €)n and a queue size of O(1/€) was described by Kunde [15]. A random-
ized routing algorithm with running time 2n + o(n) and constant queue size was obtained
by Rajasekaran and Tsantilas [26]. Subsequently, Leighton, Makedon, and Tollis [21] gave a
deterministic algorithm for routing that runs in 2n — 2 steps with constant queue size. How-
ever, the exact value for the queue size is rather large. Rajasekaran and Overholt [25] gave
an improved construction that reduced the queue size to about 112. Very recently, Kakla-
manis, Krizanc, and Rao have obtained several fairly simple optimal randomized and off-line
algorithms for the two-dimensional and three-dimensional mesh, and for the two-dimensional
torus.

1.2 Overview of the Paper

In this paper, we introduce a new “derandomization” technique for meshes that allows us to
convert several recently proposed randomized algorithms for routing and sorting into deter-
ministic algorithms that achieve the same running time, within a lower order additive term.
We describe the main ideas behind the technique and then apply it to an optimal random-
ized algorithm for routing on two-dimensional meshes proposed by Kaklamanis, Krizanc,
and Rao [8]. As a result, we obtain a deterministic algorithm for permutation routing on
two-dimensional meshes with a running time of 2n 4+ o(n) and a queue size of 5. The only
optimal deterministic algorithm previously known for this problem [21, 25] had a running
time of 2n — 2 and a queue size of at least 112. Extending our result to other networks,

algorithms on the mesh are usually designed with a particular indexing scheme in mind, and
techniques used for one particular indexing scheme may not work well for others. In this
paper, we will assume an indexing scheme which can be described as a snake-like column-
major indexing nested inside a snake-like row-major indexing, and which was also used in the
algorithms in [6, 7]. This indexing scheme is defined by partitioning the mesh into blocks of
size n® x n®, and using snake-like column-major indexing inside each block, while the blocks
are ordered in the mesh according to snake-like row-major indexing.

1.1 Previous Results

The study of sorting on the two-dimensional mesh was initiated by Orcutt [24] and Thompson
and Kung [30], who gave algorithms based on Batcher’s Bitonic Sort [1] with running times of
O(nlgn) and 6n 4+ o(n), respectively. In the following years, a number of sorting algorithms
were proposed for the mesh (see, for example, [12, 19, 23, 27, 28]); these algorithms make
a variety of different assumptions about the power of the underlying model of the mesh.
More recently, most of the work has focused on variants of the two models described in the
following, which we will refer to as the single-packet model and the multi-packet model.

The single-packet model (also often referred to as the Schnorr-Shamir model) assumes
that a processor can hold only a single packet at any point in time, plus some unbounded
amount of additional information. This unbounded additional information may be used to
decide the next action taken by the processor; however, it may not be used to create a new
packet and substitute it for the currently held packet. At any step in the computation, a
single packet plus an unbounded amount of header information may be transmitted across
each directed edge; a comparison-exchange operation on adjacent packets may be performed
in a single step.

For this model of the mesh, Schnorr and Shamir [29] showed an upper bound of 3n+ o(n)
for sorting into row-major order. They also proved a lower bound of 3n —o(n), independently
discovered by Kunde [13]. The same proof technique has also been used to show lower bounds
for arbitrary indexing schemes [13]; the best general lower bound is currently 2.27n [5].
Interestingly, the upper bound does not make use of the unbounded local memory and
header information permitted in the model, while the lower bounds hold even under these
rather unrealistic assumptions. Thus, the power of the model seems to be mainly determined
by the restriction to a single packet per processor. It has been argued that such a restriction
does not reflect the capabilities of existing parallel machines, and that one should allow any
constant number of packets to be stored in a single node.

This has motivated the following multi-packet model of the mesh (also sometimes referred
to as the MIMD model). In this model, a processor may hold a constant number of packets
at any point in time, and packets may be copied or deleted. In any step of the computation, a
single packet plus O(lg n) header information can be transmitted across each directed edge,
and local memory is restricted to O(lgn) bits. The only general lower bound for sorting
and routing on the multi-packet model of the mesh is given by the diameter of the network,
and several groups of authors have recently described sorting algorithms for this model that
achieve a running time of less than 3n.

1 Introduction

The mesh-connected array of processors is one of the most thoroughly investigated inter-
connection schemes for parallel processing. While it has a large diameter in comparison to
the various hypercubic networks, it is nonetheless of great importance due to its simple and
efficient layout and its good performance in practice. Consequently, a number of parallel
machines with mesh topology have been designed and built, and a variety of algorithmic
problems have been analyzed as to their complexity on theoretical models of the mesh.
Probably the two most extensively studied problems are those of routing and sorting. For
an introduction into these problems, and a formal definition of the networks considered in
this paper, we refer the reader to [20].

In this paper, we give improved algorithms for a number of routing and sorting problems
on meshes and related networks. In our presentation, we will mostly focus on the case of the
two-dimensional mesh. We will also state a number of results for higher-dimensional meshes
and related networks, but due to space constraints we will omit most of the proofs of these
results. We will mainly be concerned with the problems of 1-1 routing and 1-1 sorting,
where before and after the operation each processor holds a single element.

In the following, we assume an n x n mesh-connected array of synchronous processors.
Each of the n? processors will be identified by its row and column coordinates. Every
processor is connected to each of its four neighbors through a bidirectional link, and a
bounded amount of information can be transmitted in either direction in a single step of
a computation. The routing problem is the problem of rearranging a set of packets in a
network, such that every packet ends up at the processor specified in its destination address.
A routing problem in which every processor is the source and destination of at most one
packet is called a 1-1 routing problem or permutation routing problem. In the 1-1 sorting
problem, we assume that every processor initially holds a single packet, where each packet
contains a key drawn from a totally ordered set. Our goal is to rearrange the packets in such
a way that the packet with the key of rank £ is moved to the unique processor with index
k, for all k. The index of a processor in the mesh is determined by an indexing scheme.

Formally, an indexing scheme for an n x n mesh is a bijection Z from {1,...,n} X
{1,...,n} to {1,...,n*}. If Z(d,5) = k for some processor (z,7) € {1,...,n} x {1,...,n}
and some k € {1,...,n*}, then we say that processor (7,;) has index k. The problem of
sorting an input with respect to an indexing scheme 7 is to move every element y of the
input to the processor with index Z(Rank (y, X)), where Rank (y, X) = |[{z € X | = < y}]
and X denotes the set of all input elements. An example of a simple indexing scheme is the

row-major indexing scheme, or row-major order, which is given by indexing the processors
from the left to the right, and from the top row to the bottom row. It can be formally
defined by

(i1, 51) < L(iz,J2) & (11 < 12) V[(21 = 12) A (J1 < J2)]-
A related indexing scheme is the snake-like row-major ordering defined by

Z(t1,51) < Z(12,72) & (11 < d2)V[(1 = 22) A([(41 odd) A (j1 < j2)] V [(41 even) A (51 > j2)])] .-

Similarly, one can define the column-major and snake-like column-major orderings. Sorting

Optimal Deterministic Routing and Sorting
on Mesh-Connected Arrays of Processors

Torsten Suel”

Department of Computer Sciences
University of Texas at Austin

torsten@cs.utexas.edu

Abstract

In this paper we introduce a new “derandomization” technique for mesh-connected
arrays of processors that allows us to convert several recently proposed randomized
algorithms for routing and sorting into deterministic algorithms that achieve the same
running time, within a lower order additive term. By applying this technique, we
obtain a number of optimal or improved deterministic algorithms for meshes and related
networks. Among our main results are the first optimal deterministic algorithms for
sorting on the two-dimensional mesh and for routing on the two-dimensional torus
and the three-dimensional mesh, as well as an optimal deterministic routing algorithm
for the two-dimensional mesh that achieves a queue size of 5. The new technique is
very general and seems to apply to most of the randomized algorithms for routing and
sorting on meshes and related networks that have been proposed so far.

*Supported by Texas Advanced Research Program (TARP) Award #003658480.

