
A Super-Logarithmic Lower Boundfor Hypercubic Sorting NetworksC. Greg Plaxton� Torsten Suel yDepartment of Computer ScienceUniversity of Texas at AustinAbstractHypercubic sorting networks are a class of comparator networks whosestructure maps e�ciently to the hypercube and any of its bounded de-gree variants. Recently, n-input hypercubic sorting networks with depth2O(plg lg n) lg n have been discovered. These networks are the only knownsorting networks of depth o(lg2 n) that are not based on expanders, andtheir existence raises the question of whether a depth of O(lg n) can beachieved by any hypercubic sorting network. In this paper, we resolvethis question by establishing an 
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the networks of choice in many practical applications, even though they have depth�(lg2 n) and are thus asymptotically inferior to AKS. This situation has motivated anumber of attempts to construct O(lg n)-depth sorting networks with simpler, moreregular topologies, and/or a considerably smaller constant. Three classes of networksthat have received particular attention are Shellsort networks [5, 10, 16, 19], periodicsorting networks [8, 9], and hypercubic sorting networks [13, 15].In this paper, we focus on the class of hypercubic sorting networks, a notion thatis formalized below. We establish a lower bound of 
 � lg n lg lg nlg lg lg n � for the depth of anysorting network in this class. In fact, our lower bound argument can be extended toapply to certain restricted classes of non-oblivious sorting algorithms on hypercubicnetworks and multi-dimensional meshes. Before elaborating any further on these re-sults, we will briey describe the comparator network model, and de�ne several classesof hypercubic networks.1.1 Hypercubic Sorting NetworksA comparator network is most commonly de�ned as an acyclic circuit of comparatorelements, each having two input wires and two output wires. One of the output wiresis labeled as the max-output, which receives the larger of the two input values; theother output is called the min-output, and receives the smaller value. We will use thismodel of a comparator network throughout most of the paper, but will also brieyconsider the following alternative model.In this model, a comparator network on n registers is determined by a sequence ofpairs (�i; ~xi), 0 � i < `, where �i is a permutation of f0; : : : ; n� 1g and ~xi is a vectorof length bn=2c over f+;�; 0; 1g. The network receives as input a permutation off0; : : : ; n�1g that is initially stored in the registers, and then operates on the input in` consecutive steps. In step i, 0 � i < `, the register contents are permuted accordingto �i, and then the operation stored in the kth component of ~xi is applied to registers2k and 2k+1. In a \+" operation, the values stored in the two registers are compared,and the smaller of the values is stored in register 2k, the larger one in 2k+1. In a \�"operation, the values are stored in the opposite order. A \0" means that no operationtakes place on the corresponding pair of registers. A \1" operation simply exchangesthe values of the two registers. A comparator network is called a sorting network if itmaps every possible input permutation to the same output permutation.The shu�e permutation �sh on n = 2d inputs may be de�ned as follows. Ifjd�1 � � � j0 denotes the binary representation of some integer j, 0 � j < n, then �sh(j)has binary representation jd�2 � � � j0jd�1. A sorting network is called hypercubic if�i = �sh or �i = ��1sh holds for all i. A natural subclass of the hypercubic networkscan be obtained by requiring �i = �sh for all i; we say that a network satisfyingthis condition is shu�e-based. Similarly, if �i = ��1sh for all i, then the network isunshu�e-based.The primary motivation for the de�nition of these two classes of networks is givenby the fact that they can be e�ciently implemented on any of the hypercubic inter-connection networks (i.e., the hypercube, buttery, cube-connected cycles, or shu�e-exchange). More precisely, the structure of the hypercubic sorting networks corre-sponds exactly to the class of normal algorithms on the hypercube, while the structuresof the shu�e-based and unshu�e-based networks correspond to the classes of descendand ascend algorithms, respectively (see [11] for a de�nition of these classes). Most ofthe important algorithms that have been proposed for the hypercube are normal (e.g.,Fast Fourier Transform, parallel pre�x, bitonic merging and sorting). In fact, it canbe argued that the primary motivation for the de�nition of the bounded-degree vari-ants of the hypercube (i.e., the buttery, cube-connected cycles, and shu�e-exchange)has been the capability of these networks to e�ciently implement the class of normal2



algorithms.The study of sorting networks based on the shu�e permutation was proposedby Knuth [10, Exercise 5.3.4.47]. The best upper bound for this class is given byBatcher's bitonic sort [2], with a depth of O(lg2 n). A lower bound of 
(lg2 n= lg lg n)was recently established by Plaxton and Suel [17]. However, this lower bound doesnot extend to arbitrary hypercubic networks.The class of hypercubic sorting networks was de�ned by Leighton and Plaxton [13,15], who show the existence of a family of hypercubic sorting networks with depth2O(plg lg n) lg n. The construction of these networks is based on a \probabilistic" sort-ing network described in [12], which sorts all but a superpolynomially small fraction ofthe possible input permutations. We point out that the depth of the above hypercubicnetworks is o(lg1+� n), for all � > 0, and that they represent the only known sortingnetworks of depth o(lg2 n) that are not based on expanders. Naturally, this raisesthe question of whether a depth of O(lg n) can be achieved by any hypercubic sortingnetwork.1.2 Overview of this PaperIn this paper, we resolve this question by showing a lower bound of 
 � lg n lg lg nlg lg lg n �on the depth of any hypercubic sorting network. Our lower bound also extends tocertain restricted classes of non-oblivious sorting algorithms on hypercubic machinesand multi-dimensional meshes. However, our lower bound argument does not allow thecopying of elements by the algorithm. Thus, the Sharesort sorting algorithm of Cypherand Plaxton [7], which achieves a running time of O(lg n lg lg n) (with preprocessing)on any of the hypercubic machines, is not subject to our lower bound. Nonetheless, webelieve that our present results are already interesting in their own right, and that theymay constitute an important step towards more general lower bounds for sorting onhypercubic machines. Due to space constraints, some of the proofs have been omittedfrom this abstract. A more detailed description of our results can be found in [18].The remainder of the paper is organized as follows. Section 2 describes some ofthe basic ideas underlying our lower bound argument. Section 3 establishes a lowerbound for a restricted class of hypercubic networks. Section 4 then shows our generallower bound. Some possible extensions and implications of our results are discussedin Section 5. Finally, Section 6 lists some open questions for future research.2 Overview of the ProofIn this section, we give a very informal description of the most important ideas in theproof of our lower bound. To do so, we will �rst review the lower bound argument forshu�e-based networks given in [17], and explain why this relatively simple argumentdoes not extend to the more general class of hypercubic sorting networks. We willthen describe the new proof ideas that are needed in order to get a lower bound forarbitrary hypercubic sorting networks.2.1 A Naive Proof IdeaA simple observation concerning comparator networks is that a sorting network mustperform a comparison on every pair of adjacent values in every input, that is, everypair of values fm;m+1g must appear on the input wires of some comparator element.(We assume the inputs to be permutations of f0; : : : ; n�1g.) Thus, one might attemptto prove a lower bound of ` for the depth of a class of comparator networks by showing,for all networks in the class, the existence of an input permutation �, and of a set ofadjacent values fm; : : : ;m+ ig in �, such that no two elements of the set are compared3



up to level ` of the network. In the following, we will call such a set an incomparableset. If we apply this proof idea to a hypercubic network, starting out with the set of allvalues as our incomparable set, and, whenever two elements of the set get compared,removing one of them from the set, then we might lose up to half of the elements inany given level. So using this simple approach, we could only show the trivial lowerbound of 
(lg n) for the depth of a sorting network.2.2 The Proof for Shu�e-Based Sorting NetworksThe key idea to overcome this problem is to modify the proof technique in a way thatallows us to exploit the structural properties of the particular class of networks thatwe are studying. To explain this idea, we �rst consider the proof of the lower boundfor shu�e-based sorting networks in [17]; the case of the unshu�e-based networks issymmetric. Note that a shu�e-based network can be seen as a concatenation of anumber of buttery networks of depth lg n each. Thus, if we can show that the size ofour incomparable set decreases by at most a polylogarithmic factor in each buttery,then at least 
(lg n= lg lg n) consecutive butteries are needed in order to bring thesize of the incomparable set down to 1; this directly implies the 
(lg2 n= lg lg n) lowerbound for shu�e-based sorting networks of [17].The following recursive de�nition of a buttery is crucial for understanding ourproof technique: A buttery with 2d inputs and depth d consists of two parallel 2d�1-input butteries of depth d� 1, followed by a �nal level of up to 2d�1 comparators.Every comparator in the �nal level takes one input from the outputs of each of the two2d�1-input subnetworks. Finally, a 1-input buttery is just a wire. This \tournament-like" structure leads to the following important property of a buttery: An observer ofa 2d-input buttery tournament who sees the outcomes of all comparisons in the two2d�1-input subnetworks, but not the outcomes of the �nal level of comparisons, willnot be able to say anything about the relative ordering of any two items taken fromdi�erent subnetworks. In other words, the observer will not be able to say anythingabout the relative strength of the two \subtournaments" before the �nal stage. This\disjointness property" of the subnetworks plays a crucial role in the lower boundargument of [17].Instead of maintaining only a single incomparable set, we now maintain a collectionof incomparable sets in each recursive subnetwork. More precisely, after entering a newbuttery of depth lg n, we partition our current incomparable set into n lg3 n disjointincomparable sets, most of which are empty, with lg3 n sets entering on each wire.(Recall that a single wire is a 1-input buttery.)Due to the recursive structure of a buttery, in every level we recursively havetwo di�erent collections of �(lg3 n) incomparable sets coming from two disjoint sub-networks. In [17], it is shown that there exists a partial matching between these twocollections of sets such that, if we combine the sets according to the matching and re-move one element from every pair of elements from the same set that gets compared,we obtain a new collection of incomparable sets while losing only a very small fractionof our elements. The number of sets in this new collection is only slightly larger thanthe number of sets in either of the two previous collections. The aforementioned \dis-jointness property" of the two subnetworks is needed at this point to make sure thatthe new sets in the collection each contain adjacent elements.If we repeat this process over all lg n levels of the buttery, then we end up witha single collection of �(lg3 n) incomparable sets. The total number of elements in thesets is only a constant factor smaller than it was when we entered the buttery. If wepick the largest of the �(lg3 n) sets as our new incomparable set, then we only lose apolylogarithmic factor in the size of the set.To formalize this proof idea, the notion of an input pattern representing a class4



of similar inputs was introduced in [17]. A class of inputs with the desired property(existence of a large incomparable set) was then constructed by stepwise re�nementof a given input pattern in every level of the network.2.3 Hypercubic Sorting NetworksThe above argument does not work for arbitrary hypercubic networks, as they do notsatisfy the \disjointness property" of the two subnetworks used in the argument. Inthis paper, we overcome this obstacle, and derive a super-logarithmic lower bound forarbitrary hypercubic sorting networks. To do so, we introduce the class of hypercubicnetworks with \bounded overlap".Assume we are given an arbitrary hypercubic network � with ` levels (�i; ~xi),0 � i < `, as described in the register model of a comparator network. In orderto de�ne the \span" and \overlap" of �, it is convenient to introduce a number ofauxiliary variables. Let ai = 1 if �i = �sh and ai = �1 if �i = ��1sh , 0 � i < `.(We remark that the value of a0 has no impact on the de�nitions that follow.) Letbi =P1�j�i aj , 0 � i < `. The span of � may now be de�ned as jfbi : 0 � i < `gj.The overlap of � is the minimum integer r � 0 such that either: (i) bi � bj + r for all0 � i < j < `, or (ii) bi � bj � r for all 0 � i < j < `. Note that a network has overlap0 i� �i = �j for all 1 � i < j < `. Furthermore, the span of a network is always atleast as large as its overlap, with equality occurring only in the case ` = 0, where thespan and overlap are both 0.The proof of the lower bound in this paper is based on two main new ideas. First,we show in Section 3 how the lower bound argument for shu�e-based networks canbe modi�ed to handle hypercubic networks with small overlap. The overall structureof this proof is very similar to that in [17]. However, a number of subtle changes arerequired in order to extend the argument to networks with non-zero overlap. Themodi�ed proof is based on the observation that, informally speaking, a shu�e-basednetwork with small overlap still satis�es some relaxed version of the \disjointnessproperty". More precisely, we will exhibit a trade-o� between the overlap of thenetwork and the lower bound that can be shown.Second, we show in Section 4 that any hypercubic network can be partitioned intoa number of consecutive hypercubic networks such that the overlap of each networkin the partition is su�ciently smaller than its depth.3 Hypercubic Networks with Small OverlapIn this section, we show that a large incomparable set can be e�ectively maintainedover the levels of any hypercubic network with su�ciently small overlap. The mainresult of this section is Lemma 3.4, which bounds the decrease in the size of theincomparable set that can occur in any 2d-input hypercubic network with span s � dand overlap r. This lemma is used in Section 4 to establish our lower bound forarbitrary hypercubic sorting networks.The actual argument addressing the size of the incomparable set is contained inthe proof of Lemma 3.3, and is described with respect to a more general class ofnetworks, called (d; s; r)-hypercubic networks, which properly contains the class of2d-input networks with span s and overlap r. The proof of Lemma 3.3 has a verysimilar structure to that of Lemma 4.1 in [17], and we only describe the necessarymodi�cations. Most of the notations used in this section are taken from [17]. For thesake of completeness, we de�ne these notations again in the following subsections.The remainder of this section is organized as follows. In the �rst subsection, weintroduce the concepts of input patterns and input pattern re�nement. Subsection 3.25



de�nes our notion of a comparator network and its action on an input pattern, andintroduces the class of (d;s; r)-hypercubic networks. Subsection 3.3 lists a few basiclemmas. Finally, Subsection 3.4 contains the proof of the main lemma, and a lowerbound on the depth of hypercubic sorting networks with small overlap.In the following, unless explicitly stated otherwise, the set of input wires of acomparator network is denoted W . An input to a comparator network is a totalmapping from W to a set V of possible input values. We will restrict our attention toinputs � that are permutations of f0; : : : ; n�1g, i.e., where jW j = n, V = f0; : : : ; n�1g,and � is one-to-one. The set of all one-to-one functions from a set A to a set B willbe denoted by (A 7! B), and so the set of all inputs of a given comparator networkmay be written as (W 7! V ). Furthermore, for a function f on a set A and a subsetB of A, let fjB denote the functional restriction of f to B. For two functions f0 andf1 on disjoint sets A0 and A1, we write f0 � f1 for the union of f0 and f1:(f0 � f1)(x) def= � f0(x) for all x in A0, andf1(x) for all x in A1.3.1 Input Patterns and Re�nementIn the following de�nitions, we introduce the notions of input patterns and inputpattern re�nement, which are fundamental to our proof technique. Informally, aninput pattern describes a set of inputs with certain common properties. Input patternre�nement is the process of imposing additional conditions on such a set of inputs.De�nition 3.1 Let P be a set and <P be a total ordering on P .(a) An input pattern is a total mapping from W to P .(b) Let p0, p1 be two input patterns. We say that p0 can be re�ned to p1 (writtenp0 �W p1) if (p0(w) <P p0(w0))) (p1(w) <P p1(w0)) holds for all w and w0 inW .(c) Let p be an input pattern and � be an input. We say that p can be re�ned to �(written p �W �) if (p(w) <P p(w0)) ) (�(w) < �(w0)) holds for all w and w0in W .The set P will be referred to as the pattern alphabet, and the elements of P arecalled pattern symbols. Throughout this paper, pattern symbols are denoted by scriptletters. An input pattern p may be viewed as a description of the set of inputs to whichp can be re�ned. This set is denoted p[V ] def= f� : � is an input such that p �W �g.When we re�ne a pattern p0 to p1 then we are imposing additional constraints on thisset of inputs. Formally, we have (p0 �W p1) , (p0[V ] � p1[V ]). Alternatively, thereader may also view an input pattern p as a shorthand for a logical predicate thatholds for exactly the inputs in p[V ].De�nition 3.2 Let p and q be input patterns on W , and let U be a subset of W .(a) The input pattern pjU on U is the restriction of p to U .(b) We say that p can be U -re�ned to q (written p �U q) if p �W q and p(w) = q(w)holds for all w in W n U .3.2 Comparator NetworksA comparator network is interpreted as a mapping from a set of possible inputs to aset of possible outputs. More precisely, a comparator network � on input wires W andoutput wires W 0 de�nes a mapping (which we also denote by �) from (W 7! V ) to(W 0 7! V ) such that every input � :W 7! V is mapped to an output �0 : W 0 7! V that6



is a \permutation" of �. By this we mean that there exists a bijection � : W 7! W 0such that �(w) = �0(�(w)) holds for all w in W .Let ��0, ��1 be two sets of n-input comparator networks. Then ��0 
��1, the serialcomposition of ��0 and ��1, denotes the set of all networks � that can be obtained byconnecting the output wires of a network from ��0 to the input wires of a network from��1. In some cases, we may want to impose certain special conditions on this connectionbetween the output wires of the �rst network and the input wires of the second network.If no conditions are stated, then the connections can be made according to an arbitraryone-to-one mapping. As it happens, we often make use of the serial compositionoperator in the context of singleton sets ��0 and ��1. In such a case, we may write, forexample, �0 
�1 (where �0, �1 are networks) rather than f�0g 
 f�1g.Given two comparator networks �0 and �1 on disjoint sets of input and outputwires, we obtain the parallel composition of �0 and �1 as the union of the two networks,written �0 � �1. The set of input (output) wires of �0 � �1 is the union of the setsof input (output) wires of �0 and �1.Below we give an inductive de�nition of a class of comparator networks, called(d; s; r)-hypercubic networks, which properly contains the class of 2d-input hypercubicnetworks with span s � d and overlap r. Note that the 2d output wires of a (d; s; r)-hypercubic network are partitioned into 2d�r output groups of size 2r .De�nition 3.3 For r � s � d, a 2d-input comparator network � is called a (d; s; r)-hypercubic network if:(a) s � r = 0, � is a network containing no comparators at all (i.e., the 2d inputwires are directly connected to the 2d output wires), and the output wires of �have been partitioned into 2d�r output groups of size 2r, or(b) s� r > 0 and � is an element of (�0 ��1)
�, where� �0 and �1 are (d� 1; s� 1; r)-hypercubic networks, and� � is the parallel composition of 2d�r�1 disjoint 2r+1-input comparatornetworks �i, 0 � i < 2d�r�1, of arbitrary size and depth, such that: (i)the 2r+1 input wires of each network �i are connected to one output groupof size 2r of �0 and one output group of size 2r of �1, and (ii) the 2r+1output wires of each network �i are partitioned to form two of the 2d�routput groups of network �.A comparator network � was identi�ed with a mapping from the set of inputs tothe set of outputs. The following de�nition extends � to a mapping from the set ofinput patterns to the set of output patterns. (An output pattern is a mapping fromthe set of output wires to the set of pattern symbols.)De�nition 3.4 Given a comparator network �, an input pattern p0, and an outputpattern p1 such that p1(W ) = p0(W ), we de�ne �(p0) = p1 , �(p0[V ]) = p1[V ].De�nition 3.5 We say that input wires w0 and w1 collide in a network � under input� if the input values �(w0) and �(w1) are compared in � when � is given as input.Given a network � and an input �, we can always determine whether two inputvalues are compared or not. (Recall that we only consider inputs that are permu-tations.) This is not the case for input patterns, since an input pattern can containseveral occurences of the same pattern symbol. This motivates the following de�nitionof collision for input patterns:De�nition 3.6 Let � be a comparator network, let p be an input pattern for �, andlet w0 and w1 be two input wires of �. 7



(a) We say that w0 and w1 collide in � under p if they collide in � under all inputs� with p �W �.(b) We say that w0 and w1 can collide in � under p if there exists an input � withp �W � such that w0 and w1 collide in � under �.(c) We say that w0 and w1 cannot collide in � under p if there is no input � withp �W � such that w0 and w1 collide in � under �.(d) A set U � W is called noncolliding in � under p if any two wires in U cannotcollide in � under p.Note that, if two wires collide (cannot collide) in some network � under an inputpattern p, then they also collide (cannot collide) in � under any re�nement p0 of p.Similarly, if a set U is noncolliding in � under p, then it is also noncolliding in � underp0. The property can collide is not preserved under arbitrary re�nement.In the remainder of this section, we restrict our attention to a �xed pattern alpha-bet P def= fSi;Xi;j ;Mi;Li : i; j � 0g. The ordering <P on P is de�ned by Si <P Si+1,Si <P X0;0, Xi;j <P Xi;j+1 , Xi;j <P Mi,Mi <P Xi+1;0 ,Mi <P Lj , and Li+1 <P Li,for all nonnegative integers i, j.De�nition 3.7 For a pattern p and a pattern symbol P we de�ne the [P]-set of p asthe set fw 2W : p(w) = Pg.De�nition 3.8 We say that a comparator network � has an incomparable set of sizem if there exists an input pattern p such that some [Mi]-set of p is of size m and isnoncolliding in � under p.We can now formally describe our proof strategy: To prove that a network � is nota sorting network, we will show that the network has an incomparable set of size atleast 2. The input pattern p associated with the incomparable set can then be re�nedto an input such that the wires in the [M0]-set contain adjacent input values. Thisimplies that � does not sort all inputs. The input pattern p will be constructed bystepwise re�nement, starting with a pattern containing only the symbol M0.3.3 Basic LemmasThe following simple lemmas will be used in our lower bound argument.Lemma 3.1 Let � be a comparator network in �0 
 �1, i be a nonnegative integer,and p be an input pattern for �0 such that its [Mi]-set A is noncolliding in �0 under p.Let q def= �0(p) be an input pattern for �1 and B be the [Mi]-set of q. Then for everyq0 with q �B q0 there exists a p0 with p �A p0 such that q0 = �0(p0). Furthermore, ifthe [Mi]-set of q0 is noncolliding in �1 under q0, then the [Mi]-set of p0 is noncollidingin � under p0.Lemma 3.2 Let � be a comparator network, p be an input pattern for �, and Abe the [Mi]-set of p. Let �i(p) be the input pattern obtained from p by changing allpattern symbols P with P <P Mi to S0, all pattern symbols P with Mi <P P to L0,and all pattern symbols Mi to M0. If A is noncolliding in � under p, then A is alsononcolliding in � under �i(p).3.4 The Main LemmaIn this subsection, we establish our main lemma on the size of the incomparable set ina hypercubic network with small overlap. The main technical di�culty is in the proofof Lemma 3.3, which establishes the existence of a pattern p with a \large" [M0]-setthat is noncolliding in a single (d; s; r)-hypercubic network under p.8



Lemma 3.3 Let � be a (d; s; r)-hypercubic network with r � s � d, and p be aninput pattern for � such that only the pattern symbols S0, L0, and M0 occur in p.Let A be the [M0]-set of p, and k be any positive integer. Then there exists an inputpattern q with p �A q and t(s) def= 2r � k3 + 2r � (s� r) � k2 sets Mi, 0 � i < t(s), ofinput wires such that the following properties hold, where B def= S0�i<t(s)Mi:(1) Every Mi is the [Mi]-set of q.(2) Every Mi is noncolliding in � under q.(3) B � A.(4) jBj � jAj � (s�r)�jAjk2 .(5) No two elements of any [Mi]-set of �(q) are located in the same output groupof �.Proof: (Sketch) The proof is very similar to that of Lemma 4.1 in [17], and hencewe only sketch the necessary modi�cations. A complete proof can be found in [18].The proof is by induction over s� r with base case s� r = 0. Properties (1) to (4)are nearly the same as in [17]. In addition, the induction also has to maintain the newProperty (5). In order to do so, the number of sets Mi has to be increased by a factorof 2r . This means that the number of possible matchings between the sets M0;i andM1;j in the induction step also increases by a factor of 2r. Since each element in a setM0;i can collide with at most 2r elements in the sets M1;j , by averaging there existsa matching under which Property (5) can be maintained without throwing away toomany of the elements. 2Lemma 3.4 Let � be a 2d-input hypercubic network with span 3 � s � d and overlapr, and let � be an arbitrary comparator network with an incomparable set of size �.Then any network in �
� has an incomparable set of size �0 � �=(s4 � 2r).Proof: According to De�nition 3.8, there exists an input pattern p0 such that some[Mi0 ]-set C of p0 is of size � and is noncolliding in � under p0. By Lemma 3.2, wecan assume that i0 = 0, and that p0 contains only the symbols S0, M0, and L0.Every 2d-input hypercubic network with span s � d and overlap r is equivalentto a (d; s; r)-hypercubic network. Hence, we can apply Lemma 3.3 to �. Let k = s,p = �(p0), and A be the [M0]-set of p. Then by Lemma 3.3, there exists an inputpattern q with p �A q and t(s) � 2s3 � 2r disjoint sets Mi, 0 � i < t(s) of input wiresof � such that� every Mi is the [Mi]-set of q,� every Mi is noncolliding in � under q,� B � A, and� jBj � � � (1� 1=s),where B def= S0�i<t(s)Mi. By averaging, there exists a set Mj0 , 0 � j0 < t(s), of sizeat least jBj =(2s3 � 2r) � �=(s4 � 2r), where the inequality follows from the fact that12 (1 � 1=s) � 1=s for s � 3. By Lemma 3.1, there exists an input pattern q0 withp0 �C q0 such that q = �(q0) and the [Mj0]-set of q0 is noncolliding in �
� underq0. Since q = �(q0), the [Mj0 ]-set of q0 also contains at least �=(s4 � 2r) elements. 2By partitioning a hypercubic network of overlap r and depth ` into d`=de consecu-tive hypercubic networks of overlap r and depth at most d, and applying Lemma 3.4 toeach of these networks, we obtain the following lower bound for hypercubic networkswith bounded overlap. Note that for the special case r = 0, we obtain the resultin [17]. However, if the overlap is �(d), we only get the trivial 
(lg n) lower bound.9



Theorem 3.1 Any n-input hypercubic sorting network with overlap r has depth
� lg2 nmaxfr;lg lg ng�.4 A Lower Bound for Hypercubic NetworksIn this section we establish our main result, a lower bound on the depth of arbitraryhypercubic sorting networks. In order to prove the result, we need one more lemma.Informally, Lemma 4.1 below states that we can maintain a fairly large incomparableset over the levels of any hypercubic network. The proof of the lemma is based on theidea that any hypercubic network with depth ` either has a small overlap relative to`, or can be (recursively) partitioned into several consecutive networks satisfying thisproperty. In the �rst case, we can use Lemma 3.4 to bound the size of the incomparableset. The second case is handled by induction.Lemma 4.1 Let � be a hypercubic network with depth ` and span s � d, let�(l; s) def= (` � s=2)=(lg s= lg lg s), and let � be an arbitrary comparator network withan incomparable set of size �. Then any network in �
� has an incomparable set ofsize �0, where ��0 = s4 � 2O(�(l;s)):Proof: We prove that �=�0 � c � s4 � 29��(l;s) holds for some positive constant c.The proof is by induction on the depth ` of the network. For the base case, it can bechecked that the statement is true for small constant values of `. Now assume thatthe statement has been shown for all networks of depth less than `.For the induction step, we assume a hypercubic network � with depth `, overlapr, and span s � d. Now suppose that r � 9 � �(l; s). In this case, the claim follows forany c � 1 by a simple application of Lemma 3.4.Hence, in the following we haver > 9 � �(l; s) � 9s2 lg s= lg lg s : (1)Due to the de�nition of overlap, there exist hypercubic networks �i, 0 � i < 2, withdepth `i and span si, such that � belongs to �0
�1, `0+ `1 = `, and s0+s1 = s+r.By applying the induction hypothesis �rst to � and �0 , and then to �
�0 and �1,we obtain ��0 � c � s40 � 29��(l0 ;s0) � c � s41 � 29��(l1 ;s1) = c2 � s40 � s41 � 29x;where x def= �(l0; s0) + �(l1; s1). Using s0 � r, s1 � r, and Equation (1) we can showthat min� lg s0lg lg s0 ; lg s1lg lg s1� � lg slg lg s ��1� 2 lg lg slg s � :Using this bound, and the fact that 1=(1��) � 1+2� holds for su�ciently small � > 0,we obtainx � `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s + (`0 � s0=2 + `1 � s1=2) � 4� lg lg slg s �2= ` � s=2� r=2lg s= lg lg s + (`� s=2� r=2) � 4� lg lg slg s �2 ;10



where the last step follows from `0+`1 = ` and s0+s1 = s+r. Applying Equation (1),we obtainx � �(l; s)� r2 lg s= lg lg s + 4r9 lg s= lg lg s = �(l; s)� r18 lg s= lg lg s :Hence, for s su�ciently large, we have �=�0 � c � s4 � 29��(l;s). 2Theorem 4.1 Any n-input hypercubic sorting network has depth 
 � lg n lg lg nlg lg lg n �.Proof: Let � be an n-input hypercubic network of depth `, n = 2d. Then we canpartition � into k = d`=de consecutive hypercubic networks �i, 0 � i < k, with depth`i and span at most d.Let � be a network containing no comparator elements at all. Clearly, � belongsto �
�, and � has an incomparable set of size n. We now apply Lemma 4.1 once foreach network �i, 0 � i < k. It follows that there exists an incomparable set of size n0in �, such that nn0 = Y0�i<k d4 � 2O� (`i�d=2)lg d= lg lg d � = 2O� `lg d= lg lg d�:Hence, if ` < c � d lg d= lg lg d for some su�ciently small positive constant c, we �ndthat n0 > 1, and it follows that � cannot be a sorting network. 25 ExtensionsThe lower bound for hypercubic sorting networks can be extended to certain restrictedclasses of non-oblivious sorting algorithms on hypercubic machines. More precisely,the particular function computed by a comparator (that is, \+", \-", \0", or \1") maydepend on the outcomes of all comparisons made in previous levels of the network.Also, the lower bounds still hold in the case where a node can hold more than oneelement, provided that elements cannot be copied. It remains unclear whether ourresults can be extended to a model where copying of elements is allowed. Finally,our lower bound technique can also be applied to some restricted classes of sortingalgorithms on multi-dimensional meshes. Examples of algorithms in these classes wererecently given by Corbett and Scherson [4] and Wanka [20].On the other hand, our lower bounds do not apply to \probabilistic" sorting net-works that sort the vast majority of input permutations, or to \randomized" sortingnetworks that contain additional \randomizing" circuit elements. For these types ofnetworks, Leighton and Plaxton [12] have given hypercubic constructions of depthO(lg n). A more detailed discussion of these extensions and limitations can be foundin [18].6 Concluding RemarksIn this paper, we have established an 
 � lg n lg lg nlg lg lg n � lower bound on the depth of hyper-cubic sorting networks. The proof technique also applies to certain restricted classesof non-oblivious sorting algorithms on hypercubes and multi-dimensional meshes. Agap remains between our lower bound and the best upper bound known, and it wouldcertainly be an interesting improvement to narrow or close this gap.An important open question is whether we can extend our lower bounds to moregeneral classes of non-oblivious sorting algorithms on the hypercube. Of particular11
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