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ABSTRACT
In this paper, we describe the design and initial implementation of
a geographic search engine prototype for Germany, based on alarge
crawl of thede domain. Geographic search engines provide a flex-
ible interface to the Web that allows users to constrain and order
search results in an intuitive manner, by focusing a query ona par-
ticular geographic region. Geographic search technology has recently
received significant commercial interest, but there has been only a
limited amount of academic work. Our prototype performs massive
extraction of geographic features from crawled data, whichare then
mapped to coordinates and aggregated across link and site structure.
This assigns to each web page a set of relevant locations, called the
geographic footprint of the page. The resulting footprint data is then
integrated into a high-performance query processor on a cluster-based
architecture. We discuss the various techniques, both new and exist-
ing, that are used for recognizing, matching, mapping, and aggre-
gating geographic features, and describe how to integrate geographic
query processing into a standard search architecture and interface.

1. INTRODUCTION
The World-Wide Web has reached a size where it is becoming in-

creasingly challenging to satisfy certain information needs. While
search engines are still able to index a reasonable subset ofthe (sur-
face) web, the pages the user is really looking for may be buried under
hundreds of thousands of less interesting results. Thus, search engine
users are in danger of drowning in information. Adding additional
terms to standard keyword searches often fails to drill the iceberg of
results that are returned for common searches. A natural approach is
to add advanced features to search engines that allow users to express
constraints or preferences in an intuitive manner, resulting in the de-
sired information to be returned among the first results. In fact, search
engines have added a variety of such features, often under a special
advanced searchinterface, though mostly limited to fairly simple con-
ditions on domain, link structure, or last modification date.

In this paper we focus on how to constrain web queries geograph-
ically. Geography is a particularly useful criterion, since it most di-
rectly affects our everyday lives and thus provides an intuitive way
to express an information request. In many cases, a user is interested
in information with geographic constraints, such as local businesses,
locally relevant news items, or tourism information about aparticular
region. When taking up yoga, local yoga schools are often of much
higher interest than those of the world’s ten biggest yoga schools.

We expect thatgeographic search engines, i.e., search engines that
support geographic preferences, will have a major impact onsearch
technology and associated business models. First, geographic search
engines provide a very useful tool. They allow a user to express in
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a single query what might take multiple queries with conventional
search engines. Thus, a user of a conventional search enginelooking
for a yoga school in or close to Brooklyn may end up trying queries
such as(yoga AND new york) or (yoga AND brooklyn),
but even this might yield inferior results as there are many ways to re-
fer to a particular area and since the engine has no notion of geograph-
ical closeness, e.g., a result across the bridge to Manhattan might also
be acceptable. Second, geographic search is a fundamental technol-
ogy for location-based serviceson mobile devices. Third, geographic
search supports locally targeted web advertising, thus attracting ad-
vertisement budgets of small businesses. Other opportunities arise
from mining geographic properties of the web, e.g., for market re-
search.

Given these opportunities, it comes as no surprise that mostlead-
ing search engines have made significant efforts to deploy some form
of geographic web search. Our approach differs from these, both in
the way geographic information is extracted from the web andhow
it is integrated into query processing. In particular, commercial en-
gines focus on matching pages with data from business directories,
supporting search for local businesses and organizations.While this
is an important part of geographic search, we focus on more general
information requests. A user may not just be interested in finding
businesses listed in yellow pages, but may have broader interests that
can best be satisfied by private or non-commercial web sites,such as
local news and cultural events, or the history of a certain area. In or-
der to facilitate such queries, we extract geographic markers, such as
addresses or phone numbers, from web pages, independent of their
listing in any directory. To extend search capabilities to those pages
that contain no such markers, we employ a combination of new and
previously proposed techniques based on link and site structure.

Before continuing, we briefly outline our basic approach. Our sys-
tem is a crawl-based engine that starts by fetching a subset of the web
for indexing and analysis, focusing on Germany and crawlingthede
domain. Afterwards, a standard text index is built. In addition, data
extraction and mining is used to assign a set of relevant locations to
each page, called a geographic footprint. Finally, search queries con-
sisting of textual terms and geographic areas are evaluatedagainst the
index and footprint data using an appropriate ranking function. The
goal of this project is to test and further develop ideas outlined in
earlier work [21, 11, 19], by building a complete prototype.

Our contributions are: First, we provide the first in-depth descrip-
tion of an actual implementation of large-scale geographicweb search.
Our prototype, to be made available soon, is based on a crawl of over30 million pages in thede domain, with plans to expand further. Sec-
ond, we combine several known and new techniques for deriving ge-
ographic data from the web, using features such as town names, zip
codes, phone numbers, link and site structure, and externalsources
such aswhois. We represent the resulting geographic footprint of a
page in a simple highly compressible format that is used during link
and site analysis and query processing. Third, we provide the first
discussion of efficient query execution in large geographicsearch en-
gines. Due to space constraints, we have to omit many details. An
expanded version of this paper is available as a technical report [20].

2. RELATED WORK
In this section, we describe related work ongeo coding, existing

geographic search engines, and the Semantic Web. Since we treat
content, not hardware, we have omitted work on determining physical



locations of servers. Most web pages today are hosted in server farms
hundreds of miles away from either author or geographic regions they
relate to.

Geo Coding: A good discussion of geographic hints commonly
found in web pages is provided by McCurley [21], who introduces
the notion ofgeo coding. He describes various geographic indicators
found in pages, such as zip codes or town names, but does not dis-
cuss in detail how to extract these, or how to resolve the geo/geo or
nongeo/geo ambiguity.

Work in [4, 11] introduced the idea of a page’sgeographic scope,
i.e., the area it addresses in terms of readership. Initially, they assign
a position to every web site based on itswhois entry. Then a fixed
hierarchy of administrative regions is superimposed, and some link
analysis is performed. If enough links from a region point toa web
site and these links are evenly distributed, the region is included in
the site’s geographic scope. The approach was applied to theUnited
States using states, counties, and cities for the geographic hierarchy.
Our approach in Section 4.6 is basically a generalization and refine-
ment of the work in [4, 11], but differs in several ways. In general,
[4, 11] is fairly coarse-grained as it focuses on sites instead of single
pages and on relatively large geographic regions. It relieson the exis-
tence of a sufficient number of incoming links, and thus does not work
well for pages and sites with moderate in-degree. The evaluation in
[11] is limited to sites in theedu domain, wherewhois provides a
good estimate of a site’s location, and does not address morenoisy
data from page content.

The approach closest to ours is [1], using a hierarchical gazetteer
with 40,000 names of cities all over the globe. It performs geo cod-
ing by looking for names of cities with more than 500,000 people,
though decreasing the minimum size to 5,000 is reported to have a
positive effect. The gazetteer’s hierarchy is used for disambiguation
when there are several towns of the same name, but the size of towns
is not considered in this case. Similar to our geographic footprint,
[1] focuses on a document’sgeographic focusrather than the more
specializedgeographic scopeof [11]. In contrast to our system, the
geographic focus of a page is not represented in geographic coordi-
nates, but tied to a node in the hierarchical gazetteer. There can be
several foci for a document, although the authors explicitly seek to
avoid this by grouping.

Geographic Search Engines:Several geographic search engines
are already available online. Some are academic prototypesbased
either on small specialized collections or a meta search approach. In
particular, [16] performs automatic geo coding of documents based
on the approach in [11]. Most other prototypes, such as [8], require
pages either to carry special markup tags or to be manually registered
with the search engine.

There are several lesser-known geographic engines by commercial
players. Some, such as the extension toNorthern Lightby Divine
[12], have already disappeared again. Others such as [14] rely on
geographic meta data in the pages, or query internet directories such
as the Open Directory Project. Of all these, the Swisssearch.chen-
gine [22], which has been around for several years, is closest to our
approach. It allows users to narrow down their initial search by spec-
ifying a more and more focused location, over several hierarchical
levels such as cantons (states) and cities within Switzerland.

As mentioned, geographic search has recently received a lotof at-
tention from the major search companies. BothGoogleand Yahoo
have introduced localized search options [15, 24]. Their approaches
appear to be quite different from ours, and seem to rely on an inter-
mediate business directory. Users first retrieve entries for businesses
that satisfy certain keywords and are close by, and can then extend the
search to actually retrieve pages about these businesses and the area
they are located in. The exact algorithms are not publicized. There are
two main differences to our approach, the intermittent business direc-
tories and the location modeling to point coordinates, i.e., the street
address of the businesses, to be displayed on detailed street maps.

There seems to be no mechanism to model geographic footprints of
pages that cover larger areas, such as a county or state.

Geographic Semantic Web: It seems natural to extend the Se-
mantic Web to aGeographic Semantic Web, such as proposed in [13],
where each web page contains some meta data, defining its geographic
footprint. Several models are already available [3, 9]. Other models
from the GIS community, such as GML from the Open GIS Consor-
tium [7], can be adapted. However, there are two major problems,
inherent to the Semantic Web, that make this approach infeasible
for general web search (though it may be useful in other scenarios).
First, there is achicken and eggproblem. Authors will only include
meta information if search engines use them, while engines will wait
for a sufficient amount of meta information to become available be-
fore building any services on it. Second, Web authors are notto be
trusted, as they frequently provide misleading information to manipu-
late search engines. For this reason current engines pay little attention
to existing meta tags.

3. UNDERLYING DATA
We now briefly describe the data, as used in our prototype. Using

thePolyBotweb crawler [23], we acquired about 31 million distinct
web pages from thede domain in April 2004. We chose thede do-
main for two reasons. First, it is the right size both geographically and
in terms of number of pages. It is quite dense with about7:8 million
registered domains within a relatively small area. It is also reasonably
self-contained in terms of link structure. Thus, the domainprovides
a nice test bed, meaningful but not outside the reach of academic re-
search. Thede domain was estimated in 2000 at3:67% of the entire
web [2]. This translates to about150 million pages to achieve the
same coverage as4 billion pages (the size ofGoogleas of November
2004) on the entire web; this is within reach of our current setup. Sec-
ond, availability of geographic data is a big issue. Thewhois entries
for de domains are complete and well structured, allowing us to ex-
tract information without effort. We retrieved 680,000whois entries
for all the domains our crawl had touched; many of the7:8 million
registered domains do not actually have a live web server. Wealso
had access to several other sources of geographic data for Germany,
and an understanding of the language, administrative geography, and
conventions for referring to geographic entities.

We focused on two geographic data sets for Germany. The first
maps each of 5,000 telephone area codes toonecity and also to the
coordinates of the centroid of the region that the code covers. The
second maps zip codes to 82,000 towns, and these towns to their po-
sitions. If the town was a village, it was also mapped to the asso-
ciated city. This data set originated from a GIS application, where
geographic positions are the database keys and town names are only
for display to the user. Names were often misspelled or abbreviated
in various nonstandard ways, requiring painstaking manualcleaning.

4. GEO CODING
The process of assigning geographic locations to web pages that

provide information relevant to these locations is calledgeo coding.
A document can be associated with one or multiple locations,for ex-
ample when a company web page refers to several different outlets.
We call this collection of locations the page’sgeographic footprint.
For every location in the footprint, an integer value is assigned that
expresses thecertaintywith which we believe the web page actually
provides information relevant to the location.

In our approach, we divide geo coding into three steps,geo extrac-
tion, geo matching, andgeo propagation. The first step extracts all
elements from a page that might indicate a geographic location, in-
cluding elements in URLs. The second step tries to make senseof
these by mapping them to actual locations, i.e., coordinates, and leads
to an initial geo coding of the pages. In these first two steps,we make
use of databases of known geographic entities such as citiesor zip
codes. In the third step, we performgeo propagationto increase the



quality and coverage of the geo coding through analysis of link struc-
ture and site topology. Before we proceed with the description of our
geo coding process, we introduce our representation of a document’s
geographic footprints.

4.1 Geographic Footprints of Web Pages
In every GIS, a basic design decision has to be made between a

vector data model and a raster data model, mapping data onto adis-
crete grid. A web page may contain several geographic hints,some
referring to point positions, others (cities or zip codes) refer to polyg-
onal areas. Thus, our data model has to handle both types. We de-
cided to use a raster data model, representing geographic footprints
in a bitmap-like data structure. In comparison to a vector model, we
lose some precision by pressing the information into the grid. With
a sufficiently fine grid however, the degree of imprecision issmall,
especially when compared to other uncertainties in the dataand ex-
traction process. In our case, we superimposed a grid of1024� 1024
tiles, each covering roughly a square kilometer, over Germany, and
stored an integer amplitude with each tile, expressing the certainty
that the document is relevant to the tile.

This representation has two advantages. First, it allows usto effi-
ciently implement some basic aggregation operations on footprints. If
a page contains several geographic features, the footprintfor the page
is defined as the sum of the footprints of the individual features, after
suitable normalization. These operations are very useful during geo
propagation and query processing. Second, since for most documents
only a few tiles are non-zero, we can efficiently store the footprints in
a highly compressed quad-tree structure. Moreover, we can use lossy
compression (smoothing) on such structures to further reduce their
size and thus facilitate efficient query processing.

We implemented a small and highly optimized library for opera-
tions such as footprint creation, aggregation, simplification (smooth-
ing), and intersection (for query processing) based on quad-trees. Our
focus here, as discussed earlier, is not on simple yellow page opera-
tions but more general classes of geographic search operations. Our
grid model is particularly useful for the geo propagation and query
processing phases, where exact locations are not that crucial.

4.2 External Databases
In addition to geographic markers extracted from pages, various ex-

ternal sources can also be used for geo coding, in particularbusiness,
web, andwhois directories.

Business directories (yellow pages) map businesses and associated
web sites to addresses, and thus to geographic positions. Some geo-
graphic search engines such as those ofGoogleandYahoo[15, 24]
appear to make heavy use of business directories. The main problem
with business directories is also their biggest strength. They require
registration fees, and thus usually list mainly commercialcompanies,
ignoring many personal or non-profit web sites. The fees however
also often result in higher data quality.

Web directories such as Yahoo and ODP maintain geographic di-
rectories that categorize sites by region. They are difficult to maintain,
far from complete, and often outdated. However, they can be useful
as an additional data source in geo coding.

As an integral part of the Internet infrastructure and freely accessi-
ble, thewhois directory is also a good source of geographic infor-
mation. For every domain, it contains the address of the individual
that registered it. An earlier study [25] showed a high degree of accu-
racy forwhois entries. However, the quality ofwhois entries dif-
fers between top-level domains. For thede domain, they are highly
structured and usually complete, with precise addresses and phone
numbers. In contrast, entries for theuk domain typically contain less
information and are fairly unstructured.

In Section 4.6.1 we discuss how to plug information from such
databases into our geo coding process.

4.3 Germany’s Administrative Geography
Effective geo coding requires an understanding of a country’s ad-

ministrative geographyand common usage of geographic terms. Thus,
one has to know how geographic names are composed, what the role
of states and counties is, and how postal or area codes are used. Since
every country is organized differently, the rules presented for Ger-
many in this section will have to be adapted for other countries and
languages. In the United States, for example, most addresses contain
the state, which can be used to resolve ambiguities between towns
with the same name. In German addresses, states are never men-
tioned. German telephone area codes and zip codes are highlyclus-
tered, i.e., codes with a common prefix tend to be in the same region.
Large companies might have their own zip code, but we could infer
their position from the positions of similar zip codes.

We give a brief summary of the usage of geographic terms in Ger-
many. States, like counties and districts play little role in daily life
and are rarely mentioned, and thus ignored. Area and zip codes are
distributed in clusters; at least all entries with the same first digit are
clustered. There is no simple relation between these numeric codes
and towns. A town might cover several of these codes or several towns
might share the same numeric code.

Towns fall into two categories, cities and villages (also boroughs),
with a one-to-many relationship between the two. Every village is as-
sociated with exactly one city, but a city might be associated with sev-
eral villages. Villages are often mentioned in conjunctionwith their
cities. German town names consist of up to three parts. First, there
is an optional single-termdescriptive prefix, such asBad. Second,
there is a mandatorymain name, such asFrankfurt, and third, extra
descriptive terms, such asbei Köln, am Main, Sachsen.1 Descriptive
prefixes and large parts of the descriptive terms are often dropped or
abbreviated in various ways. The city ofFrankfurt am Mainmight
be written asFrankfurt M., Frankfurt/Main, Frankfurt a.M., or just
Frankfurt.

4.4 Geo Extraction
This step reduces a document to the subset of its terms that have ge-

ographic meaning. If there is any uncertainty whether a termis used in
a geographic meaning or not (calledgeo-nongeoambiguity [1]), then
this is resolved at this point. We extract only those geographic mark-
ers that we know how to map to geographic positions: town names,
phone numbers, and zip codes. In addition to page content, wealso
analyzed URLs. URLs are a very useful source of geographic infor-
mation, but tricky to analyze since terms are often not well separated
(e.g., finding a city name incheapnewyorkhotels.com is not
straightforward). We refer to [20] for details.

4.4.1 Town Names
When extracting terms that might refer to towns, we could simply

write out all terms that appear as part of some town name. However,
this would produce a lot of garbage; many terms from town names are
also common German or English words or surnames. To avoid this,
we manually divided the set of all terms that appear town names into
3,000weak termsthat are common language terms, and 55,000strong
termsthat are almost uniquely used as town names. When parsing
web pages, we first try to extract all strong terms. Next, we look for
any weak terms that appear together with the extracted strong terms
in the same town name. The underlying idea is that we try to finda
town’s main name first and then parse for weak terms (often found in
the descriptive suffixes and prefixes) to resolve any ambiguity.

We assigned a distance to each weak term. A weak term would only
be recognized if it appears within that distance from an associated
strong term. Thus, if we find the strong termFrankfurt, we might
accept the weak termMain anywhere on the page (distan
e = 1),
or the weak termOderwithin distan
e = 2 since it is a much more
common term.2

1near the city of Cologne, on the river Main, in the state of Saxony
2Main andOderare names of rivers; however,Oder is also the Ger-
man word foror.



To further increase the precision of the extraction, we assigned
killer termsandvalidator termsto the strong terms. Any appearance
of a strong term will be ignored if one of its killer terms alsoappears
within some distance. Also, if a strong term has a validator term as-
signed to it, then any appearance of the strong term will be ignored
unless the validator term appears within some distance. This allows
us to handle town names that are also normal German words. We also
introduced a list ofgeneral killerssuch that any strong term within
some distance of a general killer will be ignored. This list was filled
with 3,500 common first names and titles such asMr., Mrs., or Dr. to
avoid mistaking surnames for town names. More details are given in
[20], where we discuss phone numbers and zip codes.

4.5 Geo Matching
The previous step reduced documents to sets of terms that carry

a geographic meaning. This step maps these terms to actual towns,
and thus to geographic locations. The problem, is that some terms
can point to several town names, calledgeo-geo ambiguity[1]. Some
towns share the same main name, and a town’s main name might even
appear in another town’s descriptive terms. We make two assumptions
about the usage of town names that allow us to define rules to resolve
these ambiguous cases.

The first assumption is that the author of a document mentioning a
town name intends to talk abouta single town of this name, not about
several towns of that name. That is, someone mentioningFrankfurt
intends to talk about either one of the two towns in Germany ofthat
name. This assumption is calledsingle source of discourse[1]. Even
if this assumption fails, it only introduces a negligible error to a geo-
graphic search engine. Thus, in the rare case where a document dis-
cusses why “neither town named Frankfurt has a strong soccerteam”,
it might be acceptable to only assign this page to one of the two towns.

The second assumption is that the author most likely meant the
largest town with that name. There are for examples two townswith
the nameGöttingen, a larger city and a tiny village, situated about 150
km apart. One expects that there are more pages about the larger of
the two towns. The page will therefore be assigned to the city, not the
village, unless there are other strong indications. As before, it can be
argued that the failure of this hypothesis only introduces amarginal
error, especially when the difference in size is huge.

Our strategy consists of the following steps. First, a metric is used
to evaluate matches between town names and terms. Second, wewrite
out the town with the best match, and then delete its terms from the
term set. Finally, we start over to find additional matches onthe re-
duced term set. There are several measures for the quality ofa match
between a town name and a set of terms. The actual implementation
of the algorithms is omitted, since it is tailored to Germany’s admin-
istrative geography and to the databases available to us. The general
strategy however is broad enough to be adapted to various countries
and data sets.

4.5.1 Measuring Geo Matching
The degree to which a town name can be matched with a set of

retrieved terms can be measured in various ways. None of themper-
forms well on its own, but in combination they prove adequatefor
deciding the best of several possible matches.

One simple measure is thenumber of matched terms, i.e., the num-
ber of terms in the town name that are contained in the set of terms
from the web page. A similar measure is thefraction of matched
terms, i.e., the fraction of terms in the town name that were found in
the page. For any of the above, one can find examples where they
work really well and ones where they fail. Some other types oftech-
niques are stronger. If anumeric markersuch as a zip code is found,
then this will usually resolve any ambiguity. Another approach is
based on looking fornearby towns. If we find bothFrankfurt and
Offenbach, we can be pretty certain that the page intends to talk

aboutFrankfurt am Main.3 In our application we employed a simpli-
fied version, using Germany’s administrative hierarchy as an indica-
tor of distance. This measure can be looked up from a table quickly,
without ever having to compute an actual distance.

4.5.2 The Matching Strategy
Since the implementation of our matching algorithm, calledBB-

First, is very specific to Germany, we will not show it in full detailbut
rather sketch the underlying strategy. The algorithm is calledBB-first
because it extracts thebestof thebig townsfirst. It starts with the set
of all strong terms found in the document, calledfound-strong,
and the set of all German towns, and proceeds as sketched in Table 1.

1. Group towns into several categories accord-
ing to their size.

2. Start with the category of the largest

towns.
3. Determine the subset of all towns from this

category that contain at least one term in
found-strong.

4. Rank them according to a mix of the measures
described in Section 4.5.1.

5. Add the best matched town to the result.
6. Remove all terms found in this town name

from the set found-strong.
7. Start this algorithm over at Step 3, as long

as there are new results.
8. If there are no new results, repeat the al-

gorithm for the next category down.

Table 1: Basic steps of the BB-First algorithm

In our implementation, we measured the size of towns only by sort-
ing them intovillagesandcities, thus running the algorithm only with
these two categories. The algorithm can be directly traced to the un-
derlying assumptions. It clearly prefers large towns over small ones.
It also assumes a single sense of discourse, since every strong term
can cause at most one town to be matched before it is removed from
found-strong. The extracted towns receive acertainty value, es-
timated with the same measures we used to determine how well towns
were matched with the set of terms.

The results of this algorithm, i.e., the matched towns, are then fi-
nally mapped into our quad-tree based footprint structure with integer
amplitudes. Note that cities are not mapped to a single tile but to a
larger area of a few kilometers squared. Each tile in the gridreceives
as amplitude the sum over the certainties of towns that map tothis
tile. Applying this procedure to every document results in an initial
geo coding of our web crawl that can be processed further during the
next step. In this initial coding, each page that contains a geographic
marker has an associated non-empty geographic footprint. In our set
of 31 million pages, about17 million had non-empty footprints based
on page content, represented in an average of137 bytes after com-
pression. About5:7 million pages had (separate) non-empty foot-
prints based on extraction of markers from their URLs, represented in
an average of38 bytes since there are fewer extracted markers.

4.6 Geo Propagation
After applying the above techniques, and excludingwhois entries,

slightly more than half of all web documents have a non-emptygeo-
graphic footprint associated with them. This is not unexpected, since
not every document contains a geographic reference in its text. On
the other hand, many of the pages that did have a footprint were not
particularly valuable in terms of their actual content. Forexample, it
seems that many sites return geographic information such ascontact

3The city of Offenbach is a direct neighbor of Frankfurt am Main, and
about 700km from the other Frankfurt.



addresses in separate pages from the actual content that a user might
be looking for. These issues can be overcome bygeo propagation, a
technique that extends the basic radius-one, radius-two (co-citation),
and intra-site hypotheses from Web information retrieval to the geo-
graphic realm.

According to the radius-one hypothesis, two web pages that are
linked are more likely to be similar than a random pair of pages [10].
This assumption can be extended to geographic footprints. If one page
has a geographic footprint, then a page it is linked to is morelikely to
be relevant to the same or a similar region than a random page.The
radius-two hypothesis about pages that are co-cited can be extended
similarly. The intra-site hypothesis states that two pagesin the same
site are also more likely to be similar. For documents from the same
sub-domain, host, or directory within a site, even strongerstatements
can be made. This can also be extended to geographic properties.
For Germany, it is particularly useful since there exists a law that any
de site must have a page with the full contact address of the owner
no more than two clicks from the start page. Thus, at least onepage
in any given site by law should provide rich geographic information
which is supposed to apply to the entire site.

Geo propagation uses the above geographic hypotheses to propa-
gate geographic footprints from one page to another. The idea is that
if two pages are related in any of the above manners, they should
inherit some dampened version of each others geographic footprint.
We modeled the “inheritance” by simply adding the entire footprint
of one page to the other, tile by tile, with some dampening factor �,0 < � < 1. The exact value of� depends on the relationship between
two pages. If two pages are in the same directory for example,� will
be larger than if they are only within the same site.

Note that this process does not converge, and has to be handled with
care. If geo propagation is performed too often, every single docu-
ment could end up with a footprint spanning the entire country. In
practice, one or two steps seem to give most of the benefit, andproper
dampening factors plus lossy compression (simplification)prevents
footprint sizes from getting out of hand. This results in an increased
number of pages with non-zero footprints and an increased number of
non-zero tiles therein.

4.6.1 Geo Propagation in our Prototype
Based on these general ideas, we implemented several forms of geo

propagation. Starting out with about17 million footprints, we sepa-
rately performed forward and backward propagation across links as
well as between co-cited pages. Thus, if pageA has a footprintmA
and links to a pageB with a footprintmB , then we transmitmA toB and compute a new footprint of the formmB + �mA for B. This
is implemented using two ingredients: (1) our optimized implementa-
tion of footprint operations based on quad-tree structuresdescribed in
Subsection 4.1, and (2) an I/O-efficient implementation forfootprint
propagation along links that resembles a single round of thePagerank
implementation in [6]. Footprints are sorted on disk by destination
page and then aggregated into the footprint of the destination page.
Propagation was also performed within sites. Finally, resulting foot-
prints need to be normalized. In the end, we obtained about28:4
million pages with non-empty footprints, for a page coverage of more
than90%. We also separately stored 490,000 footprints that apply to
entire sites. This amounts to about60% of all sites, which is smaller
than expected, due to the large number of parked single-pagesites.
The site’s footprints can be added into pages’ footprints orused sepa-
rately during query processing.

5. GEOGRAPHIC SEARCH
Geographic search engines allow users to focus a search on a spe-

cific geographic area by adding a query footprint to the set ofkey-
words. There are a number of possible interface for specifying the
query footprint and displaying search results, and we discuss here
only some basic approaches. In particular, the area of interest could be

automatically extracted from a keyword query, by looking for terms
that match a city or other geographic term and replacing it bya suit-
able query footprint. The automatic identification of queries that are
geographical in nature is discussed in [17]. Or alternatively, users
could use an interactive map for this purpose. In a mobile envi-
ronment, the current location of the user could be determined from
the networking infrastructure and translated into a footprint. Results
could be shown as lists or displayed on an interactive map, and addi-
tional geographic browsing operations may be supported. Note that a
query footprint should not be seen as a simple filter for keyword-based
results, but as a part of the ranking function. We will now describe
the actual query processing in two passes, first on an abstract level
and later in terms of our actual current implementation.

5.1 Basic Geographic Query Execution
We now outline the differences between geographic and conven-

tional web search engines on an abstract level. In a nutshell, a con-
ventional search engine works as follows: (i) The user inputs a set of
search terms. (ii) The engine determines a set of pages that contain
all the search terms, by using the inverted index. (iii) It then uses the
frequencies, contexts, and positions of the term occurrences in these
pages, together with other measures such as link structure,to rank
the results. This is typically done concurrently with the second step.
At first glance, the query processing in our geographic search engine
works in a very similar way: (i) The user inputs search termsand a
query region that is converted into aquery footprint. (ii) The engine
then uses the keywordsand the query footprint to determine the set of
pages that are in the intersection of the inverted lists and whose foot-
print has a nonempty intersection with the query footprint.(iii) The
engine then uses the keywordsand query footprint, plus other mea-
sures such as link structure, to rank the results.
Thus, the engine uses both keywords and query footprint, to retrieve
candidates results during the second and third steps. In ourcase, the
first step is simply a question of interface design. The second step
is also fairly similar to conventional engines, at least on ahigh level,
except that now only those pages survive that contain all search terms
and have a non-empty intersection. The final ranking is a little differ-
ent, since it has to merge two unrelated ranking measures, importance
and geographic proximity.

5.2 Geographic Ranking
We now describe in detail how we rank pages based on both terms

and geographic footprints. The user of a geographic search engine
wants top results to satisfy two criteria: they need to be relevant as
well as close to the query footprint. One approach would be tosimply
use the query footprint as a filter, removing all results “outside” the
query area, and then use the standard ranking. At the other end of
the spectrum, we could use the search terms as a filter, and rank all
documents in the intersection of the inverted list by their distance to
the center of the query area.

We decided on a general framework that includes these two cases as
well as the continuum in between, allowing users to select their own
preferences. First, they can choose different shapes for the query foot-
print as shown at the top of Figure 1. If a user prefers a sharp cutoff at
a distance of say10 km, she selects the footprint on the left, while the
query footprint on the right models a more gradual approach.During
the ranking phase, we compute ageographic scorefor each page in
the intersection of the inverted lists of the query terms, based, e.g.,
on the volume of the intersection or the vector product between query
and document footprint; see the bottom of Figure 1. If the score is
zero, the document is discarded. Second, she can choose the rela-
tive weight of term-based and geographic components in the ranking.
Thus, the total score of a document under the ranking function will
be a weighted sum of its term-based score, its geographic score, and
maybe an additional measure such as Pagerank. Both query footprint
shape and relative weighting of the scores can be provided bythe user
through simple sliders, allowing interactive reordering of results.



Figure 1: An illustration of footprints in a single spatial dimension. At the
top, we have a query footprint with a distance threshold (left), and a footprint
for a query that gives a lower score for documents that are farther away (right).
At the bottom, we show an intersection between a query footprint and a docu-
ment footprint.

5.3 Efficient Geographic Query Processing
Given this ranking approach, we now describe query processing

in more detail. Figure 2 shows the example of a query with three
search terms. After the query is issued, the inverted lists for the three
terms are loaded into memory (shown here only as document IDs),
and their intersection is computed. For any document in the intersec-
tion, there are two lookups. First, we maintain an in-memorytable of
conservatively approximated document footprints, obtained by lossy-
compressing the footprint structures down to a size of at most 100 to200 bytes each. We lookup in this table to check if the intersection
between the query footprint and the document footprint is nonempty;
if so, we compute an approximation of the geographic score ofthe
document. Next, we perform a lookup into an in-memory table of
Pagerank values to compute a final approximate document score.

Figure 2: Organization of index structures, lookup tables, and geographic
footprints in a scalable geographic engine.

After traversing the inverted lists and determining, say, the top-50 results, we can perform a more precise computation of their geo-
graphic scores by fetching footprints from disk. There are anumber
of other performance optimizations in search engines, suchas index
compression, caching, and pruning techniques [18], that are omitted
here. By integrating these, we achieve query throughput comparable
to that of a conventional non-geographic engine.

When compressed to100 or 200 bytes, several million page foot-
prints can be kept in memory by each node of the search engine clus-
ter, a realistic number for large engines. In our prototype,we use
a cluster of7 Intel-based machines with reasonably large disks and
main memories for our31 million pages to sustain rates of a few
queries per second.

6. CONCLUSION
This paper outlined design and implementation of a crawl-based

geographic search engine for the German web domain. We described
in detail how to extract geographic footprints from crawledpages
through ageo codingprocess consisting ofgeo extraction, geo match-
ing, andgeo propagation, and discussed ranking and query process-
ing in geographic search engines. Our prototype should be available
online soon. One open issue for the near future is an appropriate eval-
uation of the quality of our footprints and query results.

Beyond this, there are many exciting open problems for future re-
search in this area. On the most general level, many aspects of Web
search and information retrieval, such as ranking functions, catego-
rization, link analysis, crawling strategies, query processing, and in-
terfaces, need to be reevaluated and adapted for the purposeof ge-
ographic search. We are particularly interested in the following di-
rections. First, we are working on automatically identifying and ex-
ploiting terms such as “Oktoberfest” that are not listed in geographic
databases but clearly indicate a particular location, through the use of
data mining techniques. Second, we are looking at optimizedquery
processing algorithms for geographic search engines. Third, we are
studying focused crawling strategies [5] that can efficiently fetch pages
relevant to geographic areas that run across many top-leveldomains.
Finally, we are interested ingeographic miningof the web.
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