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ABSTRACT
Feature engineering is a fundamental but poorly documented
component in Learning-to-Rank (LTR) search engines. Such fea-
tures are commonly used to construct learning models for web
and product search engines, recommender systems, and question-
answering tasks. In each of these domains, there is a growing
interest in the creation of open-access test collections that promote
reproducible research. However, there are still few open-source
software packages capable of extracting high-quality machine
learning features from large text collections. Instead, most feature-
based LTR research relies on “canned” test collections, which often
do not expose critical details about the underlying collection or
implementation details of the extracted features. Both of these
are crucial to collection creation and deployment of a search
engine into production. So in this regard, the experiments are
rarely reproducible with new features or collections, or helpful
for companies wishing to deploy LTR systems.

In this paper, we introduce Fxt, an open-source framework to
perform efficient and scalable feature extraction. Fxt can easily be
integrated into complex, high-performance software applications to
help solve a wide variety of text-based machine learning problems.
To demonstrate the software’s utility, we build and document a
reproducible feature extraction pipeline and show how to recreate
several common LTR experiments using the ClueWeb09B collection.
Researchers and practitioners can benefit from Fxt to extend their
machine learning pipelines for various text-based retrieval tasks,
and learn how some static document features and query-specific
features are implemented.
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1 INTRODUCTION
Features derived from text have been a core component of research
in machine learning for many years, and are widely applied in
natural language processing, information retrieval, data mining,
and text analytics. Classic text-based features derived from cosine
similarity and TF-IDF based measures, which capture term cluster-
ing effects in a document or passage w.r.t. how common a term is
in the entire collection, have been used pervasively in the IR and
NLP research communities.

In recent years, a number of benchmark collections have been
made available in domains such as Learning-to-Rank (LTR) [9,
28, 33], recommender systems [31], question answering [3, 14],
passage re-ranking [3], and conversational search [19, 34, 39]. These
collections provide pre-computed features or pre-selected candidate
documents, and greatly simplify the research community’s ability
to focus on creating new machine learning algorithms without
having to worry about feature engineering problems, or managing
and processing massive text collections. However, these “canned”
collections can also limit our ability to reproduce the experiments
with new features or test data as several of the most widely used
collections used in IR do not clearly define the queries, features,
or the collections used to create them. This can greatly limit our
ability to build end-to-end prototype systems, to perform ablation
studies for interpretable machine learning [38], or even to create
new test collections that aim to capture a similar environment.

The focus of this work is to present a new open source feature
extraction toolkit—Fxt. We release this toolkit free and open for
use by the research community.1 One key aim of Fxt is to fill
the gap within the research and open-source communities and
help improve scalable, text-based machine learning system design.
Fxt consists of several carefully engineered components. A fast,
scalable indexing engine for the efficient storage and retrieval of text
documents, passages, or text snippets; an efficient feature extraction
API; and a configurable collection of 448 features engineered for
a variety of text-based machine learning tasks, which can easily
be extended to include custom features for other target domains.
Fxt includes clean-room algorithmic implementations of several
hundred features that have been shown to be valuable in LTR
applications over the last twenty years. Fxt simplifies test collection
construction, replicable research, and the study of end-to-end, large-
scale inference pipelines. All of the algorithms can be readily used
in production-quality search systems that are scalable and efficient.

1github.com/ten-blue-links/fxt
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2 RELATED SOFTWARE
Many state-of-the-art algorithms rely on “classic” feature extraction
techniques [16]. A wide variety of tree-based and neural machine
learning models can benefit from classic feature extraction tech-
niques to help with training data curation, weak supervision [13],
or candidate generation [10] in tasks such as multi-hop question
answering [42] or product search at Amazon and eBay. Yet no
community-based open source repository of text-based feature
extraction tools is currently available.

Most commercial search engines adopt a two-stage ranking
architecture. In the first stage, a small subset of potentially good
documents are selected by a simple yet fast ranking heuristic.
In the second stage, the selected documents are re-ranked via
a more sophisticated, machine-learned ranking model [25]. The
sophisticated ranking models rely on a large number of features
extracted from various sources. The number of features used by
the learning models deployed in commercial search systems are
known to be in the order of several hundreds. The most important
features are usually the relevance features extracted from the query-
document pair. Also, some query-independent features can be
extracted from the document content (e.g., various features obtained
by NLP techniques). These can be coupled with static document
popularity or spam features that can be obtained from the hyperlink
structure of the Web or various document classifiers as well as
public datasets (e.g., Alexa’s top sites dataset). Finally, if available,
features extracted from user clicks on search results also play an
important role in the quality of trained learning models.

Despite the common use of LTR systems in commercial search or
recommendation settings, only a few systems are publicly available.
Belowwe provide a brief overview of open-source systems available
in the context of information retrieval. We note that all these
systems are implemented in Java, while Fxt is implemented in
C++, which may offer efficiency advantages.

ElasticSearch2 is a popular open-source search platform which
comes with an LTR plugin that can use learning models generated
by XGBoost and Ranklib libraries. The plugin also provides an
extendable framework for extraction of features from queries and
documents. However, the plugin does not provide any implemen-
tation for specific features. That is, additional feature engineering
and extraction is required to generate individual features used by
the ranking model within the plugin.

Solr3 is another commonly used open-source search platform
that supports LTR in its default distribution. Additive decision tree
ensembles and neural networks are among the supported learning
models. It also provides a framework for feature extraction and
storage. However, similar to ElasticSearch, no implementation
is provided for individual features, i.e., the burden of feature
engineering and extraction remains on the developer.

Anserini4 [41] is an open-source information retrieval system
whose development was motivated by reproducibility studies in
IR [23]. This toolkit provides various re-ranking strategies as well
as code to extract a number of features from queries and documents.

2elastic.co
3lucene.apache.org/solr
4github.com/castorini/anserini

The extracted features include certain length/size features, query-
document similarity features, various query term statistics, and
term proximity features. Compared to Anserini, our toolkit provides
the implementations of a much larger set of features.

Terrier5 [30] is another open-source information retrieval plat-
form for rapid development and evaluation of large-scale retrieval
applications. It features an extendable plugin architecture, where
new ranking features can be easily added. An arbitrary number
of static document features can be imported from an external
text file. Also, a large number of relevance weighting models are
implemented as part of this software. The feature extractors in
Terrier are tightly coupled with the query processing pipeline, while
our toolkit can be run in standalone mode.

3 FEATURE EXTRACTION TOOLKIT
Many current benchmark datasets used for state-of-the-art research
omit certain details such as the candidate generation method, the
query terms used, a detailed description of the features used, or the
hyperparameters applied to each of the respective algorithms. These
decisions are sometimes necessary—valid reasons may include the
protection of user privacy, or company trade secrets. However from
an academic viewpoint, such decisions can widen the gap between
theory and practice, and hinder research progress.

3.1 Overview
The primary objective of Fxt is to provide a repository of high-
quality text feature implementations which are scalable and easily
integrated into many different search architectures. It is a plug-in
component that can be used in a more complex retrieval pipeline,
but it is also self-contained enough to be used independently to
create new “canned” test collections by researchers who wish to
focus on one aspect of an LTR system. The key benefit for research
end-to-end prototyping is to not have to “reinvent the wheel” of
feature engineering—an arduous task that prompted development
of Fxt in the first place [11]. On the other hand, building “canned”
collections with known features can be used for the advancement of
LTR algorithms. Fxt is freely available for anyone to use, and is self
contained enough to be framework agnostic. The toolkit focuses
on two core components—indexing and feature extraction. Figure 1
shows how these two components are used by Fxt.
Implementation. The toolkit is written in C++, in order to
maximize efficient and scalable feature extraction from large text
corpora. The idea is that Fxt resides as a component within a larger
multi-stage system that adheres to theDirect Index paradigm [1]. The
approach relies on a forward index used to compute certain query-
dependent features in a document-centric manner. To mitigate
space issues, a highly compressible document vector format is used
to encode intermediate document data.

Fxt is fully configurable and supports custom feature selection so
that only features needed by an application are extracted from the
collection. This functionality enablesmultiple, increasingly complex
re-ranking stages to be deployed with multiple configurations, and
minimizes computational cost (only features wanted are computed).
That is, different features can be easily extracted and used in
different stages of an LTR pipeline.
5terrier.org
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Figure 1: Query Lifecycle: A target query is submitted to a search
engine (Indri). The search engine’s index returns a candidate
document set which is sent to Fxt, and based on the configuration,
Fxt returns a feature vector. The feature vector can be processed
by an LTR ranker such as LightGBM. A similar process can be used
to train an LTR ranker by instead submitting a batch set of labeled
training queries.

.

3.2 Indexing
The role of the indexing subsystem is to separate the feature repos-
itory requirements from the query processing pipeline, providing
greater flexibility to search engine developers in accessing features
with minimal changes in system architecture. Fxt currently uses
an existing Indri6 index to construct the feature repository. Our
current experiments use Indri for the initial parsing and indexing,
which allows us to focus on more of the domain specific problems
for the feature extraction toolkit. However, any search engine can
be used to generate the initial index, and we are currently working
to support the common index file format (CIFF) [24], which will
allow Fxt to be integrated into any search engine supporting the
CIFF format.

The indexer reads from an Indri index and generates an index
that is optimized for on-the-fly feature extraction and in-memory
query processing operations. The Fxt index contains common data
structures (lexicon, postings), along with structures to support more
complex feature extraction operations efficiently—document vector
forward index, static document features and document field infor-
mation. Compression is used for the postings and document vector
data structures. Posting lists are encoded with SIMD-FastPFOR [21].
Document vectors are encoded with StreamVByte [22]. We use the
FastPFor7 library for both implementations.

3.3 Feature Extraction
The primary goal of the framework is provide efficient and effective
feature extraction from queries, documents, and query-document
pairs. Feature extraction is handled by the extractor program.
Figure 1 shows a typical use case. The extractor takes as input,

6lemurproject.org/indri
7github.com/lemire/FastPFor

Table 1: Summary of features available in Fxt.

Description No. Features

Term Score Aggregation (Unigram) 159
Term Score Aggregation (Bigram) 147
Query Document Score (Unigram) 106
Query Document Score (Bigram) 4
Static Document Quality 19
Query (Document Independent) 13

Total 448

a set of queries, their corresponding documents as a TREC run
file, a path to the index, and an optional feature configuration file
to construct a training set. Once the pipeline has been initiated,
a similar process is used to execute a single query. The query
processing stage extracts features for each query-document pair in
the intermediate candidate set. A configuration file or command
line invocation can be used to define the features that should be
included in a feature vector. The resulting intermediate feature
vector output is then returned in CSV format. This output format
is the preferred intermediate format in many publicly available
machine learning frameworks, and can be converted directly into
another format, such as SVMLight or NPZ formats. We are also
investigating how to support a CIFF extension that can easily be
integrated into any search engine architecture.

3.4 Features
There are already a large number of query, document and query-
document features provided by Fxt. A total of 448 are available,
while more features will be added over time. Table 1 summarizes
the taxonomy of feature types that are currently implemented.8

We now broadly outline some features from these classes and
their origins within the literature. Table 2 is used for this purpose.
A large portion of the static document features are from a study
conducted by Bendersky et al. [4]. Other static document features
originate from the seminal work of Liu [25]—for example counts of
inlinks/outlinks and other elements within a document. The term
score aggregation features are mainly derived from the work of
Culpepper et al. [12]. These are closely related to other query-
performance predictors surveyed by Carmel and Yom-Tov [5].
Currently, a small number of these query-only features are available
for use.

In terms of scoring features, i.e., those that perform term
matching between the query and document—many were derived
from the documentation of LTR collections such as Yahoo! [9]
and LETOR [33]. The query-document scoring features include
popular methods such as BM25, QL, and DFR. If field information
is available, feature extraction can be performed on segments such
as the document title and inlink. A small number of proximity-
based scoring functions that target bigram matching between the
query and document are implemented, the most notable of which

8See the full list of 448 features that are currently in the toolkit at github.com/ten-
blue-links/fxt
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Table 2: Summary of prior work describing LTR features implemented in Fxt.

Name Feature Type Reference Description

Stop Cover/Ratio Static Document Bendersky et al. [4] Percentage of stop words in a candidate
document.

Link Count Static Document Liu [25] Number of inlinks/outlinks pointing
to/from a candidate document.

Query Difficulty Query Specific Culpepper et al. [12] Commonly used pre-retrieval query
performance prediction features such
as the average maximum score of the
query terms.

Count-based Query-Document Qin and Liu [33] Query-document count statistics of
sum,min,mean,max,var over whole
document and document fields.

Score-based Query-Document Liu [25] Unigram retrieval models over whole
document and document fields.

Table 3: Summary of test and training sets within the dataset.

Test Queries Training/Validation Queries

WT09 MQ09
WT10 Web Tracks 2009, 2011, 2012
WT11 Web Tracks 2009, 2010, 2012
WT12 Web Tracks 2009, 2010, 2011

is SDM [32]. Much of the inspiration for implementing the query-
document features comes from open and accessible descriptions
of features found in the LTR literature [25, 29, 30, 33]. With the
growing collection of available features across the different feature
classes there is potential for this toolkit to be applied in many areas
beyond IR-based LTR.

4 LEARNING-TO-RANK DATASET
In this section, we show how to use Fxt to create a LTR dataset
using the ClueWeb09B collection. Relevant scripts and instructions
to reproduce the data files can be found at github.com/ten-blue-
links/cikm20.

4.1 Dataset Construction
There are four datasets available—one for each of the Web Tracks
held through 2009–2012. Table 3 shows the query set combinations
used in our experiments. We now describe each of these in detail.
Collection andQueries. In our experiments, we use the ClueWeb09B
collection, which contains 50,220,423 documents. This collection
is the result of a large web crawl performed in 2009. We make use
of query sets from the 2009 Million Query Track (MQ09), and the
2009–2012 Web Tracks (WT09–WT12).
Judgments and Evaluation. Human judgments from the MQ09
and WT09 have several important differences from the Web Tracks
which ran between 2010 and 2012. In 2009, relevance labels were
created using a shallow, sampling-based document pool, which was
devised in order to get judgments for as many queries as possible
(the Million Query Track). As it was the first year that NIST had

used the new ClueWeb collection, along with the return of the Web
Track, it was decided that the WT09 would be a subset of MQ09
in order to avoid duplicated judgment efforts [7] (i.e. 20001–20050,
and 1–50 are equivalent).

Another important issue to consider when aggregating data
across the Web Tracks of ClueWeb09B is that the relevance grades
used during human adjudication differ from year to year, with the
exception of WT10 and WT11, which have the same relevance
grading scheme. We discuss the implications of these differences in
more detail in Section 5.1 when we show how to perform the final
effectiveness comparisons.
Web Track 2009. As alluded to earlier, the way in which the
training queries are constructed for WT09 is handled differently
to the Web Tracks of 2010–2012. The key difference is that the
MQ09 query set is used for training, as the same human assessment
process was used for both MQ09 and WT09 [7].

There are 687 judged queries from MQ09, but the first 50 queries
(and judgments) are also used in WT09. Therefore, we omit these
topics from the training stage. This leaves 637 queries in the training
set. These are then randomly shuffled and split into training and
validation sets of 572 and 64 queries respectively (i.e. a 90/10 split).9
The primary reason to use MQ09 for training in this case, was that
the relevance grades are consistent with WT09, while this is not
true for the remaining Web Tracks which we discuss next.
Web Tracks 2010–2012. Table 3 summarizes the query sets used
which are from the four Web Tracks of 2009–2012. The WT09
queries were included here as the number of judgments and the
pooling depth are similar to the query sets from 2010–2012 albeit
through a PREL process. An amendment was made to the training
queries by removing topic 70 “to be or not to be that is the
question” because the query is computationally expensive. The
training queries for each year were randomly shuffled into sets of
120 and 30 for training and validation respectively.
Index Configuration. An index was constructed using Indri with
Krovetz stemming and with no stopping applied. Then an Fxt index
was built using the Indri index as input. A common practice on the

9There is one less query in the training data since the topic 20705 “choreathetosi”
returned no results.
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ClueWeb09B collection is the removal of SPAM documents [18].
This was not performed initially as it may be applied as a processing
step during retrieval.
Document Sampling. To sample documents for the re-ranking
task, we ran Indri with a BM25 retrieval across all queries using
parameters k1 = 0.9 and b = 0.4. The retrieval depth was set
to 2,000, which was previously suggested by Macdonald et al.
[29] during a similar LTR exercise. For each of the test sets (50
topics), we use this as our initial sample, the aim being to reflect
a candidate generation phase that would likely be seen in a
production environment. The training samples were retrieved in a
similar manner, but also included all of the judged documents in the
QRELs. This ensures that all viable query-document pairs are used
by the training sets and generally improves the final effectiveness
of the learned models.

4.2 Features
We now provide an overview of the 134 features that are included in
the dataset. A subset of features was chosen as some of the features
offered by Fxt may not be useful for the ClueWeb web collections.
For example the term score aggregation and query features from
Table 1 were not used because they are less useful in a post-retrieval
context [35]. The exact details of the features and their parameters
can be found in the publicly available repository already discussed.
In the following, we discuss the features categorized as they appear
in Table 1.
Query-Document Unigram. These features consist of common
scoring functions including BM25, Query Likelihood, TF-IDF, BB2,
DPH and DFR—the last three are from the Divergence From
Randomness family of models [20]. Each of the scoring functions
were computed for the following document fields: whole document,
body, title, heading, anchor and inlink.

Various frequency statistics were computed for the query
document pairs as well. These features were originally described in
the MSLR LETOR datasets [33]. They include of the sum, min, max,
mean, and variance arithmetic functions, and are also computed
over document fields.
Query-Document Bigram. Proximity based methods are a useful
feature for ranking functions that compute the distance between
a set of terms within a document. However, they can be computa-
tionally expensive, and Robertson and Zaragoza [36] suggest this
can be somewhat alleviated by restricting methods to use bigrams
only. The methods we provide as bigram features for this are SDM
[32], and BM25-TP [26].
Static Document Quality. There are many ways to characterize
document quality. It can be something as simple as the length of a
given document field. In this dataset, we compute simple statistics
like this over the title, URL and whole document fields.

Other features of interest and available as part of the dataset
come from other prior work. One of these is the fraction of text
within a document field relative to the rest of the document. The
fields for this feature include the anchor and table fields, and an
aggregate version that combines multiple fields. Turning to stop
words, features that use this information are the stop ratio, and
stop cover. The stop ratio is the ratio of stop words to non-stop
words, while stop cover can be described as the fraction of stop

words relative to the document. The interested reader may find
more details from the prior work in this area [4, 33].

Simple link statistics are available and include the number of
inlinks and outlinks within the document. Accompanying these are
domain level features that are often used as a source for evaluating
a document’s quality. These features are the AlexaRank score
and whether or not the document originated from Wikipedia.
The Wayback Machine was used to attain AlexaRank data that
is temporally close to the time of the ClueWeb09B crawl.10

5 EXPERIMENTS
The theme of this section is to empirically analyze the LTR dataset
described in Section 4. The relevant details regarding the collection,
queries and index configurations were discussed in Section 4.1. The
code and data to reproduce the experiments can be found in the
GitHub repository.11

5.1 Evaluation
We compare the effectiveness using three common evaluation
metrics—RBP with persistence p = 0.8, NDCG at cut-offs {5, 20},
and AP. The effectiveness scores were computed using rbp_eval,12
gdeval.pl,13 and trec_eval,14 each of which represents the
original implementation for the respective measure. Early precision
metrics were favored due to the nature of the collection and
judgment pooling depth. They are also more common when using
LTR algorithms, where typically only a few of the highest ranking
documents are required for most users. We also report AP since one
of the baselines is the initial candidate set, which tends to be much
deeper than the final top-k document set returned to a user.

Note that each year of the Web Track (50 topics each year) were
evaluated separately. Results are reported in this way since the rele-
vance grades over the four years the track ran on ClueWeb09B were
not consistent. For clarity, the relevance grades were {0, 1, 2} in
2009; 2010 and 2011 used the same relevance grades {−2, 0, 1, 2, 3};
and in 2012 relevance levels changed again having {−2, 0, 1, 2, 3, 4}.

Recall from the previous discussion that judgments in WT09 did
not use the traditional TREC pooling and assessment methodology.
The judgment process for topics 1–50 of the WT09 were shared
with the MQ09 track. The Million Query Track used two document
selection algorithms designed to aid the judgment process over
large sets of queries. Due to the statistical estimation strategies
of the document selection algorithms MTC [6] and statAP [2], the
judgments resulting from this process are known as PRELs. That
is, the judgment file includes for each entry, the probability of
inclusion. This probability value was set to 1 when a judgment
was deterministic, by an assessor, before any sampling was applied
to select additional documents for assessment [2]. Evaluation
comparisons using WT09 should be interpreted cautiously given
the differences in judgments. For a more detailed discussion on
evaluation and pooling depth pitfalls when using the 2009 ClueWeb
collection, see Lu et al. [27].

10archive.org/web
11github.com/ten-blue-links/cikm20
12people.eng.unimelb.edu.au/ammoffat/rbp_eval-0.2.tar.gz
13github.com/trec-web/trec-web-2013
14trec.nist.gov/trec_eval/trec_eval-9.0.7.tar.gz
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Before evaluating the results reported for WT09, all judgments
that do not have an inclusion probability of 1 were removed from
the Category B PREL file.15 This ensures that we are correctly
evaluating systems on the judgments made that were part of
the original pooling depth of 12 for WT09, before any sampled
documents were judged and included in the final set. The resulting
QREL file can be found along with the released dataset.

5.2 Experimental Setup
LambdaMART. We use the LambdaMART implementation found
in the LightGBM framework.16 Model hyperparameters were
optimized using grid search to select the best combination of
learning rate η = {0.05, 0.06, . . . , 0.1}, number of leaves {16, 32, 64},
feature sub-sampling rate {0.5, 0.6, . . . , 1.0}, and the minimum data
per leaf {13, 20, 100}. Given the relatively small size of the query
sets, we applied early stopping after 40 iterations. Table 4 lists
system parameters selected for each Web Track task.
BM25. The BM25 ranking function is used as a bag-of-words base-
line, and it is often deployed for candidate generation within large-
scale search systems. The parameters k1 and b were chosen via grid
search over the training queries with k1 = {0.5, 0.6, . . . , 2.0}, and
b = {0.1, 0.2, . . . , 1.0}.
SDM. This retrieval model was used as a baseline as it is known to
be more effective than a simple bag-of-words ranking. Additionally,
variants of SDM are often included as a feature within re-ranking
datasets, and so the expectation is that LTR models including
this as a feature should consistently outperform SDM alone. The
parameters for SDM were also selected using grid search, but
were performed in two stages. First, the feature weights for
independent termswt , ordered termswo , and unordered termswu
were enumerated from the following set of tuples {(w ′

t ,w
′
o,w

′
u ) ∈

S × S × S | w ′
t + w ′

o + w ′
u = 1.0}, where the step set S =

{0.1, 0.2, . . . , 1.0}. The feature weights selected from this search
were then used to tune smoothing parameters for both terms and
phrases (µt and µp ). The Cartesian product of the set {500, 1000,
1500, 2000, 2500, 3000, 3500, 4000} combined with itself was used as
the search space.
TRECBest. To provide some intuition about where an upper bound
on effectiveness for each test collection might be, we select the
best performing TREC submission from each of the Web Tracks
reported. “Best” systems were selected based on NDCG@20 scores
of the original track submissions.

5.3 Results Discussion
Effectiveness results are shown in Table 5. Overall, there is a similar
trend across the four sets of queries. The systems BM25 and SDM
are less effective than LambdaMART, and in turn, the (pooled) TREC
systems are the most effective. These results are somewhat expected
as the baseline systems are also features available to the LTR model.
LambdaMART has an advantage, it is a supervised learning algorithm,
while the baselines are of course unsupervised.

When compared against the best TREC submissions, we see that
LambdaMART can attain a higher AP score in three of the four query
sets. However, only two of the years show statistical significance.
15trec.nist.gov/data/web/09/prels.catB.1-50.gz
16lightgbm.readthedocs.io

There is another interesting observation for WT10. The NDCG@5
score for LambdaMART is the top performing result. However, for
the other metrics the system irra10b is clearly superior for RBP and
NDCG@20, while AP shows no noticeable difference. As our goal is
simply to provide a toolkit to enable such comparisons, we leave
deeper comparisons of strengths and weaknesses of common LTR
algorithms as future work.

Another aspect of interest is the absence of statistical significance
on the results shown for WT11. It is not clear why this is the case,
but less variance between the average scores was observed when
doing a query by query qualitative comparison. This may suggest
that this set of topics are more difficult, or there is insufficient
signals being learned from the training set for these queries. This
also warrants further investigation.

5.4 Feature Analysis
We now turn our investigation to the features used by the Lamb-
daMART models. Figure 2 shows four graphs, one for each year of
the Web Tracks discussed. Shown within each graph are the 10
most important features from LambdaMART. Feature importance
is calculated as the number of times a feature is used within the
model. This provides some intuition as to how useful a feature may
be and could also be a useful aid when explaining model behavior.

There are some commonalities between the features used
across all of the graphs shown. We can see that the feature
lm_dir_2500_title, which is the Query Likelihood model over
the title field, is one of the most informative features in all cases.
Furthermore, other Query Likelihood features appear multiple
times throughout these results. These are interesting outcomes, and
warrant further investigation to determine if this trend applies more
generally across different query sets and collections, or whether it
is localized to ClueWeb09B.

When focusing only on static document features, we see that
stop cover consistently performs well in all of the collections tested.
This may be related to the fact that the ClueWeb collection is now
known to contain a large number of spam documents, and this
feature is a strong signal for models to prune out low quality
documents. The AlexaRank feature also performs well in three
of the collections (2010–2012) and shows that for this particular
dataset, traffic analysis is also a simple but useful feature to LTR
models on web collections.

6 CONCLUSION
In this paper, we have presented Fxt, a standalone text indexing
and feature extraction component useful for end-to-end systems
prototyping, dataset construction, and feature extraction. We also
presented a detailed walk-through on how the toolkit can be used
to create a custom LTR dataset using the ClueWeb09B collection.

There are a number of interesting opportunities for academic
and industry-based researchers to use Fxt in their future work. The
toolset has slowly evolved over the last three years as our research
efforts became more heavily invested in applying machine learning
in IR, and will continue to improve as these techniques are now
consistently being applied successfully to solve a wide variety of
problems in the IR community.

 https://trec.nist.gov/data/web/09/prels.catB.1-50.gz 
https://lightgbm.readthedocs.io


Table 4: Summary of baselines and learning-to-rank parameters for each of the Web Tracks 2009–2012.

Track System Parameters

WT09
BM25 k1 = 2.0, b = 0.4.
SDM Smoothing µt = 4000, µp = 2000. Feature weightswt = 0.3,wo = 0.1,wu = 0.6.
LambdaMART 99 trees, 64 leaves, η = 0.07, feature sub-sample 1.0 and min sample per leaf 20.

WT10
BM25 k1 = 1.6, b = 0.2.
SDM Smoothing µt = 4000, µp = 2000. Feature weightswt = 0.3,wo = 0.1,wu = 0.6.
LambdaMART 101 trees, 16 leaves, η = 0.1, column sample 1.0 and min sample per leaf 13.

WT11
BM25 k1 = 1.2, b = 0.1.
SDM Smoothing µt = 4000, µp = 2000. Feature weightswt = 0.6,wo = 0.1,wu = 0.3.
LambdaMART 89 trees, 16 leaves, η = 0.08, column sample 1.0 and min sample per leaf 100.

WT12
BM25 k1 = 1.8, b = 0.4.
SDM Smoothing µt = 4000, µp = 2000. Feature weightswt = 0.6,wo = 0.2,wu = 0.2.
LambdaMART 31 trees, 64 leaves, η = 0.1, column sample 1.0 and min sample per leaf 100.
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Figure 2: Feature importance of the four LambdaMART models through 2009–2012. The top 10 most important features were selected from
each model, and therefore the set of features shown may differ between them.

Planned future improvements to Fxt include the addition of a
benchmark tool to measure the computational cost of feature extrac-
tion so that research exploring efficiency and effectiveness trade-
offs, such as in cascade ranking [17, 40], can be more accessible to
new researchers in the community. Another interesting line of work
involves adding passage level feature extraction, as they are useful
for passage-based retrieval and in document retrieval [8, 15, 37].

Ablation studies over many more test collections could provide
additional insights into interactions between queries and document
collections and ranking model choices. Fxt will ideally extend and
improve everyone’s ability to more confidently undertake much
deeper and extensive comparative studies of different LTR models
within a controlled environment.



Table 5: Effectiveness scores for Web Tracks 2009–2012. A †

indicates statistical significance with Bonferroni correction at
p < 0.05 compared to BM25.

System RBP 0.9 NDCG@5 NDCG@20 AP

ClueWeb 2009 Topics 1-50

BM25 0.204 +0.307 0.193 0.202 0.162
SDM 0.229 +0.264 0.222 0.228 0.189
LambdaMART 0.286 +0.344† 0.298† 0.296† 0.219†

uogTrdphCEwP 0.298 +0.355† 0.336† 0.302† 0.200

ClueWeb 2010 Topics 51-100

BM25 0.098 +0.186 0.100 0.120 0.102
SDM 0.091 +0.118 0.098 0.115 0.095
LambdaMART 0.187 +0.295† 0.224† 0.245† 0.131†

irra10b 0.199 +0.043† 0.193† 0.260† 0.133

ClueWeb 2011 Topics 101-150

BM25 0.122 +0.170 0.182 0.176 0.097
SDM 0.126 +0.072 0.180 0.189 0.117
LambdaMART 0.132 +0.139 0.235 0.199 0.117
srchvrs11b 0.154 +0.031 0.271 0.233 0.110

ClueWeb 2012 Topics 151-200

BM25 0.102 +0.217 0.087 0.102 0.104
SDM 0.104 +0.161 0.087 0.101 0.113
LambdaMART 0.193 +0.185† 0.193† 0.189† 0.164†

DFalah121A 0.220 +0.069† 0.198† 0.213† 0.120
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