
Forward Index Compression for Instance Retrieval
in an Augmented Reality Application

Qi Wang∗
IBM

NY, USA
qiwang@ibm.com

Michal Siedlaczek∗
New York University

NY, USA
michal.siedlaczek@nyu.edu

Yen-Yu Chen†

CA, USA
yyc211@gmail.com

Michael Gormish†
Clarifai

CA, USA
gormish@ieee.org

Torsten Suel
New York University

NY, USA
torsten.suel@nyu.edu

Abstract—Instance retrieval systems are widely used in ap-
plications such as robot navigation, medical diagnosis, and
augmented reality. Blippar is a company that creates compelling
augmented reality experiences or provides you with the tools to
build your own. In this paper we focus on one of the company’s
augmented-reality applications, with which users are able to point
their phone cameras at different objects in order to receive infor-
mation about the objects in real time. In this paper, we provide
what we believe to be the first study of forward index compression
techniques for such instance retrieval systems. First, we perform
an analysis of real-world data from a large-scale commercial
instance retrieval system, run by Blippar focusing on augmented
reality. Then we propose an entropy-based lossless compression
strategy. Experiments show that our proposed Huffman-based
approach outperforms a variety of other compression techniques,
while also increasing overall system efficiency slightly.

Index Terms—Instance Retrieval, Index Compression, Re-
trieval Efficiency, Augmented Reality

I. INTRODUCTION

Content-based instance retrieval has shown significant po-
tential in both industry applications and research. It plays
an important role in commercial image search engines, aug-
mented reality, medical image databases, etc. There are two
main approaches to content-based instance retrieval: SIFT-
based and CNN-based methods [1]. The Scale Invariant Fea-
ture Transform (SIFT) [2] is used to describe important patches
around key points of images, and known to be effective for
identifying similar instances between the images. SIFT-based
methods usually utilize a bag-of-words (BoW) model. The
idea is to quantize local descriptors into much shorter “visual
words”, and thus represent each image as a vector of words,
the same way a document is represented in text retrieval. A
convolutional neural network (CNN) is a hierarchical structure
that has been shown to outperform hand-crafted features such
as SIFT in various vision tasks. Since the work of Krizhevsky
et al. [3] in 2012, CNN-based methods have gained more
attention. Most CNN-based and SIFT-based instance retrieval
systems use a multi-phase cascading ranking architecture [4]–
[6], as in text retrieval [7], [8], where the first phase obtains

∗This author was in an internship at Blippar when the work was performed.
†This author was with Blippar when the work was performed.

a large candidate pool at a lower cost, while the succeeding
phases refine the instances with additional features.

In search engine architectures, a forward index stores a list
of words for each document. In our application, we refer to
the forward index as a data structure that stores mapping
from images to their correponding features. In practice, a
forward index of instance features is often stored in the main
memory rather than on the disk to speed up the ranking. In
our application, the size of the forward index becomes a huge
issue as the number of indexed images increases. This project
focuses on how to reduce the memory usage of the forward
index while maintaining the same level of query throughput.

CNN-based approaches have much more advantage for
specific object retrieval (e.g., buildings, pedestrians) when suf-
ficient training data is provided, while SIFT-based approaches
with a large visual-word vocabulary is still very competitive
in generic object retrieval and highly efficient (see Figure 6
and Table 6 in [1]). In our application, users keep moving
and pointing their phone cameras at different objects in order
to receive information about those objects in real time, and
create 3D models and other augmented reality actions that
are triggered when these objects are recognized. This requires
a system that, given a set of generic objects from a camera
image, retrieves their best top-1 matches with extremely low
latency. Our application prioritizes efficiency, even at the cost
of a slight loss in accuracy. SIFT-based approaches with a
large visual-word vocabulary are suitable in this case. While
our case mainly focuses on user-interface interaction for top-1
generic object recognition, Blippar also heavily utilizes more
complex CNN-models when the user decides to click on the
top-1 match on the screen and obtain more information of
certain recognized objects for specific categories (e.g., brands,
shoes, watches, cars, etc) to enhance retrieval accuracy, which
is often at a higher cost of efficiency.

In particular, our contributions are as follows:
1. We perform a thorough data analysis of forward index

data from a commercial instance retrieval system, run by Blip-
par focusing on augmented reality. Insights from the analysis
then guide us in our exploration of potential compression
strategies.

2. We propose a compression strategy where we first reorder
the data to transform it into a more compressible format, and
then apply integer-coding techniques on the reordered data.978-1-7281-0858-2/19/$31.00 ©2019 IEEE

We consider a number of different reorderings and choices
of integer compression methods, including state-of-the-art
entropy coders based on Huffman coding and on Asymmetric
Numeral Systems (ANS) [9], [10].

3. We provide an end-to-end evaluation of our proposed
compression strategy on real-world data sets, and show that
with the best choice of reordering and integer coding methods,
our approach achieves good compression while also slightly
improving retrieval efficiency.

The remainder of the paper is organized as follows: Sec-
tion 2 presents some background and discusses related work.
In Section 3 we present our data analysis on the given data
set. Section 4 outlines the experimental setup. Next, Section 5
discusses the overall approach, and presents the experimental
evaluation of the proposed framework. Finally, Section 6
provides some concluding remarks.

II. BACKGROUND

In this section, we provide some background on instance
retrieval, inverted indexes, forward indexes, reordering tech-
niques, compression techniques, and other related work.

A. Instance Retrieval

Content-based instance retrieval are mainly divided into
SIFT-based and CNN-based instance retrieval methods. SIFT-
based methods train a codebook of visual words offline. Based
on the size of the codebook used during encoding, they can
be classified into three categories: using small codebooks,
using medium-sized codebooks, and using large codebooks
[1]. For methods using small codebooks, the visual words
are fewer than several thousands and usually exhibit inferior
accuracy. Medium-sized codebooks have sizes of 10-200k.
The visual words exhibit medium discriminative ability, and
the inverted index and binary signatures of visual words are
constructed [11]. Large codebooks have sizes of 1 million
or more. The visual words demonstrate high discriminative
ability, and more memory-friendly signatures are used [12]. A
frequent concern with the BoW model is the lack of geometric
constraints among local features. Geometric verification are
often utilized as an effective filter for matching. The most
well-known method for global spatial verification is RANSAC
[13]. RANSAC is effective in re-ranking a subset of top-
ranked instances but has efficiency problems. To efficiently
and accurately incorporate spatial features in the SIFT-based
framework is very important.

The CNN-based methods have three categories: hybrid
method, using pre-trained CNN models and using fine-tuned
CNN models [1]. For the hybrid method, a number of image
patches are generated from an input image, which are fed into
the network multiple times for feature extraction. Encoding
and indexing are similar to SIFT-based methods. The last two
categories compute the global feature with a single network
pass. For the second category, the CNN models are pre-trained
on some large-scale datasets like ImageNet [3] and can be
expected to be directly used on target dataset. For the third
category: The CNN models are fine-tuned on a training dataset

[14] which has a similar distribution to the target dataset before
usage.

While CNN-based methods excel in most research bench-
marking datasets (Holidays [15], Ukbench [16], etc), these
datasets are relatively small. It remains unknown if training
CNNs on more generic and very large-scale instance-level
datasets will bring further improvement [1]. Despite the usual
advantages of CNN-based methods, SIFT feature is still fa-
vored in some scenarios: gray-scale instance retrieval, intense
instance color changing, small object retrieval, severe occlu-
sions of queried instance, book/CD cover retrieval, instance of
rich textures, etc [1].

B. Inverted Indexes and Forward Indexes

For image retrieval, the BoW model is efficiently imple-
mented using an inverted index [17], which is a simple data
structure that allows us to find images containing particular
visual words. Given a collection of N images, we assume
each image is identified by a unique image ID between 0 and
N − 1. An inverted index contains many lists, where each list
Lw contains a sequence of postings describing all the images
where visual word w occurs in the collection. More precisely,
each posting contains the ID of an image that contains the
visual word w, plus an impact score for the visual word in the
image. Postings in each list are usually sorted by image ID or
impact score, to allow for effective compression and fast list
intersection.

In the reranking phase of image retrieval, spatial information
about the visual words in a candidate image, in particular the
coordinates, angle (orientation), and size of the corresponding
keypoints, need to be accessed to perform geometric verifica-
tion. In contrast to the inverted lists, each forward list contains
all the data for a certain image, that is, all the visual words
in the image as well as their associated coordinates, angles,
and sizes. A forward index contains all the forward lists of
the images.

C. Reordering Data for Better Compression

The idea of reordering a data set for better compression
has been used by researchers in several application areas. In
particular, reordering of documents has been used in informa-
tion retrieval systems to improve inverted index compression,
access speed [18]–[20] and query processing speed [21], [22].
Compressed graph representations can also benefit signifi-
cantly from reordering of the vertices [23]–[26]. In database
systems, reordering of tuples is used to improve compression
of database tables [27], [28]. One common and simple way
to reorder data in these applications is to sort by one of the
attributes or, in the case of search engine indexes and web
graphs, to sort documents or nodes by their URLs. However,
other more involved approaches, such as clustering or TSP-
type traversal of the data, have also been proposed, and these
can sometimes significantly outperform simple sorting.

In particular, data reordering is considered an important
component in most column-oriented database architectures
[29], [30]. In [28], Lemire and Kaser show that picking the

right column to sort is critical as the compression ratio could
improve significantly (e.g., by a factor of 2 or 3). They
also try to use modular and reflected Gray-code orders and
Hilbert orders to outperform lexicographical order, but find
them ineffective. In summary, the idea of reordering data for
compression is not new, but has not been previously applied
in our application domain.

D. Compression Techniques

Many different compression techniques for inverted indexes
have been proposed in the literature [31]. Most techniques
assume that each list of postings is first pre-processed by
taking the differences between the document IDs of any two
consecutive postings, assuming the list is sorted by document
ID. Thus, the problem is to compress sequences of integer
values that tend to be small on average, but that may follow
various distributions depending on the properties of the data
set. There are many different techniques for this, including
Golomb Coding [17], [31], variable-byte coding [32], Simple9
[33], OptPFD [20], etc. However, these techniques have not
been previously evaluated for compression of spatial informa-
tion in the scenario of image retrieval. We now outline a few
of these techniques.

Golomb coding encodes an integer n in two parts: a quotient
q stored as a unary code, and a remainder r in binary form.
For a list of integers, we first choose a parameter P , say P =
0.69×avg, where avg is the average of the integers. Then for
each number n we calculate q = bn/P c and r = n mod P .

Variable-byte coding encodes an integer n with a sequence
of bytes. In each byte, the lower 7 bits are used to store a part
of the binary representation of n, and the highest bit indicates
if the next byte is still part of the current number. Variable-byte
is easy to implement and fast to decode; however, it does not
compress as well as many bit-wise methods such as Golomb
coding.

Simple9 coding combines the ideas of word alignment and
bit alignment. It tries to pack as many integers as possible into
one 32-bit word. One word is divided into 4 status bits and
28 data bits. The data bits can be divided in 9 different ways,
e.g., into two 14-bit numbers, four 7-bit numbers, or five 5-bit
numbers (leaving three bits unused), etc. The status bits then
store which way the data bits are divided.

PForDelta coding splits a list of integers into chunks of
fixed size. For each chunk a value b is selected so that
most of the integers in that chunk are less than 2b. Those
integers can be coded together using b bits each. The remaining
integers are called exceptions, and are coded separately. For
best performance, chunks usually have sizes that are a multiple
of 32, allowing for highly optimized code for extracting 32 b-
bit values at a time during decompression (where each bank of
32 values is word-aligned). As an optimization, the selection
of the b can be varied for each block to ensure the smallest
compressed size. This is called OptPFD proposed by Yan et
al. [20].

Any compression method is associated with an explicit
or implicit probability model for the data that has to be

Fig. 1: Distribution of the num-
ber of key points. Fig. 2: Codeword frequency

distribution.

compressed. For example, Golomb coding and several other
methods work best if the integers follow a geometric distribu-
tion. When it is hard to make a good prediction of the next
value based on a single model, general entropy coding methods
such as Huffman coding, Arithmetic coding, or Asymmetric
Numeral Systems (ANS) coding should perform better. ANS
coding is a new approach to entropy coding developed by
Duda [9] that tries to combine the advantages of Huffman and
Arithmetic coding. Like Arithmetic coding, ANS coding has
the ability to closely match the ideal codeword lengths when
amortized over a sequence of high-probability symbols, break-
ing the “1 bit per symbol” limit for Huffman coding. On the
other hand, ANS coding is much faster than arithmetic coding,
and comparable to Huffman coding in terms of decompression
speed.

III. DATA ANALYSIS

In this section, we describe our data set and its properties.
We then discuss the features stored in the forward index and
their distributions.

A. Data Sets

Our data is provided by Blippar, which specializes in large-
scale instance retrieval and augmented reality. We build an
inverted index from a collection of 2.5 million images, which
is a subset of the company’s production data.

B. Features

Every image in the forward index contains a certain number
of key points. For each key point, we store its codeword (visual
word), angle, size, and location (X and Y coordinates). Table I
summarizes the statistical properties of the features across the
entire index.

We now briefly describe the properties of individual fea-
tures.

• Key point count: The average value of key points in an
image is 518, while the maximum is 1130. As shown
in Figure 1, values around 500 are the most frequent,
except for the observed spike in the size range between
850 and 900. This is due to a soft cutoff for the maximum
number of key points in each image to prioritize retrieval
efficiency. While a few high quality images have more
key points, most of the images have less than a thousand.

TABLE I: Statistical summary of the features in the forward index.

Features min 1st Qu. median mean 3rd Qu. max # of bytes used entropy # samples
key point count 10 308 498 518 710 1,130 2 9.54 2,522,833

codeword 0 499,462 999,125 999,529 1,499,592 1,999,999 4 20.07 1,308,890,465
angle 0 16,411 32,996 33,011 49,182 65,535 2 15.69 1,308,890,465
size 230 276 354 529 542 14,712 2 9.36 1,308,890,465
X 2 77 132 136 187 317 2 8.14 1,308,890,465
Y 2 80 142 147 211 317 2 8.24 1,308,890,465

Fig. 3: Angle frequency distri-
bution.

Fig. 4: Size frequency distribu-
tion.

Fig. 5: The X-coordinate distri-
bution.

Fig. 6: The Y-coordinate distri-
bution.

• Codeword: As shown in Table I, codewords range from
0 to 1999999, as we are using a vocabulary size of 2 mil-
lion. Figure 2 shows the codeword frequency distribution.
Although we observe no clear pattern, some codewords
are clearly more frequent than others. This indicates that
we might expect better compression if we remap the
codeword values according to their frequency; however,
the entropy of 20.07 indicates that any improvements due
to this will be rather minor.

• Angle: Floating point numbers representing degrees (be-
tween 0 and 360) are quantized to integers between 0 and
65535 in order to avoid floating point arithmetic during
reranking. As illustrated by Figure 3, the distribution of
angles has 4 clear spikes, which correspond to two verti-
cal and two horizontal directions. This is understandable,
since many key points, as well as the images containing
the key points, are aligned with the four axes. However,
entropy is fairly large, so while the spikes are clearly
visible, they may not help that much in coding. (Note
that the fourth spike consists of the right edge and the
left edge of the chart, as the angle wraps around.)

• Size: The distribution of sizes is very skewed (Figure 4).

Fig. 7: Feature Distribution for Sample Image 1.

They range between 230 and 14712, while the median
value is only 354. Therefore, the sizes are probably much
easier to compress than codewords and angles. (of course,
given there are no numbers less than 230, we can deduct
230 from each value before compressing.)

• Coordinate: The distributions of the X and Y coordinates
are similar: they both range from 2 to 317 and are slightly
skewed towards smaller values.

C. Distribution Within Images

Next, we show how features distribute and correlate inside
individual images. Figures 7 and 8 illustrate the angle and
codeword distributions, as well as the X-Y and size-angle
correlations, for two random images. For angle and codeword
distribution, the x-axis shows the default order in which the
data items were provided at the start of this work.

The angle distribution remains consistent with the distribu-
tion across the whole index, with the four clusters along the
four cardinal directions being particularly visible in the first
image in Figure 7. We also observe no clear pattern in the
codeword distribution: the value seems to spread evenly across
the entire data range. We found the following correlation
between the X and Y coordinates: when an X-coordinate
occurs, it often repeats with a number of different values of
Y, and vice versa. No useful pattern between size and angle
is observed, apart from the fact that sizes are skewed towards
smaller values.

IV. EXPERIMENTAL SETUP

In this section, we describe the instance retrieval engine and
the evaluation query set.

Instance Retrieval engine: Our instance retrieval engine is
part of an Augmented Reality (AR) system currently running

Fig. 8: Feature Distribution for Sample Image 2.

for Blippar. The OpenCV implementation of the DoG algo-
rithm is used for key point detection, and SIFT for descriptor
generation. A 2-million codeword vocabulary was trained with
an approximate k-nearest neighbor algorithm similar to [13]
on a separate data set. In the candidate generation phase, we
build inverted index and use a standard term-at-a-time (TAAT)
implementation of top-k ranking [34] to generate 20 to 30
candidate images (instances) depending on the query. In the
re-ranking phase, the codewords of the key points in the query
image are matched with key points from the candidate images,
using the features from the forward index.

Evaluation Query Set: A random sample of 3000 real
queries was collected, submitted by users of the company’s
mobile application over several days.

V. OVERALL APPROACH

In this section, we describe our approach for forward index
compression. We start with a set of transformations that we
considered, which change the distribution of the data set to be
more compressible. We then apply different encodings to the
transformed index.

A. Remapping

As shown in Section 3, the frequencies of some of the
codewords and angles are much larger than others. We can thus
reassign codeword IDs and angles based on their frequencies,
so that the more frequent values are represented by smaller
numbers. After remapping, the entropy will not change, but
with appropriate coding techniques, we may achieve a better
compression ratio in some scenarios. Figure 9 and 10 show
the remapped codeword and angle value distributions. Table II
illustrates how the remapping changed the statistics of the
data. The rows with * in the table indicate the results after
remapping. All the angle statistics decrease, except for min
and max. In case of codewords, the max also decreases slightly
because the vocabulary is trained on another data set and not
all codewords from the vocabulary appear in the index.

B. Reordering

Sets of integers are often presorted in ascending order so
that we can then encode the differences between adjacent num-
bers instead of the raw numbers. In our case, the ordering of
the key points (and their associated data) in the forward index

Fig. 9: Angle frequency distri-
bution.

Fig. 10: Codeword frequency
distribution.

features min 1st Qu. median mean 3rd Qu. max
codeword 0 499462 999125 999529 1499592 1999999

codeword* 0 198791 542558 641551 1015701 1973200
angle 0 16411 32996 33011 49182 65535

angle* 0 7897 21088 24944 40343 65535

TABLE II: Statistical Summary for orginal and remapped (*)
codewords and angles.

is irrelevant for the second phase spatial ranking; thus, we can
choose an order of key points that is best for compression.
While the key points have multiple fields (features), we can
only sort on one field, on which we can then use difference
encoding. Based on the observations from Section 3, angle
and codeword might seem to be good candidates because they
are hard to compress otherwise, but this may not be obvious
at this point.

C. Duplicate Reduction

As shown in Table I, the median number of key points in
an image is 498, while the median value for size, X, and Y
coordinates are 354, 132, and 142, respectively. This means
that there are duplicate values of these three features in the
majority of the images. Moreover, we observe that the same
X value often occurs repeatedly with different Y values. In
fact, we even observe many instances where different entries
have the same X, Y, and size values (but different codewords
or angles). Thus, if we sort the key points by X, then by Y,
then by size, then such duplicates will be next to each other,
and we can use a bit array to flag and eliminate them before
coding. We can get additional benefits by coding values by
their difference from the values in the previous subsection. Of
course, if we decide to sort by X, Y, and size, then we cannot
sort by codeword or angle as proposed in Subsection 5.B.

D. Applying Huffman and ANS Coding

Since the forward index data of each image needs to be
accessed as fast as possible for second phase ranking, the com-
plete compressed forward index is kept in main memory. We
apply compression on a per-image basis so that the compressed
data of any image can be efficiently fetched and decompressed
for reranking. As observed before, the distribution of the
features does not seem to follow a clear and simple model, and
it also differs between images. Therefore, efficient entropy-
based coders such as Huffman or ANS coding are attractive

choices as they can adapt to the characteristics of the data in
each image. However, if we apply Huffman coding directly to
the features, a separate Huffman code table has to be stored for
each feature of each image, which is too much space overhead.
On the other hand, a global table will not be able to adjust to
different images, and will also be very large for features such
as codewords and angles, slowing down decompression.

To address this issue, when encoding integers from
[0 . . . N−1] where smaller integers are more likely, we divide
[0 . . . N − 1] into increasing ranges, where range sizes are
powers of two. For example, the first few ranges may contain
only a single integer, then two, then four, eight, etc. Overall,
we end up with only a few dozen ranges. We now build a
Huffman code that only specifies in which range the encoded
value falls, and add log2 s extra bits, where s is the size
of the range, to specify the exact value in the range. This
results in much smaller Huffman tables that can be stored
for each image, while giving almost the same compression as
a complete Huffman table. We then store the Huffman table
itself, in canonical form, with the image data.

For ANS coding, we also code ranges rather than exact
values, followed by extra bits, and store other types of meta
information for decoding (instead of the code table in Huffman
coding) with each image. As in Arithmetic coding, in ANS the
number of bits for each symbol is amortized among a sequence
of encoded symbols, which means symbols do not get assigned
a direct code that has an integer number of bits. To apply ANS
coding for the above framework, we first encode all the ranges
using ANS, followed by all the extra bits for the image.

E. Experimental Results

In Table III, we show the bit rates (bits an integer takes on
average) of coding the forward index with our Huffman coding
approach, for different reorderings. Of course, whenever we
sort by one field, then coding for that field improves. However,
when sorting by codeword and by angle, we only exploit this
effect; when sorting by X, Y, and size, we also enable duplicate
suppression and exploit cases where a run of different Y values
occurs with the same X. (Duplicate suppression is not that use-
ful for codewords and angles, where there are few duplicates.)
As a result, sorting by X, Y, and size outperforms the other two
schemes, which have almost the same performance. Thus, we
choose this ordering, together with the remapping proposed in
Subsection 5.A.

In Table IV, we compare the bit rates of various other coding
methods for the different features, when key points are sorted
by X-Y-size. We show the results for the following coding
techniques: Variable-Byte (Vbyte) [32], Simple9 [33], Golomb
coding [31], OptPFD [20], Gzip, and our versions of Huffman
and ANS coding1 [10]. All methods compress best on the X
coordinate, since X has a low entropy, as shown in Table I,
and we are able to apply delta encoding for X. Angle is the
most difficult feature to compress, since its entropy is 15.69,

1ANS coding was implemented using the code at
https://github.com/Cyan4973/FiniteStateEntropy

almost equal to 16 bits, which is the number of bits in a basic
uncompressed representation. Thus, while there were visible
spikes for angle along the four cardinal directions, as shown
in Figure 3, most of the data lies outside the peaks of the
spikes. Codeword is also hard to compress, while size and
Y are relatively easy to compress. Among all the methods,
Simple9 has the worst performance, and the reason is that for
codewords and angles, it usually only packs a single value into
each 32-bit word. (Note that Simple9 might fare better if we
had sorted by codewords or angles.). Vbyte does not benefit as
much as other approaches for X, since Vbyte does not do well
when many numbers are much smaller than 27, and there are
many small X values. Golomb coding performs the best for
X, because it compresses small values well. Overall, Huffman
and ANS outperform all other methods, indicating that for our
forward index compression problem, integer coding techniques
introduced in the context of compressing inverted indexes are
not that useful. Huffman performs slightly better than ANS
because the meta information stored under ANS is larger than
the Huffman code table; this might change if images were
much larger.

Features by codeword by angle by X-Y-size
X 8.286 8.286 1.684
Y 8.412 8.412 6.861

size 9.592 9.592 8.155
angle 15.857 8.201 15.857

codeword 13.115 20.761 20.761
all 55.262 55.252 53.318

TABLE III: Bit rate under Huffman coding, for different features
and different orderings.

Compressor X Y size angle c.w. all
None 16.000 16.000 16.000 16.000 32.000 96.000

Simple9 2.059 10.668 13.670 30.418 31.890 88.705
Vbyte 7.996 12.471 15.671 21.948 23.928 82.014
Gzip 1.884 10.638 11.869 15.984 22.835 63.210

Golomb 1.646 8.959 10.892 16.967 21.958 60.422
OptPFD 1.885 8.806 11.470 16.478 21.641 60.280

ANS 1.662 7.286 8.672 15.842 21.034 54.496
Huff 1.684 6.861 8.155 15.857 20.761 53.318

TABLE IV: Bit rates for different integer coding techniques.

For an image query, about 50% of the time is spent on
feature extraction, 25% on object detection, and 25% on
cascaded ranking in our system. In Table 5, we show the bit
rate per key point, decompression cost per image retrieved
from the forward index, and overall query execution cost in
milliseconds. Since our main focus is to reduce the memory
size of the forward index, we take ANS and Huffman coding
and compare their performance. In our experiments, ANS took
about twice the time to decode the features of an image than
Huffman coding. Note that using Huffman or ANS in fact
results in slightly faster overall query execution than using no
compression, most likely because the smaller forward index
results in better memory access and cache behavior. (The
uncompressed forward index was also completely in main

memory.) However, the speedup is fairly small, and the main
motivation for compression is the reduction in size by almost
a factor of 2, meaning that larger indexes can be completely
held in a given amount of main memory.

Compressor bit rate decompress cost (us) image-query cost (ms)
None 96.000 N/A 242.6
ANS 54.496 391.31 239.8
Huff 53.318 198.64 232.1

TABLE V: Bit rate, decompression cost in us per image, and average
query execution cost in ms, for ANS and Huffman coding.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we provide what we believe to be the first
study of forward index compression in a real-world instance
retrieval system for augmented reality applications. We com-
pare various index compression approaches, and find that
entropy-based coders such as Huffman and ANS result in the
best compression ratio for our scenario, achieving compression
of about a factor of two, while also very slightly speeding up
query processing. Our implementation is tested and deployed
in Blippar’s AR platform.

While our approach is a promising first step, we suspect
there might be additional patterns in the data, say between
similar images, that could be explored in the future for
better compression. Furthermore, when additional features
are involved, our findings could still be useful and other
compression ideas might apply.

We also plan to further design suitable lossy compression
schemes and explore the trade-off between retrieval quality
and forward index size, and we believe we might be able to
achieve significant reduction of index size with minor or even
no quality loss.

REFERENCES

[1] L. Zheng and Y. Yang and Q. Tian, “SIFT Meets CNN: A Decade
Survey of Instance Retrieval,” in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

[2] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the 7th IEEE International Conference on Computer
Vision, 1999.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012.

[4] H. Houdong, W. Yan, Y. Linjun, K. Pavel, H. Li, C. Xi, H. Jiapei, W. Ye,
M.Meenaz, and S. Arun, “Web-Scale Responsive Visual Search at Bing,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery Data Mining, 2018.

[5] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. “Object
retrieval with large vocabularies and fast spatial matching,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2007.

[6] M. Siedlaczek, Q. Wang, Y. Chen and T. Suel, “Fast Bag-Of-Words
Candidate Selection in Content-Based Instance Retrieval Systems,” in
IEEE International Conference on Big Data (Big Data), 2018.

[7] L. Wang, J. Lin, and D. Metzler, “A cascade ranking model for efficient
ranked retrieval,” in Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, 2011.

[8] Q. Wang, C. Dimopoulos, and T. Suel, “Fast First-Phase Candidate Gen-
erationfor Cascading Rankers,” in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information
Retrieval, 2016.

[9] J. Duda, “Asymmetric numeral systems as close to capacity low state
entropycoders,” in arXiv:1311.2540v2, 2014.

[10] A. Moffat and M. Petri, “ANS-Based Index Compression,” in Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge
Management, 2017.

[11] H. Jgou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in European Con-
ference on Computer Vision, 2008.

[12] Y. Zhang, Z. Jia, and T. Chen,“Image retrieval with geometrypreserving
visual phrases,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[13] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman,“Object
retrieval with large vocabularies and fast spatial matching,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2007.

[14] H. Jgou and A. Zisserman, “Triangulation embedding and democratic
aggregation for image search,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2014.

[15] H. Jgou, M. Douze, and C. Schmid,“Hamming embedding and weak
geometric consistency for large scale image search,” in European Con-
ference on Computer Vision, 2008.

[16] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in IEEE Conference on Computer Vision and Pattern Recognition,
2006.

[17] J. Zobel and A. Moffat, “Inverted files for text search engines,” in ACM
Computing Surveys, 2006.

[18] D. Blandford and G. Blelloch, “Index compression through document
re-ordering,” in Proceedings of the Data Compression Conference, 2002.

[19] F. Silvestri, R. Perego, and S. Orlando, “Assigning document identifiers
to enhance compressibility of web search engines indexes,” in Proceed-
ings of the ACM Symposium on Applied Computing, 2004.

[20] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query
processing with optimized document ordering,” in Proceedings of the
18th International Conference on World Wide Web, 2009.

[21] J. Dimond, P. Sanders, “Faster Exact Search using Document Cluster-
ing,” in International Symposium on String Processing and Information
Retrieval, 2015.

[22] Q. Wang, T. Suel, “Document reordering for faster intersection,” in
Proceedings of the VLDB Endowment, 2019.

[23] P. Boldi, M. Santini, and S. Vigna, “Permuting web and social graphs,”
in Internet Mathematics, 2009.

[24] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,
and P.Raghavan, “On compressing social networks,” in Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2009.

[25] K. H. Randall, R. Stata, R. G. Wickremesinghe, and J. L. Wiener, “The
link database: fast access to graphs of the Web,” in Proceedings of the
Data Compression Conference, 2002.

[26] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, A. Shalita
“Compressing Graphs and Indexes with Recursive Graph Bisection,” in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.

[27] M. Poess and D. Potapov, “Data compression in oracle,” in Proceedings
of the 29th International Conference on Very Large Data Bases, 2003.

[28] D. Lemire and O. Kaser, “Reordering columns for smaller indexes,”
in Information SciencesInformatics and Computer Science, Intelligent
Systems, Applications: An International Journal, 2011.

[29] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores:How different are they really?” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2008.

[30] A. L. Holloway and D. J. DeWitt, “Read-optimized databases, in depth,”
in Proceedings of the VLDB Endowment, 2008.

[31] I. H. Witten, T. C. Bell, and A. Moffat, “Managing gigabytes: com-
pressing and indexing documents and images” in IEEE Transactions on
Information Theory, 1995.

[32] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel, “Compression
of inverted indexes for fast query evaluation,” in Proceedings of the
25th annual international ACM SIGIR conference on Research and
development in information retrieval, 2002.

[33] V. N. Anh and A. Moffat, “Inverted index compression using word-
aligned binary codes,” in Information Retrieval, 2005.

[34] C. D. Manning, P. Raghavan, and H. Schtze, “Introduction to information
retrieval,” Cambridge University Press, 2008.

