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ABSTRACTQuery proessing is a major ost fator in operating largeweb searh engines. In this paper, we study query resultahing, one of the main tehniques used to optimize queryproessing performane. Our �rst ontribution is a study ofresult ahing as a weighted ahing problem. Most previouswork has foused on optimizing ahe hit ratios, but giventhat proessing osts of queries an vary very signi�antly weargue that total ost savings also need to be onsidered. Wedesribe and evaluate several algorithms for weighted resultahing, and study the impat of Zipf-based query distribu-tions on result ahing. Our seond and main ontribution isa new set of feature-based ahe evition poliies that ahievesigni�ant improvements over all previous methods, substan-tially narrowing the existing performane gap to the theoret-ially optimal (lairvoyant) method. Finally, using the sameapproah, we also obtain performane gains for the relatedproblem of inverted list ahing.
Categories and Subject DescriptorsH.3.3 [INFORMATION STORAGE AND RETRIE-VAL℄: Information Searh and Retrieval.
General TermsAlgorithms, Performane
KeywordsSearh Engines, Result Cahing, Index Cahing, WeightedCahing
1. INTRODUCTIONLarge web searh engines need to be able to proess thou-sands of queries per seond on olletions of billions of webpages. As a result, query proessing is a major performanebottlenek and ost fator in urrent searh engines, and anumber of tehniques are employed to inrease query through-put, inluding massively parallel proessing, index ompres-sion, early termination, and ahing. In partiular, eahquery is routed to a large number of mahines, say a fewhundred or thousand, that proess it in parallel. Index om-pression is used to derease the sizes of the index strutures,thus signi�antly reduing data transfers between disks, mainmemory, and CPU. Various early termination tehniques areused to identify the best results without traversing the full�Current AÆliation: CSE Dept., Polytehni Inst. of NYU
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index struture of eah term in the query. Finally, ahing isemployed at several levels to redue system load.In this paper, we fous on the last tehnique, ahing, andin partiular the ahing of query results. Cahing is a om-mon performane optimization tehnique in many senariosinluding operating systems, databases, and web servers. Inthe ase of web searh engines, ahing happens at severallevels. At the lower level of the system, index strutures offrequently used query terms are ahed in main memory tosave on disk transfers [16, 3, 1℄. At the higher level, resultsof frequently asked queries are ahed so that results an bereturned without exeuting the same queries over and overagain [15, 18, 12, 3, 7, 1, 2℄. In addition, there may be otherintermediate levels of ahing that store partially omputedresults, say for ommon ombinations of words [13℄.Our ontribution in this paper an be split into two parts,fousing on weighted ahing and on feature-based ahing.In the �rst part, we onsider result ahing as a weightedahing problem. Previous work has looked at result ahingas an unweighted problem, where eah query has the sameost and the goal is to maximize the number of queries thatare served diretly from ahe. However, real query proess-ing osts in searh engines vary signi�antly among queries.For example, queries with very ommon terms or with manyterms an be muh more expensive than other queries. Thus,while optimizing hit ratio may be useful to minimize enduser lateny, it does not maximize query throughput. Thus,to minimize overall query proessing osts, a good ahingmehanism needs to also take the atual osts of the queriesinto aount.We disuss and evaluate several weighted ahing algo-rithms for result ahing, inluding weighted ounterparts ofLFU, LRU, and the state-of-the-art (unweighted) SDC pol-iy in [7℄, as well as several new hybrid algorithms. In thisontext, we also address an interesting problem arising inonnetion with Zipf-based query distributions, or in generalwith distributions where large numbers of (potential) queriesour very rarely or not at all. In a nutshell, in suh asesnaive approahes may overestimate the frequenies of rarequeries that just happened to our by hane. As a result,we may end up ahing too many items with high potentialbene�t (ost savings) that never our again. We disussseveral possible ways to address this problem.Our seond ontribution is a new set of feature-based aheevition poliies that ahieve signi�ant improvements in hitratio, and moderate improvements in ost, over existing meth-ods. In partiular, these poliies signi�antly narrow thegap between the best known algorithm and the upper boundgiven by the lairvoyant algorithm. We also show that thesame approah an be used to obtain improvements over ur-rent list ahing poliies.These new poliies are based on two observations. First,



query traes have a lot of interesting appliation-spei� stru-ture that is not exploited by existing ahe evition poliiesthat only rely on past ourrenes of the same query. We anexpose some of this struture to the ahing mehanism vianew features suh as query lengths or the frequenies of in-dividual query terms in the query log or olletion. We notethat a similar approah was also reently proposed in [2℄ inthe ontext of a ahe admission poliy, and that researhers,e.g., in omputer arhiteture have used appliation spei�features for similar tasks suh as branh predition and dataprefething. We show here that in the ase of evition poli-ies for searh engine result ahing, adding suh featuresan make a signi�ant di�erene in ahe performane. Se-ond, instead of making expliit use of suh features insidenew speially designed algorithms, it is probably smarter torely on general statistial or mahine learning tehniques tomake evition deisions. This is partiularly the ase giventhe very large amount of query log data available to urrentsearh engines, and given that the ost of even fairly ompli-ated evition poliies is small ompared to that of exeutinga query. In our ase, we utilize a very naive statistial ap-proah that nonetheless gives signi�ant bene�ts.The remainder of this paper is organized as follows. Next,we provide some bakground on searh engine arhitetureand disuss relevant previous work. In Setion 3 we desribeour experimental setup. Setion 4 ontains our results forweighted ahing. Setion 5 presents and evaluates feature-based evition poliies, and �nally Setion 6 provides on-luding remarks.
2. BACKGROUND AND PREVIOUS WORKBakground on Searh Engines: The basi funtionsof a rawl-based web searh engine an be divided into fourstages: data aquisition (or rawling), data mining and pre-proessing, index onstrution, and query proessing. Duringrawling, pages are fethed from the web at high speed, eitherontinuously or through a set of disrete rawls. Then vari-ous data mining and preproessing operations are performedon the data, e.g., detetion of web spam or dupliates, orlink analysis based on PageRank [4℄. Third, a text indexstruture is built on the preproessed data to support fastquery proessing. Finally, when a user issues a query, thetop results for the query are retrieved by aessing the indexstruture. We fous on this last stage.Current searh engines are based on an index struturealled an inverted index that allows us to eÆiently identifydouments that ontain a partiular term or set of terms [21℄.To do so, an inverted index ontains an inverted list for eahdistint term w that ours somewhere in the olletion; thisis basially a list of the IDs of those pages in the olletionthat ontain w, often together with other data suh as thenumber of ourrenes in the page and their loations. Aquery is proessed by fething and traversing the invertedlists of the searh terms, and then ranking the enounteredpages aording to relevane. Note that the length of an in-verted list inreases with the size of the olletion, and aneasily reah hundreds of MB or several GB even in highlyompressed form. Thus, for eah query a signi�ant amountof data may have to be fethed and proessed. This is themain performane hallenge in searh engine query proess-ing, and it has motivated various performane optimizations.Cahing in Searh Engines: One suh optimization isthe use of ahing, whih ours in searh engines on two

levels. A query enters the searh engine via a query integra-tor node that is in harge of forwarding it to a number ofmahines and then ombining the results returned by thosemahines. Before this is done, however, a lookup is per-formed into a ahe of previously issued queries and theirresults. Thus, if the same query has been reently issued,by the same or another user, then we do not have to re-ompute the entire query but an simply return the ahedresult. This approah, alled result ahing, is widely usedin urrent engines, and has also been studied by a number ofresearhers [15, 18, 12, 3, 7, 1, 2℄. A seond form of ahing,alled index ahing or list ahing, is used on a lower levelin eah partiipating mahine to keep the inverted lists offrequently used searh terms in main memory [9, 16, 3, 20℄.Our main fous is on result ahing. This approah hasbeen shown to ahieve signi�ant performane bene�ts ontypial searh engine traes. Note that the performane de-pends on the harateristis of the queries posed by the users,the poliies used by the searh engine to proess queries (e.g.,whether the order of terms in the query matter, or whetherusers from di�erent loations reeive di�erent results), andthe ahing poliies that are used. Our goal is to designahing poliies that best exploit the properties of typialsearh engine query logs to ahieve a high ahe hit ratioand large ost savings. Earlier work on searh engine querylogs and result ahing (see, e.g., [17, 15, 18, 3℄ has shownthat suh logs have several interesting properties:� Query frequenies follow a Zipf distribution.� While a few queries are quite frequent, a signi�antfration of all queries our only one or a few times.� Query traes exhibit some amount of burstiness, i.e.,ourrenes of queries are often lustered in a few timeintervals.� A signi�ant part of this burstiness is due to the sameuser reissuing a query to the engine.Previous Work on Result Cahing: The �rst pub-lished work on result ahing in searh engines appears to bethe work of Markatos in [15℄, whih studies query log distribu-tions and ompares several basi ahing algorithms. Workin [18℄ looks at various forms of loality in query logs andproposes to ahe results loser to the user. Work by Lem-pel and Moran [12℄ proposes improved ahing shemes fordealing with requests for additional result pages (i.e., whena user requests a seond or third page of results). Severalauthors [16, 3, 1, 8℄ have onsidered the impat of ombiningresult ahing and list ahing; in partiular, reent work in[1℄ studies how to best share a limited amount of memorybetween these two forms of ahing. In [8℄, Garia examinesahes for the query evaluation proess as a whole. Finally,work in [7, 2℄ onsiders hybrid methods for result ahingthat ombine a dynami ahe that exploits bursty querieswith a more stati ahe for queries that stay popular over alonger period of time. We disuss related work in more detaillater as neessary in the ontext of our own results.Weighted Cahing: Previous work on result ahing [15,18, 12, 3, 7, 1, 2℄ has foused on maximizing the hit ratio ofthe ahe, that is, the perentage of queries that an be an-swered diretly from ahe. We note here that ahing hastwo possible objetives: (a) reduing the delay experienedby the user by keeping ahed results loser to the user (ei-ther in terms of network distane or memory hierarhy), and(b) reduing the load on the underlying system by avoidingunneessary omputations (whih may in turn also redue



delays seen by the user). Maximizing the hit ratio fouseson the delay, whih is an important objetive partiularlyfor forward result ahes that are deployed outside the mainsearh engine luster and loser to the user.However, we argue that the seond objetive is also veryimportant in urrent searh engines, whih have investedhundreds of millions of dollars in hardware for query proess-ing. We note that searh queries vary dramatially in termsof their omputational ost depending, e.g., on the numberof searh terms and their frequeny in the underlying olle-tion and in other searh queries. (The latter determines howlikely the orresponding inverted lists are to already be inmain memory.) The exat osts for a query of ourse dependon the internal design of the engine. But it seems realistito assume that when a query is omputed, some measure ofthe overall omputational ost is ommuniated to the re-sult ahing mehanism, whih should then use this ost inits evition poliy to give preferene to retaining results ofexpensive queries.We onsider both objetives in this paper. Eah queryresult has the same size (maybe a few KB for storing theresult URLs and result snippets), but queries an have verydi�erent bene�ts (ost savings when reused) assoiated withthem, and our goal is to maximize the total bene�t that isahieved. This is an instane of a weighted ahing problemstudied, e.g., in [5, 19℄. We note that standard algorithms forahing suh as LRU (Least Reently Used) or LFU (LeastFrequently Used) do not take bene�ts into aount and thusdo not perform well on suh problems. The work in [5, 19℄proposes a ahing algorithm alled Landlord that is essen-tially a generalization of LRU; this algorithm assigns leasesto items based on their sizes and bene�ts and evits the ob-jet with the earliest expiring lease. The Landlord algorithmwas reently adapted to another ahing problem in searhengines in [13℄.Cahe Admission Poliies: Researhers in several areashave reently proposed ahe admission poliies that preventertain items from even being inserted into the ahe [14, 13,2℄. In the ontext of web searh engines, ahe admission wasused in [13℄ in a senario where ahe insertion itself has asigni�ant ost that would be wasted if the item is evitedsoon afterwards without having been reused. In [2℄ a aheadmission poliy is used to predit and eliminate query re-sults that are unlikely to our again. We note that in thislatter ase, ahe admission is really used as a mehanismfor improving a non-optimal evition poliy (sine an inser-tion followed by immediate evition from a ahe with oneadditional slot would have the same e�et, as opposed to [13℄where insertion inurs a signi�ant ost). The work in [2℄ isthe previous work most losely related to our feature-basedevition poliy in that it also suggests the use of appliation-spei� features. One di�erene to our work is that [2℄ usesthese features to make a 0/1 deision about admission of anitem, while we use them to predit a probability of reo-urrene that is used by the ahe evition poliy. We alsoonsider a wider range of features in our experiments.
3. DATA AND EXPERIMENTAL SETUPGiven that searh query logs have a very long tail of queriesthat our only one or twie, it is important to use a fairlylarge query log to evaluate result ahing poliies. For our ex-periments, we used a log of 36; 389; 567 queries submitted tothe AOL Searh servie between Marh 1 and May 31, 2006.

We preproessed the query log by removing stopwords, andompletely removed any queries onsisting only of stopwords.For all the results presented in this submission, we also re-moved requests for further result pages; suh requests forthe seond, third, et., page of results are best handled withother tehniques as shown in [12℄, and most previous workdoes not spell out if suh requests were retained or not. Weassume that term order in queries is important, and that twoqueries are idential only if they ontain the same words inthe same order. However, for these last two hoies, we alsoran experiments that make the opposite hoie; the resultswere overall fairly similar (in terms of the relative orderingof the methods) and are omitted from this paper.The resulting query trae had 17; 448; 985 queries, inlud-ing 10; 087; 344 distint queries. Of these queries, 5; 605; 830ourred only one, and 1; 005; 241 ourred exatly twie.In Figure 1 we plot the query frequenies using a double-logarithmi sale, where queries are ordered along the x-axisfrom most frequent to least frequent, and the frequeny ofthe query is shown on the y-axis. We obtain a slope orre-sponding to z = 0:82, whih ompares to numbers betweenz = 0:59 [16℄ and z = 0:86 in the literature.

Figure 1: Query frequeny distribution of the AOLdata set.In our experiments, we assume that every query has a om-putational ost that is taken into aount by the weightedahing poliies. This ost of ourse depend on details of eahpartiular searh engine's query proessing system, whih areonsidered proprietary. We experimented with several possi-ble ost funtions that de�ne the ost of a query as follows:(i) the sum of the lengths of the inverted lists of the queryterms,Pki=0 Li, (ii) the length of the shortest list L0, and (iii)the produt of L0 and log2(L1=L0) where L1 is the seondshortest list. These hoies represent di�erent bottleneksin query exeution: (i) when the ost of fething lists fromdisk is dominant and the entire list has to be fethed, and(ii) and (iii) when index data is mostly in main memory andost is dominated by the CPU ost of traversing the shortestlist and looking up its elements in the next larger list. Weobtained the lengths of inverted lists by running all queriesagainst a subset of 7:5 million pages taken at random from alarge web rawl.We note that real ost funtions will be more ompliatedand may have to take into aount the impat of tehniquessuh as index ahing and early termination at the lowerlevel. However, the ahing algorithm does not need to knowthe funtion, as long as some ost estimate is returned bythe query proessor upon omputing a query. We tried all



three ost funtions and did not observe major hanges in therelative performane of our algorithms. All results presentedin this paper use ost funtion (i) above.
4. WEIGHTED RESULT CACHINGIn this setion, we investigate algorithms for weighted re-sult ahing. As mentioned before, weighted ahing algo-rithms assume that di�erent objets have di�erent weights(in our ase, osts of reomputing a query) that need tobe taken into aount in the evition poliy. We will on-sider both hit ratio and ost savings in the evaluation of ouralgorithms. We �rst introdue a few unweighted baselinealgorithms, followed by their weighted ounterparts. Afterthat we introdue some improvements to these baseline al-gorithms by integrating additional ideas. In partiular, wedesign hybrid algorithms that take advantage of burstiness inthe query stream, and we study ahing under Zip�an querydistributions.
4.1 Baseline MethodsBefore explaining our baseline ahing methods, we de-sribe two o�ine algorithms that an be used as upper boundson the performane of the online algorithms. Our o�ine al-gorithm for hit ratio is the well-known lairvoyant algorithmthat always evits the objet whose next aess is farthestin the future, and it is known to ahieve the best possiblehit ratio. For the weighted ase, however, we are not awareof any polynomial-time o�ine algorithm that guarantees thehighest possible ost savings. Instead, we design a heuristi,alled \Future Known", that we hope will approah the opti-mal solution in most ases. In this algorithm we ompute thepriority sore of a query by dividing the ost of a query bythe distane from the urrent to the next ourrene of thisquery. Then, at eah step, the query with minimum sore isevited from the ahe.The following evition poliies have been extensively stud-ied in the ontext of result ahing:� LRU (Least Reently Used): When the ahe isfull, we always evit the least reently seen query. LRUis one of the most ommon ahe evition poliies inomputer siene.� LFU (Least Frequently Used): LFU evits the leastpopular query. In our implementation, in addition tothe frequeny sores stored in the ahe, we also keepsome limited history of frequenies for queries that havebeen evited from ahe. In pratie, setting this his-tory to two or three times the number of items in aheahieves most of the available bene�t.� SDC (Stati and Dynami ahing): As a hybridalgorithms, SDC [7℄ splits the ahe into two parts, withone ontaining a stati set of results for the most fre-quent queries, and the other using LRU for dynamiahing. In pratie, we use 20% of the total ahe sizefor LRU, whih gave the best results.The above methods are geared towards optimizing the hitratio, i.e., the perentage of queries that an be served fromahe. However, given the large variations in query proess-ing osts between di�erent queries, a more meaningful mea-surement should look at the hit ratio as well as the ostof proessing a partiular query. We an model this ostby a weighted ahing problem. The following are natural

weighted ounterparts of the above unweighted algorithmsthat are frequently studied:� Landlord: In the Landlord algorithm [5, 19℄, wheneveran objet is inserted into the ahe, it is assigned adeadline given by its ost. We always evit the elementwith the smallest deadline, and dedut this deadlinefrom the deadlines of all other elements urrently in theahe. (Instead of atually deduting from all entries,the algorithm is best implemented by summing up allvalues of deadlines that should have been deduted sofar, and taking this sum properly into aount.)� LFU w: The only di�erene to LFU is that the prioritysore is now the produt of frequeny and ost.� SDC w: This method is motivated by SDC. The dif-ferene is that we use LFU w for the stati part andLandlord for the dynami part of the ahe.We studied the performane of the above baseline algo-rithms using ahe sizes ranging from 25k to 800k items. InFigure 2, we ompare the algorithms by measuring their hitratios. In addition, we also plot the result of the Clairvoyantalgorithm for omparison. As expeted, for the unweightedversions, SDC performs better than LRU, and they both winover LFU. The ordering is the same for the weighted versionsof these three algorithms, but of ourse these algorithms per-form worse than their unweighted versions when looking athit ratio. In Figure 3, we plot the results when the samealgorithms are evaluated aording to ost savings. As ex-peted, the weighted algorithms now perform better thanthe unweighted ones, but the order within versions is stillthe same. Overall, SDC is the best algorithm for hit ratio,and SDC w the best algorithm for ost savings.

Figure 2: Performane of baseline ahing algorithms(hit ratio). From top to bottom, the seven linesshown are for Clairvoyant, SDC, SDC w, LRU, LFU,Landlord, and LFU w.
4.2 Generalized Hybrid AlgorithmsAs mentioned, query logs are known to be very bursty[17℄. Thus, queries are more likely to reour shortly afteranother ourrene. The soures of query burstiness ouldbe due to two reasons: The same query is repeatedly issuedby the same user, or there is a burst of global popularityfor a partiular query. In this setion, we �rst look at the



Figure 3: Performane of baseline ahing algorithms(ost savings). From top to bottom, the seven linesshown are for Future Known, SDC w, SDC, Land-lord, LRU, LFU w, and LFU.amount of burstiness in the AOL trae, and then proposehybrid algorithms that exploit it.If the ahe size is small, only queries that have ourred alarge number of times will be plaed into a stati LFU ahebefore the testing queries arrive. For example, for a ahesize of 10k items, only queries that have ourred more than81 times will be in ahe. Even for a ahe size of 100kitems, only queries that our at least 19 times are in ahe.However, queries that our no more than twie aount for43:4% of all queries issued. Thus, queries that our very fewtimes are of partiular onern as they are not likely to be ina stati ahe but make up a large portion of the total queryload. Consequently, any ahing algorithm fousing only onfrequeny is likely to not do very well.Clearly, queries that our only one annot be ahed,but queries ourring 2, 3, or a small number of times ouldbe amenable to ahing even with very limited ahe sizesif their ourrenes are very bursty. To hek this, we nowonsider those queries that our exatly twie. In Figure4, the x-axis shows the number of other queries between the�rst and seond ourrene of the same query, while the y-axis shows the number of queries falling into eah lass onthe x-axis. For eah lass, we show two bars, one for queriesissued twie by the same user, and one for queries issuedby two di�erent users. We observe that there is signi�antburstiness, and that most of it arises from the same userreissuing a query. In partiular, assuming an arrival rate of132 queries per minute (the average rate over the trae), wean see that most queries are reissued within a few minutesto at most an hour. Also, almost all queries reissued withinabout a day in our query log are by the same user.Thus, if we ould add a small ahe to temporarily holdquery results for at least a few minutes, this would allow usto apture many repeats of queries that our only a fewtimes. Atually, this was one of the main motivations for theSDC algorithm in [7℄. In the following, we present anothervariation of this idea that results in additional bene�ts overSDC and its weighted variant from the previous subsetion.The basi idea underlying hybrid algorithms an be de-sribed as follows. The ahe spae is partitioned and eahpartition is administered by a di�erent ahing poliy. Forexample, in SDC, a small fration of the spae, usually 10%
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Figure 4: Burstiness in the AOL query log for queriesourring exatly twie.to 30%, is ruled aording to LRU, while the rest is used tostatially store the most frequent queries. In this way, theburstiness is aptured by the LRU part of the ahe. The re-sults in [7℄ showed that SDC outperforms other pure (singlepoliy) ahing algorithms in terms of hit ratio. (Note that ahybrid algorithm ould also dynamially hange the divisionof spae between poliies, but we did not �nd any bene�t inthis for result ahing.)We now further generalize SDC for the weighted ase asfollows: Assume two ahing poliies A and B are available,and that the total spae is divided between A and B in a�xed way. Eah poliy assigns a sore to eah query (e.g.,time sine last ourrene for LRU); this means that eahahed query is assoiated with two sores, one for eah pol-iy. After exeuting a query, we attempt to insert it intoeither ahe. When we evit an item from one ahe, say theahe assoiated with A, we selet the lowest soring item a-ording to poliy A. However, before throwing the item out,we �rst attempt to insert it into the other ahe. If the itemhas a high enough sore aording to poliy B, this will resultin the evition of another item from ahe B. In priniple,this ould ontinue for a number of steps, but eventually anitem is evited, and this usually happens after at most a fewsteps.We now evaluate the performane of two hybrid approahes,one ombining LRU with LFU w (Hybrid1), and one ombin-ing Landlord and LFU w (Hybrid2), under this framework.We found that using about 80% of the spae for LFU w gavethe best results overall. In Figure 5, we show the results forost saving. We observe visible improvements over SDC w,the weighted version of SDC from the previous subsetion,with Hybrid2 obtaining the best performane. We note herethat the two new hybrids are more dynami in that queriesan enter the (usually fairly stati) LFU w ahe after spend-ing some time in the other ahe, and that heking itemsagainst both poliies appears to have bene�ts over runningtwo ompletely independent ahes.
4.3 Estimation CorrectorReall the setup of the result ahing problem: Givenour observation of past query ourrenes, how do we de-



Figure 5: Cost redution for hybrid algorithms.From top to bottom, the four lines shown are for Fu-ture Known, Hybrid2 (Landlord+LFU w), Hybrid1(LRU+LFU w), and SDC w.ide whih query result to remove from ahe? To makethis deision, we need a good estimate of the probability ofreourrene of a query x, alled Pr(x). Assuming stableprobabilities, a simple estimate is to take the urrent valueof the frequeny of a partiular query divided by the totalnumber of queries seen so far. In fat, this is the underlyingidea of LFU. As we will argue, for ertain ases, this is not agood estimate. In the following we disuss the problem of es-timating probabilities of query reourrenes given a typialhighly skewed query distribution.As shown in Setion 3, the query log is following a Zipf-based distribution where a small portion of queries have ahigh frequeny but most queries have a fairly small probabil-ity of ourring. In suh a ase the frequeny of past our-renes by itself does not provide the best estimate for futureourrenes. In partiular, one ourrene of a query maymean muh less than two ourrenes. For example, supposelottery tikets are sold aording to a Zip�an distributionsuh that a few people buy a lot of tikets but many peoplebuy only one or two tikets. Eah player buys the same num-ber of tikets eah week, and eah week there is one winner.We observe the winners of the lottery over many weeks, andhave to guess how many tikets they bought (whih is propor-tional to the probability of them winning in future rounds).People who buy few tikets may win one (beause say 50%of tikets are sold to people who buy only one tiket) butwill very rarely win twie. So if we observe the same personwinning twie, this would indiate they likely bought morethan twie as many tikets as a person winning one. Toapply a similar idea to our ase, if a query ours only one,it is often a very rare query from the long tail of the querydistribution. It ould be due to a typo by a user, or due to aombination of rare query terms. When a query ours twie,on the other hand, its hane of reourrene might be morethan twie as high. This idea is of ourse losely related tosmoothing tehniques in language modeling, see, e.g., [6℄.We onsider three di�erent ways to get a more preise es-timate of the probability of a query reourring in the fu-ture given its past ourrenes: (1) an approah based onthe Good-Turing method, (2) an approah based on a formalanalysis of Zip�an distributions, and (3) a heuristi approah

that simply applies a set of weights derived from an atualquery trae (but whih subsumes the other approahes).Our �rst method is motivated by the Good-Turing estima-tor [6℄, often used in the ontext of smoothing tehniques forlanguage modeling, but applied here to result ahing. Thebasi Good-Turing estimator for the likelihood of an our-rene in the next step an be stated as:Prx = Nx + 1T � E(Nx + 1)E(Nx) ;where, in our ase, x is the query and Nx is the number oftimes query x has ourred so far. T is the number of queriesobserved thusfar, and E(n) is the number of di�erent queriesthat have ourred exatly n times.Our seond method is based on the analysis of a Zip�anprobability distribution to estimate the likelihood of a queryreourring. We assume a sequene of events fu1; :::; udgthat is generated following a Zip�an distribution. Given thatquery x has ourred k times in the past, Prx an be esti-mated as: Prx = dXi=1  pi � B(pi; h; k)dXj=1B(pj ; h; k)!; (1)where pi is the probability of hoosing ui, and B(pi; h; k) =� hk �pki � (1� pi)h�k. For more details, see the Appendix.An alternative to the above two approahes is to derive apenalty funtion g(fx) experimentally from a query log usedas a training set. This penalty funtion is then multipliedwith the naive estimate (number of past ourrenes overthe number of observed queries) to get a better estimate. Infat, for larger values of fx, say fx > 20, g() is very lose to1:0 sine the naive estimate is quite preise. Thus, we onlyneed to determine a small table of penalty values for at most20 values of fx. To do this, we performed a simple searhproedure using a query trae to derive the optimal settingof the values g(fx), using the formally derived numbers fromthe seond method as starting points. In fat, we found thisapproah to be more exible in pratie, as real query logs arenot aurately modeled by a lean mathematial distribution.It also slightly outperformed the other two methods and isthus used in our experiments.We note that the disussion in this subsetion is only rele-vant for the ase of weighted ahing. For unweighted ahingproblems, adding any of the above orretion mehanismswould have no impat on ahe behavior, as long as the prob-ability of a reourrene is monotonially inreasing with thenumber of past urrenes. However, this is di�erent forweighted ahing problems, e.g., when deiding whether toahe a frequently seen query with low ost, or a rarely seenquery with high ost.In Figure 6, we show results omparing the best of theprevious algorithms to versions that apply experimentallydetermined penalty fators g(). Overall, the new versionsoutperform the previous best versions by a moderate butvisible amount.
5. FEATURE-BASED CACHINGIn this setion, we introdue feature-based ahe evitionpoliies for result ahing, and also for the related problem oflist ahing. The basi idea is that searh engine query logsontain a lot of features beyond the previous ourrenes of



Figure 6: Cost redution of the ahing algorithmsby adding a penalty fator g. From top to bot-tom, the �ve lines shown are for Future Known, Hy-brid2 g, Hybrid2, Hybrid1 g, and Hybrid1.a query that an be used to make ahing deisions, and thatsuh features are best inorporated into evition poliies viadata analysis and mahine-learning tehniques rather thanthe design of expliit algorithms. This setion onsists ofthree parts. First, we disuss the basi idea and de�ne tenfeatures that we onsidered for result ahing. Then we de-sribe the approah that we used to derive evition poliiesfrom these features. Finally, Subsetion 5.3.1 presents ex-perimental results for result ahing, and Subsetion 5.3.2presents results for list ahing.
5.1 FeaturesIn muh of the ahing literature, inluding previous workon result ahing in searh engines, a workload is modeledas a sequene of integers where eah integer identi�es anobjet that is aessed in a given step. This gives a sim-ple framework in whih to design and analyze ahing al-gorithms suh as LRU or LFU, but it also obsures manyappliation-dependent properties of the workload that mightlead to better ahing deisions. For example, simply rep-resenting eah query in a searh query log as an ID meansthat we an look at previous ourrenes of exatly the samequery to make ahing deisions, but we annot look at otherpotentially relevant properties suh as ourrenes of otherqueries that are similar to this query (e.g., queries that area superset of our query), whether the query ontains a veryrare term, or even just the number of terms in our query.However, it is known that single-term queries are more likelyto our again than longer queries [15℄, and thus to optimizehit ratio it might be a good idea to give preferene to shorterqueries in ahing deisions. In general, searh engine querylogs have a lot of interesting struture that an be mined forvarious purposes suh as improved ranking or ad plaement,and it seems reasonable to assume that this struture ouldalso be exploited for better ahing deisions.To prove this onjeture, we �rst have to de�ne a set ofsuitable features in the query trae that is likely to be use-ful in ahing deisions. The set should ertainly ontainstandard features suh as the number of times a query haspreviously ourred and the time sine the last ourrene,but also new features not used by traditional ahing algo-rithms. After some exploration, we foused on the following

ten features F1 to F10 that are onsidered for eah query:� F1: the number of steps sine the last ourrene ofthis query. This feature is the basis for LRU.� F2: the number of steps between the last two our-renes of this query, if a query has happened at leasttwie. Otherwise, F2 is set to unavailable. (Similarly,we ould also add the number of steps between theseond- and third-last ourrenes as another feature.)� F3: the query frequeny up to this point. This is thefeature underlying LFU.� F4: the query length, de�ned as the number of termsin the query.� F5: the length of the shortest inverted index list of anyterm in the query. This tests whether the query has aterm that is rare in the olletion.� F6: the frequeny of the rarest query term in the log.� F7: the number of distint users who issue this query.If user IDs are not available, IP addresses an be usedinstead.� F8: the gap between the last two ourrenes of thequery that were issued by the most reently ative user.As we saw in Setion 4, a large portion of those queriesthat our only two or three times are issued by thesame user, and those queries are usually very lose toeah other in the query log.� F9: the average number of liks for the query. Intu-itively, queries with more liks might have a higherprobability of ourring again. This is one but not theonly way to harvest information from user liks. Weould also model the distribution of liks in more de-tail, or use liks to guess whether a query is naviga-tional, using the approah in [11℄.� F10: the frequeny of the rarest pair of query terms inthe query log. This measures if the query ontains apair that is only very rarely used together in queries.It is easy to think about many additional features, but wefound the above seletion to be most promising. The featuresan be grouped into two ategories: Traditional features (F1to F3) that are used by many well-known ahing algorithms,and non-traditional features (F4 to F10) that are spei� toour appliation domain and that would be obsured if weonly treat queries as objets with a unique ID.In order to understand the usefulness of these features, we�rst looked at their information gain, as ommonly studiedin mahine learning. Essentially, we want to hek how usefuleah feature is in prediting reourrene of a query within alimited number of steps. The details of this experiment area little triky (and omitted due to spae onstraints), as we�rst had to determine appropriate threshold values to get abinary lassi�ation for eah target ahe size.Features F1 F2 F3 F4 F5Cahe Size=100k 0.247 0.029 0.114 0.017 0.001Cahe Size=200k 0.213 0.018 0.102 0.009 0.011Cahe Size=400k 0.287 0.009 0.098 0.008 0.029Features F6 F7 F8 F9 F10Cahe Size=100k 0.093 0.192 0.023 0.001 0.076Cahe Size=200k 0.056 0.101 0.003 0.012 0.089Cahe Size=400k 0.078 0.106 0.009 0.010 0.098Table 1: Information Gain for Di�erent Features andCahe Sizes.



The measured information gain sores for the features areshown in Table 1, for three di�erent ahe sizes. We aneasily see that, in general, F1, F3, and F7 have the highestinformation gain, whih means they should be very usefulfeatures when deiding whih query should be evited fromahe. However, the remaining features also o�er bene�ts.Not surprisingly, some of the features are more promising forsmaller ahe sizes, while other are best for larger ones.
5.2 Caching MechanismWe now desribe how to implement a ahe evition poliybased on the above features. There are two aspets to thisproblem: How to use the features to predit the likelihood ofa reourrene of a query, and how to eÆiently identify thequery with the smallest suh likelihood.For the �rst aspet, we started out with what may looklike a very rude approah: We split the range of eah of thefeatures into a number of bins, in our ase 8, so that eahpossible value falls into one of the bins. (For example, for F3,the number of previous ourrenes of the query, we mighthave bins for F3 = 1, F3 = 2, F3 = 3; 4, F3 = 5; 6; 7; 8,et.) Thus, at any point of time, any query in the ahebelongs to one of 810 bukets based on its urrent featurevalues. For eah buket, we also keep some historial statis-tis, in partiular the total number of query instanes thatwe have observed in this buket, and how often these queriesthen reourred within a short period of time in the inputsequene. Thus, for eah buket we essentially maintain asimple estimate of the likelihood of reourrene for queriesthat fall into the buket; we then evit a query in the ahethat has the lowest suh likelihood (i.e., that belongs to thebuket with the lowest suh likelihood).A few more remarks about this approah, whih may seemextremely naive from a mahine-learning perspetive. First,many of the bukets are empty and in fat we get by withfar fewer than 810 bukets, requiring only a few MB of to-tal memory. (If spae beomes a problem, we an use fewerbukets in areas with sparse data.) In ontrast, eah ahedquery result has a size of a few KB, and thus a ahe for100000 queries takes a few hundred MB. Seond, we triedemploying smarter approahes for exploiting the features, in-luding interpolation between bukets and logisti regressionon the feature values, but we observed at most very minoradditional gains. Thus, we deided to stay with the simplebuket approah in our implementation. (In fat, this maybe another example where data size beats algorithmi teh-nique { for smaller query traes we would expet to see moreimprovements by using smarter tehniques.)Given this struture, we now have to implement an eÆ-ient mehanism for ahe evition. First, we note that anystatistis needed in features F5, F6, and F10 are preomputedbased on a sample of data; thus, e.g., the frequenies of dif-ferent terms in the query trae used in F6 are preomputedfrom a sample of queries. In general, the features an be splitinto three lasses: (1) Features suh as F2, F3, F7, F8, andF9 that an only hange their values when a query reours;in that ase, we an update the feature values of a query inthe ahe when it reours and then move the query to itsnew buket. (2) Features that are determined by the queryitself based on a preomputation and that never hange dur-ing the algorithm, e.g., F4, F5, F6, and F10. (3) Features,in our ase only F1, that hange as time proeeds. We aneÆiently deal with F1 by maintaining a data struture onthe time of last ourrene of a query, and moving queries to

new bukets whenever they would have to move to a new binaording to F1. This means that apart from movements tonew bukets that are triggered by reourrenes of a query,a query an be moved at most 7 times to a new buket alongthe F1 axis. Overall, this evition mehanism an be imple-mented to run in O(log(n)) steps per query in the workloadusing standard data struture, and is highly eÆient in termsof atual proessing overhead.
5.3 Experimental ResultsIn this setion, we present experimental results for ourfeature-based ahing approah, and ompare it to existingalgorithms. We �rst onsider result ahing in Setion 5.3.1,and later extend the approah to list ahing in Setion 5.3.2.We �rst onsider hit ratio, and then further below we lookat ost savings in the weighted ase. In all experiments, weused the �rst 10 million queries to initialize the statistis foreah buket. Then the following 5 million queries are usedto warm up the ahe, and the remaining 2:7 million queriesare used to evaluate the atual ahing performane. In gen-eral, of ourse, our feature-based approah bene�ts from theavailability of suÆiently large query logs that an be usedto derive statistis.
5.3.1 Result cachingIn our �rst experiment, we ompare a feature-based ap-proah using only F1, F2, and F3 with existing algorithms,in partiular SDC, LRU, LFU, and a variant of LFU thatkeeps a omplete history of query ourrenes. (This variantof LFU is used sine basi LFU is at a disadvantage omparedto SDC and our feature-based methods, whih use larger ta-bles of statistis). For the non-feature based algorithms, weused the �rst 15 million queries to initialize the ahe, andthen ompared results on the remaining 2:7 million queries.

Figure 7: Hit ratios for feature-based ahing withF1, F2, and F3, and for four existing algorithms.From top to bottom, the six lines shown are thehit ratios for the optimal lairvoyant algorithm, thefeature-based method, SDC, LFU with omplete his-tory and LRU (overlapping), and basi LFU.From the results in Figure 7 we see that the feature-basedapproah using only F1, F2, and F3 already slightly but on-sistently outperforms SDC, the best previous method for hitratio. Note that F1, F2, and F3 are all traditional features,but there is no reason to believe that any of the previouslyknown algorithms (suh as SDC) exploits these features in



the best possible way. So even for this limited set of fea-tures, the results suggest that maybe learning from statistisis preferable to trying to design better expliit algorithms.Next, we ran experiments with all ten features. The resultsare shown in Figure 8. We see that by using all ten features,we now get very substantial improvements over SDC, and arein fat able to signi�antly narrow the gap to the optimal o�-line method. The best method on average outperforms SDCby about 4%, whih is a fairly signi�ant improvement giventhe amount of previous work on result ahing.

Figure 8: Hit ratios for feature-based ahing withdi�erent ombinations of features. From top to bot-tom, the �ve lines shown are the optimal lairvoyantalgorithm, F1-F10, F1-F5, F1-F3, and SDC.Next, we onsider the weighted ase, where the goal is tomaximize the ost savings. To get a weighted algorithm usingfeatures, we simple multiply the ost of the query with ourestimate of its likelihood of reourrene in the near future.As shown in Figure 9, our weighted feature-based methodagain outperforms all other methods, though by a smalleramount than in the ase of hit ratio. Some improvementson this might be possible in future work, by introduing newfeatures that are more relevant to the weighted ase.

Figure 9: Results for weighted ahing. From topto bottom, the six lines shown are the hit ratios forour best o�-line algorithm, F1-F10, the best hybridfrom Setion 4.3 and F1-F3 (overlapping), SDC w,and Landlord.

5.3.2 List CachingMotivated by the suess of our approah for result ahing,we deided to also look at the related problem of list ahing,i.e., the ahing of inverted lists in main memory that is doneat a lower level in the searh engine. In previous work [1, 20℄,the best results for list ahing were obtained by using eithera �xed assignment of lists to the ahe, or versions of LFUwith additional memory. (In pratie, the LFU version re-sults in an almost stati assignment, as lists tend to stay inthe ahe forever after being inserted.) However, there is stilla signi�ant performane gap between these methods and theupper bound given by the optimal o�-line approah.We note here that list ahing is performed after doingresult ahing on the query log; this removes most of theshort-term burstiness from the query stream. Also, we au-tion that a stati or LFU method may not be appropriatefor global searh engines that observe a di�erent mix of lan-guages during di�erent times of the day { in this ase, adynami approah that hanges the mix of ahed lists dur-ing the day may be better. However, most publily availabletraes are foused on a single searh market. (The AOL traeused here is limited to the US market.) We de�ned the fol-lowing features for eah inverted list (and assoiated term)in the index:� F1-F3: same as before, but de�ned on a per-term ratherthan per-query basis.� F4: the number of distint queries ontaining this term,divided by the total number of queries ontaining it.� F5: the frequeny of the most popular query ontainingthis term.� F6: the number of times this term has ourred as asingle-term query.� F7: the number of times this term has ourred as partof a two-term query.� F8: the number of distint users (or IP addresses) thathave issued queries ontaining this term.In Figure 10 we show the results for feature-based listahing. The objetive in this ase is to maximize the amountof data that is served from ahe rather than disk. (Alterna-tively, we ould also model disk ost savings more preiselyby taking seek times into aount; the results are very sim-ilar on our data.) We see that the feature-based approahoutperforms all other methods by several perent, resultingin signi�ant savings in disk traÆ.
6. CONCLUDING REMARKSIn this paper, we have proposed and evaluated improvedtehniques for result ahing in web searh engines. In the�rst part of our work, we studied the weighted ase, whereour goal is to maximize ost savings instead of hit ratio. Wedesribed improved hybrid algorithms for this ase that arepartiularly suitable for Zipf-based query distributions. Inthe seond part of our work we proposed a feature-basedapproah to ahing that ahieves very signi�ant improve-ments in hit ratios. Interestingly, the approah also providesimproved results for the related problem of list ahing.Several interesting open problems remain. We plan to ex-periment with other features in query logs that might behelpful in prediting the likelihood of reourrene of a query,and that ould lead to additional gains in hit ratio. A moreformal analysis of burstiness in query logs, maybe starting



Figure 10: Byte hit ratios for the feature-based listahing algorithm. From top to bottom, the fourlines shown are the hit ratios for our best o�-linealgorithm, F1-F8, and LFU and the stati algorithm(overlapping).from Kleinberg's model in [10℄, would also be of interest. Fi-nally, future work on result ahing should also look at theneed for periodially refreshing ahed results. It an be ar-gued that in urrently deployed searh engines, hit ratios arelimited muh more by the need for fresh query results thanby ahe size onstraints. To our knowledge, this issue hasnot been addressed by any published work.Aknowledgements: We thanks Xiaojun Hei for ollab-oration in the early stages of this work, and Keith Ross andDan Rubenstein for valuable disussions of ahing underZip�an distributions. This researh was partly supported byNSF ITR Award CNS-0325777.
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APPENDIX
Zipf-based Probability AnalysisWe now show our derivation of Equation (1) in Setion 4.3. We assumea sequene of events fu1; :::; udg that is generated following a Zip�andistribution of probabilities. (Note that this is a simpli�ation as thisis not neessarily the same as the observed distribution.) Let pi bethe probability of hoosing ui, i.e., pi = i�z=T where T is P i�zwhen i = 1; 2:::; d. We assume that we know the size of the underlyinguniverse U and the Zipf parameter z. Let Xk denote the fat that xhas ourred k times. We estimate the probability that an item wehave observed a ertain number of times k will reour in the nextstep:Pr[x ours in the next step jXk ℄ = dXi=1 pi � Pr[x = ui jXk ℄ (2)Using Bayes' Theorem, we getPr [x = ui jXk℄ = Pr [x� > k jx = ui℄ � Pr [x = ui℄Pr [Xk℄ (3)If we pik an item x uniformly at random from all d possible items,we have Pr [x = ui℄ = 1=d. Furthermore, using B(pi; h; k) = � hk �pki �(1� pi)h�k we get: Pr [Xk℄ = 1d � dXi=1B(pi; h; k) (4)and Pr [Xk jx = ui℄ = B(pi; h; k) (5). Putting this all together, we getPr [x ours in the next step jXk ℄ = dXi=1 pi �B(pi; h; k)dXj=1B(pj ; h; k)! (6)Thus, if we have observed that an item x has ourred k timesin h steps, and knowing d and z but not taking into aount anyobservations about how many times other items have ourred in theseh steps, the above estimates the likelihood the item will our againin the next step, or in any other step.


