Towards Efficiency and Portability:
Programming with the BSP M odel

Mark Goudreau*
Torsten Suel 2*

Abstract

The Bulk-Synchronous Paralel (BSP) model was proposed
by Valiant as amodel for genera-purpose paralel computa
tion. The objective of the model is to allow the design of
paralel programs that can be executed efficiently on a va
riety of architectures. While many theoretical argumentsin
support of the BSP model have been presented, the degree to
whichthemodel can beefficiently utilized on existing parall el
machines remains unclear.

To explore this question, we implemented a small library
of BSP functions, called the Green BSP library, on several
paralel platforms. We also created a number of paralel
applications based on this library. Here, we report on the
performance of six of these applications on three different
parale platforms. Our preliminary results suggest that the
BSP model can be used to develop efficient and portable
programs for a range of machines and applications.

1 Introduction

A fundamental obstacleto the widespread use of paralel ma-
chines for general -purpose computing isthe lack of awidely
accepted standard model of parallel computation. Unlikethe
world of sequential computing, where the widely accepted
von-Neumann model facilitates the development of portable
software, paralel programs developed on one machine of-
ten require major modifications before they can be efficiently
employed on other parallel machines.

TheBulk-SynchronousParallel or BSP model [34] waspro-
posed by Vaiant as a “bridging model” that provides a stan-

1Department of Computer Science, University of Central Florida, Orlando,
FL 32816-2362. Email: goudr eau@s. ucf . edu.

2NEC Research Ingtitute, 4 Independence Way, Princeton, NJ 08540.
Email: {kevi n, sati sh, torsten}@ esearch. nj.nec.com

3Department of Computer Science, Columbia University, New York, NY
10027. Email: t hanasi s@s. col unbi a. edu.

4Part of this work was donewhile visiting UC Berkeley. Present address:
Computer Science Division, University of California at Berkeley, Berkeley,
CA 94720.

Kevin Lang?

Satish Rao?*
Thanasis Tsantilas®

dard interface between the domains of paralel architectures
and algorithms. IntheBSPmodel, aparallel machine consists
of aset of processors, each with its own private memory, and
an interconnection network that can route packets of some
fixed size between processors. The computation is divided
into supersteps. In each superstep, a processor can perform
operations on loca data, send packets, and receive packets.
A packet sent in one superstep is delivered to the destination
processor at the beginning of the next superstep. Consecutive
supersteps are separated by a global synchronization of all
processors.

The communication time of an a gorithmin the BSP model
isgiven by asimple cost function. The two basic parameters
that model aparallel machine are (1) thegap ¢, which reflects
network bandwidth on a per-processor basis, and (2) the la-
tency L, which isthe minimum duration of a superstep, and
which reflectsthelatency to send apacket through the network
as well as the overhead to perform a global synchronization.

Consider aBSP program consisting of S supersteps. Then
the execution time for superstep isgiven as

wi + gh; + L,

where w; isthe largest amount of work (local computation)
performed, and h; the largest number of packets sent or re-
ceived by any processor during the superstep. The execution
time of the entire program is defined as

W+ gH + LS, 1)

where W = S0 twi and H = 200 hy. We cdll
and W the work depths of the superstep and the program,
respectively.

Efficient programming of a BSP machine is based on a
simple objective. To minimize the execution time as given by
Equation (1), the programmer must attempt to (1) minimize
the work depth of the program, (2) minimize the maximum
number of packets sent or received by any processor in each
superstep, and (3) minimize the total number of supersteps
in the program. In practice, these objectives can conflict,
and trade-offs must be made. The correct trade-offs can be
selected by taking into account the ¢ and L parameters of the
underlying machine.

Valiant [34, 35, 33] argues that, at least in theory, this ap-
proach is sufficient for portability and efficiency, by showing
that many other programming styles can be automatically

and efficiently transformed into a BSP style. Furthermore,
Gerbessiotis and Valiant [13] point out that a direct imple-
mentation on the BSP model will often lead to even better
performance.

We briefly discuss two aspects of the BSP model. Oneis
that the BSP model views the interconnection network as a
batch-routing network that can efficiently route arbitrary bal -
anced communication patterns. The model ignores the par-
ticular network topology of the underlying machine. Hence,
the model only considerstwo levels of locality: local (inside
aprocessor) or remote (outside a processor).

Another observation is that the BSP modd requires com-
plete cooperation among all processors to route even asingle
message. While this may seem an unnatura restriction, we
arguethat itisappropriate. Asstated above, Vaiant has made
numerous theoretical arguments that paralel programming
need not be optimized at the single-message level. Moreover,
in the context of interconnection networks, one can achieve
better bandwidth when routing large batches of messages.

In contrast, asynchronous models seem to encourage the
programmer to design and optimizetheir code with respect to
thearrival of singlemessages. Thus, it iscontingent upon the
architect to attempt to minimize single-message latencies.

Finally, we also fed that it is fundamentally easier to rea
son about the correctness and performance of BSP programs,
as opposed to aggressively asynchronous message-passing
programs.

1.1 Content of thisPaper

Weattempt to eval uatethe use of the BSPmodel for thedesign
of efficient and portable paralel programs. In particular, we
are interested in exploring the range of agorithmsand appli-
cationsthat can be efficiently implemented in the BSP model.
While there seems to be general agreement that some prob-
lems can be efficiently solved in thismodd, it has also been
argued that there may be other problems that require asyn-
chronous message passing or even shared memory for an effi-
cient implementation on current machines. Thus, we believe
that in order to argue for BSP as a basis of genera -purpose
paralel computing, it is necessary to show that the modd is
not restricted to certain classes of well-behaved problems, but
can indeed efficiently implement most parallel applicationsof
interest. By exploring thisissue, we also wish to giveabasis
for a comparison with asynchronous models such as LogP
and certain shared-memory models.

In particular, we designed severd parallel applicationsthat
use the Green BSP library [15], a smal library of BSP
message-passing functions that we have implemented on a
number of parallel platforms. The applicationsare:

e an N-body simulation using the Barnes-Hut algorithm,

e an ocean eddy simulation program adapted from the
SPLASH application suite[31],

e aminimum spanning tree algorithm,
o ashortest paths algorithm,
o amultiple shortest paths algorithm, and

o adense matrix multiplication algorithm.

Inall of our applications, we used only the BSP cost model
in both the design and optimization stages of the program
development. That is, we made al of our design and opti-
mization choices based purely on the BSP cost function as
described by Equation (1). As stated earlier, a BSP program-
mer may use knowledge of a machine's ¢ and I. parameters
in order to write more efficient code. Our approach, how-
ever, merely assumed that communication is somewhat more
expensive than local computation and that global synchro-
nization isconsi derably more expensive than communication.
This approach appears reasonabl e for awide range of current
machines. In discussing our applications, we touch upon
some of our programming decisions and their relationship to
the BSP cost moddl.

We describe implementations of the Green BSP library
on three different machines: a shared-memory machine, a
distributed-memory machine, and anetwork of PCs. We then
characterize the performance of these machines in terms of
the BSP cost model, and evaluate the performance of our
applications on these machines.

Our results are encouraging, in that our BSP applications
obtain significant speed-ups on all three systems, including
nearly perfect speed-up in severa instances. That is, we pro-
videsome evidencethat the BSP model isuseful for designing
efficient and portable parallel programs.

Another question that we investigateis the accuracy of the
BSP cost function in comparison to the actual running times.
Following [6], we provide data for our applications that can
be used to predict the execution times on each machine under
the BSP cost modd.

Our results demonstrate that the model was able to predict
execution timesfairly accurately, although we emphasi ze that
we used the BSP cost function only to model communication
and synchronization costs, and for many of our application
these overhead costs were a small component of the overall
execution time.

Even for those applications for which the communication
and synchronization costswere significant, our resultssuggest
the cost function is quite useful for predicting performance
trends. For example, consider the performance of the ocean
simulation withinput size 130in Figure 1.1. The cost model
accurately predicts that little will be gained by using 4 PCs
rather than 2, and that performance will severely degrade
when using 8 PCs. Similarly, the cost function accurately
predictsthat the performance of the NEC Cenju on thisappli-
cationwill not improve much by using morethan 4 processors
on thisinput size.

Ocean 130
35 T T

"SGI_actual" <—
"SGI_predict" -
"SGI_comm" -~
3- 2 "Cenju_actual" -—
"Cenju_predict" -4
"Cenju_comm" -&--
"PCs_actual" &—
"PCs_predict" -&
"PCs_comm" &-- 7

25

time (seconds)

15

05|

0 7 s 1 1 L
0 2 4 6 8 10 12 14 16
number of processors

Figure 1.1: Actual and predicted times and predicted com-
muni cation times (including synchronization) for Ocean (size
130)

1.2 Caveats

Before proceeding, we mention some caveats that the reader
should keep in mind when evaluating our data.

o We report our speed-up numbers in terms of the ratio
of the parald runtime and the runtime of the same pro-
gram on a single processor. Viewing this definition of
speed-up as a performance gain assumes that the single
processor code is a reasonable sequentia program. For
most of our applicationsthisisthe case, even thoughthe
sequential code may not be completely optimized. For
matrix multiplication, however, many highly optimized
sequential codes exist, and thus our speed-ups for this
application should be interpreted cautioudly.

o Several of our results exhibit superlinear speed-up. As
has been repeatedly observed, the tota computational
work for a parallel program may actualy be less than
that of a sequentia version of the program. There are a
variety of possible explanations for this effect (ranging
from caching to suggestionsthat the sequential program
isflaved.) As stated above, we provide data about the
total work for each application and problem size. We
discussthisissuein more detail in Section 3.

o Part of our objective is to examine the predictive capa
bility of the BSP cost model. We consider BSPto model
only communication and synchronization; 1/0 and lo-
ca computation are not modeled. As a result, none of
our experiments include 1/0, and the work depths are
measured as best as possible on our platforms.

¢ Onewould liketo compare results using the BSP model
with results obtained by using other models, or by pro-
gramming directly for a particular machine. While
we compare our ocean and N-body applications with

shared-memory implementations, we warn the reader
that detailed comparisonswill not be found in thiswork.
We hope that our applications can be used as a basis for
future research along these lines.

o The machines used for thispaper al exhibit only amod-
erate level of parallelism (up to 16 processors). The
extent to which our results are applicable to larger ma
chinesisan open question. Promisinginitial resultshave
been obtained for experiments on machines with 64 and
more processors, but are not included here.

1.3 Reated Work

Since theintroduction of the BSP model, a number of papers
have considered the design and analysis of agorithms under
the BSP model; see, for example, [4, 6, 13, 25, 33].

Severa groups of researchers are currently exploring the
use of the BSP model on existing parallel machines. The
Oxford BSPlibrary, devel oped by Miller [27] whileat Oxford
University, allows a processor to directly access the memory
of another processor. This makes thelibrary very efficient to
implement on shared-memory machines. Moreover, itiswell
suited for many static computations that arise in scientific
computing. In contrast, the Green BSP library is based on
message passing, which requires the programmer to prepare
and read messages. On the other hand, the Green BSPlibrary
is better suited for the dynamic applications that we have
experimented with.

Also at Oxford University, W. McColl’s group is working
on the development of several BSP programming languages
and industrial applications[18, 20, 26].

A group at Harvard University lead by T. Cheatham and L.
Valiant is studying higher-level programming languages and
compilationtechniquesfor theBSPmodd [9, 8]. R. Bissdling
at the University of Utrecht is studying the use of the BSP
mode! intheimplementation of scientific computations|5, 6].
A recent implementation of a plasma simulation using the
Oxford BSP library is described in [28].

A number of other models for general-purpose parallée
computing have been proposed in recent years; see [24] for
an overview. An important example for a model based on
asynchronous message passing isthelLogP model [11], which
model sthe performance of point-to-point messageswiththree
parameters representing software overhead, network latency,
and communication bandwidth. The LogP model has been
used as a performance model for active messages36] and
the Split-C language [10], where it has been applied to the
analysis of several agorithms.

Other related models are the Postal Model [2], the Atomic
Model [22], and several model sfor end-point contention (e.g.,
see[1]) inspired by the prospect of optical communicationin
paralel machines. Like BSP and LogP, these models do not
refer to the topology of the underlying machine, but assume

that the interconnection network behaves essentially like a
completely connected network, with the only contention aris-
ing at the processor-network interface.

A somewhat different approach to portable parallel pro-
gramming isbased on standardized message-passing libraries
such as PVM [12] and MPI [16]. While these libraries pro-
vide a common set of functions on a variety of parale ma-
chines, they do not offer any cost function (in the strict sense)
that could guide the programmer in the design of efficiently
portable code. In fact, it seems that the very idea of these
libraries is to offer a fairly rich set of functions, including
various collective operations, each of which can be optimized
with respect to theunderlying architecture. Thisrulesout any
simple cost model based on just a few parameters, whereas
the BSP and LogP models assume a very small set of basic
functionsand (at least intheory) require any other operations
to be implemented on top of these functions.

Finally, our choice of the application programsand presen-
tation of the resultsisinfluenced by the SPLASH application
suite for shared-memory machines [30]. Also, our BSP code
for the ocean simulation was obtained by modifying the cor-
responding SPLASH program.

Theremainder of the paper isorganized asfollows. Section
2 describes the versions of the Green BSP library used in our
experiments and their performance. Section 3 describes the
application programs and their performance. Finally, Sec-
tions 4 and 5 offer some concluding remarks and directions
for futureresearch.

2 BSP System: Implementation and Results

Our experiments use the Green BSP library [15], a smal
library of functions that implement the BSP model. The
philosophy behind the library is to provide basic BSP func-
tionality with a minimal number of functions. Thus, Green
BSP offers only one type of communication and one type of
synchronization operation.

This minimalist approach serves two purposes. First, it
greatly simplifies theimplementation of thelibrary. A Green
BSP library can be implemented on almost any paralld plat-
form. Second, it focuses attention onthe fundamental aspects
of theBSP model. Part of our objectiveisto demonstrate that
efficiency can be achieved even with such simple functional -
ity. A description of the functionsin the Green BSP library
isgivenin Appendix A.

It should be noted that it is also possible to write applica
tionsin the BSP programming style using existing portable
libraries such as PVM [12] and MPI [16]. However, these
libraries provide far greater functionality than isrequired for
the BSP model, and were not designed with the goal of sup-
porting efficient BSP computation.

The Green BSP library has been implemented on a num-
ber of platforms. The resultsin this paper are based on the

followinglibrary versions and parallel machines:

e a shared-memory version, used on an SGI Challenge
with sixteen MIPS R4400 processors,

e an MPI version, used on an NEC Cenju consisting of
sixteen MIPS R4400 processors connected by a multi-
stage network, with a peak bandwidth of 20 Mbytes/sec
available for each processor, and

e a TCP verison, used on a system of eight 166-MHz
Pentium PCs connected by a 100-Mbit Ethernet switch.

A short description of each of these library versions can be
found in Appendix B.

Figure 2.1 shows the values of L and ¢ achieved by the
different versions of our library. The valuefor L corresponds
to the time for a superstep in which each processor sends a
single packet. The bandwidth parameter ¢ is the time per
16-byte packet for a sufficiently large superstep with atotal-
exchange communication pattern.

3 Applications: Implementation and Results

For each of our applications, we ran experiments on 4 or
5 different input sizes and numbers of processors. In this
section, we give a brief description of each application, and
summarize theresults of our experiments. The compl ete data
for al experiments is given in Appendix C, where we also
explain how the numbers were obtained. A brief overview of
the performance resultsis shown in Figures 3.1 and 3.2.

Figure 3.1 shows speed-up results for large input sizes, for
each applicationand system. The speed-up resultsare usually
stated as the ratio of single-processor time and parallel time.
In two cases, we were unableto run therelevant problem size
on asingle processor; here we give estimates of the speed-up.

In analyzing the performance of our algorithmswe noticed
that the total work (i.e., local computation) performed by the
16-processor programs on the SGI were typically less than
the total work performed by the single-processor programs.
(A possible explanation isthat the paralel codeswerein fact
better sequential programs than the single processor codes
on these applications.) For this reason, we aso include in
Figure 3.1 the ratios of total work and parallel time for the
16 processor SGI. (These are thevalues in parentheses in the
speed-up column for the SGI.)

In Figure 3.2, we provide some dataabout the abstract BSP
performance of our applications. We also provide the algo-
rithmic parameters, includingthework depth (as measured on
the SGI), thesum over all supersteps of the maximum number
of messages sent or received by any processor, and the num-
ber of supersteps. We aso include the actua running times
and predicted running times using the BSP model, where the
valuesfor L and g are taken from Table 2.1.

SGI SGI Cenju Cenju PC PC
bandwidth cost latency cost bandwidth cost latency cost bandwidth cost latency cost
nprocs | (microseconds) (microseconds) | (microseconds) (microseconds) | (microseconds) (microseconds)
1 77 3 22 130 .92 2
2 .82 16 22 260 3.3 540
4 .88 29 22 470 4.8 1556
8 97 52 25 1470 8.6 3715
9 1.0 57 2.7 1680 - -
16 .95 105 3.6 2880 - -

Figure 2.1: BSP system parameters

We also include the total work on 16 processors for the
SGI, where the total work is defined as the sum of the local
computation done by all the processors. This specifically
does not includeidle times caused by load imbalance, or any
communication time,

Thework depth and thetotal work of the parallel programs
were computed by simulating the parallel computation on a
single processor using an IPC shared-memory implementa-
tionof our library. Insomeof our applications, thisintroduces
systematic errors that produce high predicted running times.
That is, occasionally the work depth will be more than the
actua parald runtime. We point out the applications where
we believe these errors to occur in the discussion below.

Inthefollowing, we give a brief discussion of the applica
tions. For each application, we describe its implementation,
and discuss the resulting performance in terms of highlights,
lowlights, algorithmic performance in the BSP cost model,
and possible implications. We also discuss some additional
experiments and analyses whose data was not included in the
main part of this paper.

3.1 Ocean Simulation

We converted an ocean eddy simulation program from the
Stanford Parallel Library for Shared Memory Applications
(SPLASH) [31] to our BSP system. The program computes
ocean eddy currents using a multigrid technique on an under-
lying grid; see [29] for details. The conversion to BSP was
fairly straightforward, due to the fact that the SPLASH code
for thisapplication was basically already in aBSP style.

3.1.1 Discussion

The performance of the BSP ocean code on the SGI matches
that of the direct shared-memory SPLASH implementation
for problem size 258. This may be seen as somewhat sur-
prising given that we are using message passing on a shared-
memory architecture. We believe this speaks well of our
library implementation in particular and of the prospect of
efficient BSP library implementationsin general.

On the NEC Cenju, the ocean code performs relatively
poorly with 16 processors, except for the largest problem
size, where it performs much better (perhaps nearly ideal; we

only give aplausiblelower bound in thetable, asthe problem
was too large for a single processor). We suspect that thisis
due to the fairly large latency of the BSP implementation on
the NEC Cenju, given that the BSP algorithmic datain Table
C.1 showsthat the number of superstepsis quitelarge.

A surprising aspect of the ocean program isthat the number
of supersteps actually decreases withincreasing problem size.
Thus, asthe problem sizeincreases, thelatency overheadswill
become less significant at an even faster rate than one would
normally expect in paralel computing. It can be hoped that
the high-latency systems quickly “catch up” as the problem
size grows. Our data shows that this occurs for both high-
latency systems (8 processor PC-LAN and 16 processor NEC
Cenju) at aproblem size of 514.

We note that our estimates for the computational work of
the ocean program are systematicaly too high. In particu-
lar, the estimates obtained through the 1PC single-processor
simulation are actualy higher than the actua running time
of the code. Thus, our predicted times for the ocean pro-
gram are too high. We also ran additional experiments on the
PC-LAN for this application that suggested that the compu-
tational work of the parallel program goes down dramatically
for the PC-LAN, whileit does not for the SGI system. Thus,
any observed speed-up for the PC-LAN may have as much to
do with this effect as with parallelism.

3.2 N-Body Simulation Using Barnes-Hut

The N -body problem isthe problem of simulating the move-
ment of a set of N bodies under the influence of a gravita-
tional, electrostatic, or other type of force. The problem has
numerous applications in astrophysics, molecular dynamics,
fluid dynamics, and even computer graphics.

The N-body code in this study is based on the Barnes-
Hut agorithm [3], which uses an irregular oct-tree structure,
caled BH tree, to hierarchically group bodies into clusters
according to their distribution in three-dimensional space.
Our paralld implementationis similar to those of Warren and
Salmon [37] and Liu and Bhatt [23]. In particular, we use
the ORB partitioning scheme to partition the bodies among
the processors. Instead of repartitioning the bodies after each
iteration asin[37], weonly do soif thel oad imbal ance reaches

SGI (16 procs) Cenju (16 procs) | PCs+LAN (8 procs)
time spdp time spdp time spdp

Ocean (size=514) | 223 17.0(15.88)* | 4.0 13 6.46 7.2
N-Body (size=64K) | 5.04 14.8(13.9) | 3.72 15.6 6.06 7.6
MST (size = 40K) 04 15.8(9.8) | 0.56 10.1 0.65 4.2
SP (size = 40K) 026 9.7(7.23) | 048 53 0.59 2.6
MSP (size = 40K) 4.71 9.4 (8.4) 3.68 12~ 4.88 7.1
MM (size = 576) 242 114 231 13 na na

Figure 3.1: Speed-up summaries for large problem size

SGI SGI || SGI Total Work Total Work

app size || pred time || W H S 16 procs 1 proc

ocean 514 || 248 223 || 238 69946 312 35.43 38.43

nbody 64k || 497 5.04 || 495 24661 6 70.06 74.08
mst 40k || 0.34 04 || 0.32 9562 62 3.92 6.3
p 40k || 028 0.26 || 0.26 2820 101 1.88 254

msp 40k || 364 4.71 || 358 39874 138 39.57 44.36

matmult 576 || 209 242 || 1.97 124416 7 3121 27.53

Figure 3.2: Algorithmic and model summaries for large problem size on 16 processor SGI system.

a certain threshold, as suggested in [23].

The positions of the bodies are updated in discrete time
steps. In each step, the BH tree is first constructed locally
inside each processor. Then appropriate subtrees, caled “es-
sential trees’, areexchanged between every pair of processors,
such that afterwards every processor has alocal BH tree that
containsall the data needed to compute the forces on its bod-
ies, and whose structure is consistent with that of the global
BH tree constructed by the sequential algorithm. A detailed
description of our implementation can befoundin [32].

3.2.1 Discussion

As input for our experiments we used the Plummer model
generated by the SPLASH code [31]. The timing and speed-
up resultsin Figures 3.1 and C.4 show that for large enough
input sizes, the N -body code achieves nearly perfect paralel
speed-up on the SGI and NEC Cenju. Our implementation
needs dightly larger input sizes than the SPLASH code to
achieve the same speed-up. However, even the largest input
sizein Figure C.4 is not overly large, given that smulations
are currently performed with hundreds of thousands and even
millionsof bodies[37].

*This is an estimate on the speed-up as we were unable to run the largest
problem size on a single processsor.

#Valuein parenthesesis the speed-up relative to the total work performed
by all 16 processors. This speed-up is smaller than the speed-up relative to
the single-processor version, thus indicating that the parallel program is in
fact performing less work than the single-processor version.

Therunning timeof the single-processor version of our im-
plementation is dlightly faster than that of the SPLASH code.
As in the SPLASH code, we did not attempt to fully opti-
mize the computation of the interactions, which take around
97% of the total sequential running time for a problem size
of 16K on the SGI. Of course, doing this might increase the
relative weight of the parallel overhead, and thus decrease the
resulting speed-up.

Our N-body code performs only six supersteps per itera-
tion. This makes the program efficient even on fairly small
problem sizes and high-latency platforms. The applicationis
irregular and dynamic, due to the changing positions of the
bodies. However, theload distribution can be predicted fairly
accurately from that of the previous iteration, as the system
evolves only slowly. The bandwidth requirements are fairly
modest, as wewere careful in minimizing the amount of data
sent during the transmission of the “essentia trees’.

3.3 Minimum Spanning Tree

The minimum spanning tree of a weighted graph ¢ is the
tree of minimum weight that contains al the nodes of ;. In
our paralel implementation, we assume that the input graph
isinitially partitioned among the processors. Each processor
contains adata structure representing the portion of the graph
for which it is responsible, and also a copy of each node in
the graph that is connected to anodeinitsportion. The nodes
for which a processor is responsible are called home nodes
and the other nodes are called border nodes.

The algorithm is conservative' for the BSP model in that
the number of messages communicated by any processor is at
most the number of its border nodes. The program starts out
withacompletely local phase that computestheloca compo-
nentsof the minimum spanningtree. The programthen enters
a parallel phase that uses a simplification of a conservative
DRAM algorithm developed by Leiserson and Maggs [21].
Once the number of components becomes small, the program
switches to a mixed parallel/sequential phase that first uses
all the processors to find subforests of the remaining compo-
nents using edges that are guaranteed to be in the minimum
spanning tree, and then uses a single processor to assemble
the forests into components. See [14] for more details.

The input graphs are generated as follows. Nodes are
assigned uniformly at random to points on the unit square.
Now construct a graph G/() on the nodes by adding an edge
between all nodes within distance ». The graph & is G(9)
where ¢ is the minimum value such that G(d) is a single
connected component. The weight assigned to edge («, v) is
the distance between the points corresponding to « and v.

For thisclassof input graphs, therunning timeof thesingle-
processor version of our paralel MST code is within 5% of
a sequentia implementation of Kruska’s algorithm on 10K
node graphs.

3.3.1 Discussion

This application is a fast computation (less than a second
for the paralel code on the largest problem size). Thus,
even a modest number of communication steps can figure
significantly into the running time of the a gorithm on high-
latency systems. As aresult of this, we once again obtain
significantly better results for the low-latency SGI than the
high-latency systems. Still we achieved a factor of 4 on the
very-highlatency 8 processor PC-LAN, and afactor of 10 on
the high-latency 16 processor Cenju.

L ooking at theal gorithmic data, we observethat the number
of superstepsrequired for thiscomputation growsquites owly
with the problem size. Furthermore, the tota volume of
communicationisquitesmall relativeto the computation costs
for even the smallest problem size. That is, even for our
worst machine the ratio between the total bandwidth cost and
running timefor the smallest problem sizeislessthan athird.
For thelargest problem sizestheratioislessthan an eighth on
our worst BSP machine. Thissuggeststhat we could perform
MST computationson more highly connected graphs without
much degradation in performance.

Finally, as discussed in the introduction, the good speed-
up resultsfor the minimum spanning tree application on large
input sizes shown in Figure 3.1 should be qualified, sincethe
total work (3.9 seconds) for 16 processorsis significantly less
than the work (6.3) for asingle processor. The parenthesized
number next to the speed-up, obtained by dividing the total

1This concept was originally defined for the DRAM model [21].

work by thetime required on 16 processors, is perhapsamore
reasonable measure of the performance of the algorithm.

Thus, the best we can claim is about 70% of idea speed-
up (despite the speed-ups reported in the table for the SGI).
We argue that thisis still quite good since our initial graph
partitioning is only load-balanced to within about 10%, and
the nature of the computation is quite dynamic.

3.4 Shortest Paths

A single source shortest paths computation on a weighted
graphlabel seach node « with adistancelabel that corresponds
to the length of the shortest path from « to the source. 1n our
implementation, we assume that the input graph is initialy
partitioned in the same way as in the minimum spanning tree
application. The class of graphs in our experiments is also
the same.

We first implemented a naive parallel version of Dijkstra’s
algorithm, where each processor contains a priority queue of
nodeswhose distancelabel shaverecently changed. Each pro-
cessor proceeds by removing nodes from the priority queue
and updating the neighbors as in Dijkstra's agorithm, un-
til the priority queue is empty. Then each processor sends,
for each home node whose distancelabel has changed, ames-
sageto any processor that containsthat node as a border node,
and ends its superstep. This process repeats until no nodeis
entered into the priority queue during a superstep.

On noticingthat thisapproach workspoorly, we redesigned
the algorithm. We allowed a processor to communicate and
end its superstep whenever it had worked on its local piece
of the graph for some period of time called the work factor,
rather than having it continue until it had absolutely no work
left. This may lead to both better load balancing and quicker
convergence. Inany case, it leads to better performance.

The appropriate way to use this algorithm is to adjust the
work factor according to thearchitecture (i .e., thework factor
should grow with L). In our data, we chose one work factor
to optimize performance across our platforms. That is, our
numbers are for the exact same program and input on al of
the architectures.

3.4.1 Discussion

For this application, the performance was limited by load-
balancing issues for the low-latency systemsand by synchro-
nization costs for the high-latency systems.

For the single source shortest path problem, no efficient
paralel agorithms are currently known; this was the reason
for choosing a naive paraldization of the sequentia algo-
rithm. While our best speed-up of 10 for a two-second long
computation is not an embarassment, one can question the
scalability of this approach for shortest path computationsin
genera. Also, sincethe sequential work again decreases with
increasing numbers of processors, thereported speed-upsmay
be considered generous.

Still, wefelt that thiswasaninterestingfirst step towardsthe
application of performing several shortest path computations
on the same graph. Indeed, this algorithm does serve as the
fine-grained inner loop of our next application.

3.5 Multiple Shortest Paths

In many situations, itisuseful to perform anumber of shortest
path computationssimultaneously. Examplesaretheall-pairs
shortest paths problem (or a subset of al-pairs), the global
routing phase in VLS| layout, and some graph partitioning
heuristics. Thus, we modified the code in the previous appli-
cation to alow the computation of many shortest path trees
simultaneoudly.

Here, one can use the same underlying (read-only) graph
and keep data structures for each computation for the read-
write data required in Dijkstra's algorithm. We note that the
graph itself required Q(|E| + |V|) storage, while the read-
write datais O(|V]), or more specifically, three integers and
one double per node.

3.5.1 Discussion

In our experiments, we performed 25 shortest path compu-
tations simultaneoudly. We used the same work factor asin
the shortest path experiments. The total sequential work de-
creased only dlightly with increasing numbers of processors.
Thus, our speed-up numbers are mostly due to paralelism
rather than computational advantages.

Our results for this experiment are particularly impressive
for the PC-LAN considering the high latency of this sys-
tem. We obtain a speed-up of 7.1 on our 8-processor setup.
Moreover, itsraw performance is essentially the same as the
16 processor SGI system, while its cost is a fraction of the
cost of the SGI system. This bodes well for the prospect of
distributed data applications on networks of workstations.

3.6 Matrix Multiplication

This program multipliestwo dense n x n matrices A and B
using Cannon’sagorithm (e.g., see[19]). The input matrices
are assumed to be initialy partitioned into blocks of size
n/\/p x n/\/p, such that processor i holds the block with
index (x, 2 +y mod ,/p) of A, and theblock withindex (x +
y mod \/p,y) of B,wherez = |i/,/p| and y = i mod ,/p.

The agorithm then proceeds in /p iterations. In each
iteration, each processor first multipliesits two local blocks
using a sequentia blocked matrix multiplication algorithm,
and adds theresult to the local part of the result matrix C'. It
then sends the A block to the next processor on itsright, and
the B block to the next processor below it (modulo /p).

3.6.1 Discussion

The matrix multiplication program is the most trivial of our
applications, and the most regular one in terms of the com-

munication pattern. The number of superstepsis small (pro-
portional to /p), and the communication cost is mainly de-
termined by the size of the h-relations. Of course, as the
input size increases, this cost isitself dominated by the local
computation cost.

Notethat thisisthe only application where the NEC Cenju
achieves significantly better speed-up than the SGI. Compar-
ing the results with the predicted times, we observe that our
predictionsfor the SGI aretoo optimistic. Wesuspect that this
may be dueto thefact that the SGI is not atrue BSP machine,
as the only private memory in the SGI are the caches.

4 Conclusions

We have described the implementation and performance
of severa parald applications that use a simple message-
passing library based on the BSP model. We believe that our
results are encouraging, and that they suggest that the BSP
model can efficiently execute arange of applicationson many
current machines.

Concerning the accuracy of the BSP cost model, we be-
lieve that the cost model should not be expected to accurately
predict the precise running times on various input sizes and
machines. Such a“curve fitting” approach seems more real -
istic on fairly simple subroutines (i.e., broadcast or sorting)
than on more complex application programs. Also, note that
the degree to which computation and communication can be
overlapped depends on the particular architecture and appli-
cation. (Whilewe have defined the cost function asthe sum of
communication and computation costs, it is also sometimes
defined as the maximum of the two.)

However, we found the cost model to be very reliable in
modeling the overall behavior of an application, includingthe
prediction of “breakpoints’ at which the performance changes
fundamentally due to the effects of latency, bandwidth, or
loca computation. We believe that this should make the
BSP model a good evauation tool for paralel architectures
and agorithms. In general, we fed that the cost model was
accurate enough to guide us towards an efficient solution.

5 FutureResearch

Additiona work is certainly needed in order to arrive a a
more complete assessment of the strengths and limitations
of the BSP approach. In particular, all the experiments in
this paper were performed on parallel machines with afairly
small number of processors, and we plan to extend our study
to several larger machines.

We are also currently working on the implementation of
some additional application programs, including the adaptive
Fast Multipole Method [7] and a hierarchical algorithm for
the radiosity problem in computer graphics[17].

Finally, much algorithmic and experimental work is still
needed in the implementation of optimized BSP libraries on

different parallel machines.

Acknowledgements

We thank Andrew Goldberg and Marios Papaefthymiou for
their help in the implementations of the minimum spanning
tree and shortest paths applications. We acknowledge hel pful
discussionswith Kai Li and Jim Philbin on the BSP library,
and with J. P. Singh on N-body simulations. We a so thank
the anonymous reviewers for their helpful comments.

References

(1

(2

(3l

(4

(5]

(6]

(8

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Adler, J. Byers, and R. M. Karp. Scheduling parallel communica-
tion: Theh-relation problem. In Proc. 20th Symp. on Math. Foundations
of Computer Science, Aug. 1995.

A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the
postal model for message-passing systems. In Proc. 4th ACM Symp.
on Parallel Algorithms and Architectures, pages 13—-22, June 1992.

J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation
agorithm. Nature, 324(4):446-449, 1986.

A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient
parallel algorithms: c-optimal multisearch for an extension of the BSP
model. In Proc. 3rd Annual European Symp. on Algorithms, Sep. 1995.

R. H. Bisseling. Sparse matrix computations on bulk synchronous
parallel computers. In Proc. Int. Conf. on Industrial and Applied Math.,
July 1995.

R. H. Bisseling and W. F. McColl. Scientific computing on bulk syn-
chronous parallel architectures. In B. Pehrson and I. Simon, editors,
Proc. 13th IFIP World Computer Congress, volume 1, pages 509-514.
Elsevier, 1994.

J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole
agorithmfor particle simulations. SAM J. on Scientific and Statistical
Computing, 9(4):669-686, July 1988.

T. Cheatham, A. Fahmy, and D. Stefanescu. Genera purpose opti-
mization technology. Tech. report, Center for Research in Computing
Technology, Harvard University, Dec. 1994.

T. Cheatham, A. Fahmy, D. C. Stefanescu, and L. G. Valiant. Bulk syn-
chronous parallel computing — a paradigm for transportable software.
In Proc. 28th Hawaii Int. Conf. on System Science. |EEE, Jan. 1995.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta,
T. von Eicken, and K. Yelick. Parallel programming in Split-C. In
Proc. Supercomputing 1993, Nov. 1993.

D.Culler, R.M.Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a
realistic model of parallel computation. In Proc. 4th ACM Symp. on
Principles and Practice of Parallel Programming, pages 1-12, May
1993.

A. Geigt, A. Begudlin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam. PVM: Parallel Virtual Machine — A User’s Guide and
Tutorial for Networked Parallel Computing. MIT Press, Cambridge,
MA, 1994.

A. V. Gerbessiotisand L. G. Vaiant. Direct bulk-synchronousparallel
agorithms. J. of Parallel and Distributed Computing, 22(2):251-267,
Aug. 1994.

A.V. Goldberg, K. Lang, and S. Rao. Computing minimum spanning
tree with the Green BSP library. In preparation, April 1996.

M. Goudreau, K. Lang, S. Rao, and T. Tsantilas. The Green BSPlibrary.
Tech. Report CR-TR-95-11, University of Central Florida, 1995.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, 1994.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31

(32

[33]

[34]

[35]

[36]

[37]

P. Hanrahan, D. Saltzman, and L. Aupperle. A Rapid Hierarchical
Radiosity Algorithm. Computer Graphics, 25(4):197-206, July 1991.

S. Knee. Program development and performance prediction on BSP
machines using Opal. Technical Report PRG-TR-18-94, Oxford Uni-
versity Computing Laboratory, Aug. 1994.

V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel
Computing: Designand Analysisof Algorithms. Benjamin/Cummings,
1994,

D. Lecomber. An object-oriented programming model for BSP com-
putations. Tech. Report, Oxford University Computing Laboratory,
1994,

C. Leisersonand B. M. Maggs. Communication-efficient parallel algo-
rithmsfor distributed random-accessmachines. Algorithmics, 3:53-77,
1988.

P Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing.
In Proc. 5th ACM Symp. on Parallel Algorithms and Architectures,
pages 154-163, June 1993.

P Liu and S. Bhatt. Experiences with parallel N-body simulation.
Proc. 6th ACM Symp. on Parallel Algorithmsand Architectures, pages
122-131, June, 1994.

B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel
computation: A survey and synthesis. In Proc. 28th Hawaii Int. Conf.
on System Sciences (HICSS), pages 61-70. | EEE, Jan. 1995.

W. McColl. General purpose parallel computing. In A M Gibbonsand
P Spirakis, editors, Lectures on Parallel Computation, pages 337-391,
Cambridge University Press, 1993.

W. F. McColl. BSP programming. In G.E. Blelloch, K.M. Chandy, and
S. Jagannathan, editors, Proc. DIMACS Workshop on Specification of
Parallel Algorithms, pages 21-35. American Math. Soc. May 1994.

Richard Miller. A library for bulk-synchronousparallel programming.
In Proc. of the British Computer Society Parallel Processing Specialist
Group Workshop on General Purpose Parallel Computing, Dec. 1993.

M. Nibhanupudi, C. Norton, and B. Szymanski. Plasma simulation on
networks of workstations using the bulk synchronous parallel model.
In Proc. Int. Conf. on Parallel and Distributed Processing Techniques
and Applications, Nov. 1995.

J. P Singh. Data locality and memory system performance in the
parallel simulation of ocean eddy currents. In Proc. 2nd Int. Symp. on
High Performance Computing, Oct. 1991.

J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms:
Performance and architectural implications. Computer, 27(7):45-55,
July 1994.

J. P Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel ap-
plicationsfor shared-memory. Tech. Report CSL-TR-92-526, Stanford
University, Palo Alto, CA, June 1992.

T. Suel. Programming Parallel N-Body Simulations with the Bulk-
Synchronous Parallel Model. In preparation, April 1996.

L. Valiant. General purpose parallel architecture. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 943-971,
North Holland, 1990.

L. G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103-111, Aug. 1990.

L. G. Vdiant. Why BSP computers? In Proc. 7th Int. Parallel Pro-
cessing Symp., pages 2-5. |EEE Press, April 1993.

T. von Eicken, D. Culler, S. C. Goldstein, and K. E. Schauser. Active
messages: a mechanism for integrated communication and computa-
tion. In Proc. 19th Int. Symp. on Computer Architecture, May 1992.

M. S. Warren and J. K. Salmon. Astrophysical N-body simulations
using hierarchical tree data structures. In Proc. Supercomputing 1992,
pages 570-576, 1992.

A Description of the Green BSP Library

The basic communication and synchronisation functions in the
Green BSP library consists of the following three functions:

e void bspSynch(voi d) providesbarrier synchronization.
When a process calls this function, it is stopped until all
other processes have called it. After a process returns from
a bspSynch() call, al packets that were sent to it in the
previous superstep can be assumed to be available.

e void bspSendPkt (int, bspPkt *) sendsapacketto
another process. Thefirst argumentisthe 1D of thedestination,
and the second argument is a pointer to the packet. All results
inthis paper were obtained with afixed packet size of 16 bytes?.
The datain the packet can be in any format, and it is up to the
programmer to provide sufficient labeling information.

e bspPkt *bspGet Pkt (voi d) returnsapointer to apacket
that was sent to the processin the previous superstep. Packets
may be returned by bspGet Pkt in any arbitrary order. The
function returns NULL if there are no further packetsto get.

In addition, the library contains several auxiliary functions (e.g.,
for determining the process ID or the number of unreceived pack-
ets). While the Green BSP library provides a message-passing en-
vironment, it can also be very easily and efficiently implemented on
shared-memory systems. In particular, thisallows usto compare our
results to those of programs written specifically for shared memory.

B Library Implementations

Following we give a brief description of each of the three library
implementations used in this paper.

B.1 The Shared-Memory Version

In the shared-memory implementation, each process has two large
input buffers in shared memory, which are used in aternating
supersteps.® Because the input buffers have many writers, they
are protected by locks. However, when a process acquires a lock it
allocates enough spacefor 1000 packets, so the locking cost is small
per packet. Also, because the locks are used infrequently, we were
able to use Lamport’s software locking alorithm, which is tuned for
the case of low contention. There is one case that probably would
generatelock contention: superstepswith small all-to-all communi-
cation patterns. To eliminate this case we begin each superstep by
pre-allocating p memory blocks (one for each writer) at the start of
each input buffer. With this scheme, the locks are only used when
thereis actually enough communication to pay for them.

Note that, unlike the MPI and TCP implementations, which syn-
chronize implicitly via their all-to-all communication patterns, the
shared-memory version requires explicit synchronization at super-
step boundaries. We accomplish this using p variables in shared
memory that are incremented by the processorsto indicate that they
are ready to proceed to the next superstep. Processor O then spins
on variables 1 through p — 1, while processors 1 through p — 1 spin
on variable 0.

2\We are currently changing our system to allow the programmer to send
packets of any arbitrary length. While this improves the readability and
simplicity of some of our code, we do not expect any significant changesin
performance on our current applications.

3The processesthemselves run in separate address spaces.

B.2 TheMPI Version

In the MPI version, each process uses a distinct input and output
buffer to communicate with each of the other processes. Thereis
no overlap of computation and communication: During a superstep,
messagesare simply read from and written to the appropriate buffers.
When a process reaches a superstep boundary, it postsan | r ecv
for each input buffer and an | send for each output buffer, and
then waits until all 2p incoming and outgoing transmissions are
completed, before starting the next superstep.

B.3 TCPVersion

Asinthe MPI version, each process uses a distinct input and output
buffer to communicate with each of the other processes, and com-
munication only occurs at superstep boundaries. The blocking TCP
protocol that we employ requiresreceiversto actively empty the pipe
whenever another process sendsa large amount of data, so deadlock
could occur if we are not careful in scheduling the communication.
In our setup, the processors pair off and talk according to a precom-
puted p — 1 stage total-exchange pattern. Note that while thisrigid
scheduling method workswell for most (i.e., random) h-relations, it
is not efficient for certain worst-case communication patterns. We
ran this version on a system of eight PCs connected by a 100-Mbit
Ethernet switch that allows the p/2 conversationsin each communi-
cation stage to occur in parallel. The maximum bandwidth that we
observed between a pair of processorswas 5 Mbytes/sec.

C Performance Data for the Applications

We provide performance numbers for our applications on 4 or 5
different input sizesand numbersof processorsfor our three systems.
We also provide algorithmic data for each application. In particular,
the tables on the next two pages contain the following data:

¢ Predicted execution times based on the BSP cost function.

¢ Runtimes and speedupson all platforms.

o W, the measured work depth on the SGI, and estimated work
depthsfor the Cenju and PC-LAN.

o H,the sum of the h-relation sizes.
e S, the number of supersteps.
e Thetotal measured sequential work for the SGI.

Thework depthsfor the SGI are measured, while thework depths
for the Cenju and the PC-LAN are estimated.

SGl SGl SGI | Cenju Cenju Cenju PC PC PC SGI SGI
app size NP pred time spdp | pred time spdp pred time spdp w H S TWk
ocean 66 1 0.55 051 1.0 0.82 0.8 1.0 052 046 1.0 054 114 468 054
ocean 66 2 0.39 0.29 18 0.67 0.58 14 0.58 0.6 0.8 038 12192 468 0.73
ocean 66 4 0.26 0.18 2.8 057 054 15 096 094 05 023 12530 468 0.86
ocean 66 8 0.2 0.14 36 0.95 091 09 198 337 01 016 15400 468 111
ocean 66 16 0.19 0.13 39 1.58 154 05 - - - 013 13360 468 1.78
ocean 130 1 213 2.07 1.0 3.02 2.88 1.0 1.86 1.68 1.0 212 91 379 212
ocean 130 2 124 1.05 20 184 1.63 18 1.25 122 14 121 20762 379 2.36
ocean 130 4 0.69 054 38 1.15 1.01 29 122 1.19 14 066 21034 379 2.46
ocean 130 8 0.42 0.32 6.5 114 112 2.6 1.92 2.96 0.6 037 25700 379 2.68
ocean 130 16 0.3 0.22 94 15 144 20 - - - 024 21316 379 3.28
ocean 258 1 9.12 8.95 10 | 1281 1272 1.0 7.8 7.07 1.0 9.12 81 339 9.12
ocean 258 2 455 4.32 21 6.49 5.99 21 429 398 18 451 38170 339 8.95
ocean 258 4 231 212 42 342 321 4.0 2.6 2.56 28 227 38412 339 8.77
ocean 258 8 1.26 1.09 82 2.29 218 58 2.65 32 22 12 46818 339 8.88
ocean 258 16 0.76 0.6 149 | 207 1.93 6.6 - - - 068 37994 339 9.74
ocean 514 1 3843 3787 10 | 5385 - - 4651 4677 10 3843 72 312 || 3843
ocean 514 2 1876 1828 21 | 2641 34.08 - 2453 2464 19 18.7 71688 312 || 37.24
ocean 514 4 914 871 43 | 1301 1364 - 8.47 7.92 59 9.07 71912 312 || 35.62
ocean 514 8 4.65 4.29 8.8 7.04 6.51 - 5.82 6.46 72 455 87226 312 || 34.83
ocean 514 16 248 223 170 | 448 4.0 - - - - 238 69946 312 || 3543
Figure C.1: Datafor Ocean Application
SGI SGI SGI | Cenju Cenju Cenju | PC PC PC SGl SGI
app sSize NP || pred time spdp | pred time spdp | pred time spdp w H S TWk
mst 25k 1 01 01 1.0 01 01 1.0 01 008 10 01 3 12 01
mst 25k 2 008 007 14 0.09 0.09 11 01 008 10 0.08 666 30 || 0.15
mst 25k 4 006 005 20 0.07 0.09 11 012 009 09 005 1276 36 || 0.18
mst 25k 8 005 005 20 0.12 0.14 0.7 023 022 04 004 2224 46 || 0.26
mst 25k 16 || 007 018 06 0.24 0.25 04 - - - 006 3014 60 || 041
mst 10k 1 08 081 10 0.8 1.03 1.0 06 061 10 0.8 3 12 0.8
mst 10k 2 044 04 20 0.45 053 19 035 034 18 044 1377 30 || 0.85
mst 10k 4 023 02 4.0 0.25 0.27 38 024 022 28 022 3288 36 || 0.79
mst 10k 8 015 015 54 0.22 0.22 47 031 028 22 014 5302 42 || 092
mst 10k 16 || 0.13 019 43 03 03 34 - - - 011 5866 56 || 1.17
mst 40k 1 63 634 10 6.3 5.63 1.0 271 271 10 6.3 3 12 6.3
mst 40k 2 386 387 16 3.88 313 18 169 16 17 386 3163 36 || 7.46
mst 40k 4 12 11 58 122 1.38 41 061 092 29 119 6287 42 || 4.24
mst 40k 8 06 056 113 | 069 0.83 6.8 053 065 4.2 059 10335 52 || 391
mst 40k 16 || 034 04 158 | 053 0.56 10.1 - - - 032 9562 62 || 3.92
Figure C.2: Datafor MST Application
SGl SGl SGI | Cenju Cenju Cenju PC PC PC SGl SGI
app size NP pred time spdp | pred time spdp pred time spdp w H S || TWkK
mamult 144 1 0.43 0.42 1.0 0.43 0.47 1.0 0.29 03 1.0 0.43 0 1 0.43
matmult 144 4 0.15 0.15 28 0.16 0.16 29 015 0.8 17 0.14 10368 3 054
matmult 144 9 0.09 0.12 35 011 0.09 52 - - - 0.08 9216 5 0.64
matmult 144 16 0.06 011 38 01 0.07 6.7 - - - 0.05 7776 7 0.7
matmult 288 1 34 3.37 1.0 34 371 1.0 2.26 2.32 1.0 34 0 1 34
matmult 288 4 0.99 1.01 33 1.05 111 33 0.84 11 21 0.95 41472 3 3.79
matmult 288 9 05 0.59 57 057 0.55 6.7 - - - 0.46 36864 5 413
matmult 288 16 0.32 0.42 8.0 0.42 0.36 10.3 - - - 0.29 31104 7 4.49
mamult 432 1 1153 1149 10 | 1153 1255 1.0 7.68 7.83 1.0 11.53 0 1| 11.53
matmult 432 4 317 3.18 36 33 3.49 36 251 334 23 3.09 93312 3 || 1233
matmult 432 9 154 1.65 7.0 1.69 17 74 - - - 1.46 82944 5 || 13.03
matmult 432 16 0.93 114 101 | 113 1.04 121 - - - 0.86 69984 7 || 13.66
matmult 576 1 2753 2751 10 | 2753 2994 1.0 1833 1871 10 27.53 0 1| 2753
matmult 576 4 7.29 7.33 38 7.52 8.09 37 5.56 7.52 25 715 165888 3 || 2852
matmult 576 9 347 3.69 75 3.72 384 7.8 - - - 332 147456 5 || 29.78
matmult 576 16 2.09 242 114 | 243 231 13.0 - - - 197 124416 7 || 31.21

Figure C.3: Datafor Matrix Multiplication Application

SGI SGI SGI | Cenju Cenju Cenju PC PC PC SGl SGI
app size NP pred time spdp | pred time spdp pred time spdp w H S TWk
nbody 1k 1 0.46 0.46 1.0 0.35 0.32 1.0 031 031 1.0 0.46 0 4 0.46
nbody 1k 2 0.24 0.24 19 0.18 0.18 18 0.17 0.17 18 0.24 824 6 0.48
nbody 1k 4 0.13 0.13 35 01 01 32 01 01 31 0.13 1798 6 05
nbody 1k 8 0.08 0.08 58 0.07 0.07 46 0.09 0.08 39 0.08 2360 6 0.56
nbody 1k 16 0.05 0.05 9.2 0.06 0.07 46 - - - 0.05 2530 6 0.68
nbody 4k 1 29 2.89 1.0 217 21 1.0 1.93 191 1.0 29 0 4 29
nbody 4k 2 145 143 20 1.09 1.02 21 0.98 0.97 20 145 2067 6 2.89
nbody 4k 4 0.75 0.75 39 057 054 39 053 054 35 0.75 4353 6 291
nbody 4k 8 041 04 7.2 0.32 03 7.0 034 032 6.0 04 5506 6 3.02
nbody 4k 16 03 0.25 116 | 026 0.22 9.5 - - - 0.29 6249 6 334
nbody 16k 1 1538 1542 10 | 1154 1164 1.0 1025 9.86 1.0 15.38 0 4 15.38
nbody 16k 2 7.64 7.65 20 5.74 5.56 21 511 4.89 20 7.64 5700 6 15.22
nbody 16k 4 3.86 3.86 4.0 291 2.89 4.0 2.63 2.59 38 3.85 10692 6 14.79
nbody 16k 8 1.96 1.96 79 15 144 81 143 1.38 71 1.95 12235 6 14.95
nbody 16k 16 113 112 138 09 0.86 135 - - - 112 12100 6 15.37
nbody 64k 1 74.08 74.59 10 | 5556 57.96 1.0 4933 4601 10 74.08 0 4 74.08
nbody 64k 2 36.37 3642 20 273 2752 21 2426 2292 20 3635 15046 6 72.52
nbody 64k 4 1854 1845 40 | 1395 135 43 1246 11.78 39 1852 25443 6 71.25
nbody 64k 8 9.27 9.23 81 7.01 6.75 8.6 6.41 6.06 7.6 9.25 26003 6 70.58
nbody 64k 16 497 5.04 148 | 382 3.72 15.6 - - - 4.95 24661 6 70.06
nbody 256k 1 344 34559 10 258 - - 229 212 1.0 344.43 0 4 || 34443
nbody 256k 2 168 16792 21 126 - - 112 111 19 168.07 37493 6 3333
nbody 256k 4 83 83.71 41 62 62.92 - 56 57 37 83.0 63321 6 || 322.04
nbody 256k 8 42 41.86 83 31 31.66 - 28 26.4 8.0 41.7 59251 6 || 318.65
nbody 256k 16 22 2216 156 17 16.37 - - - - 221 53422 6 || 316.38
Figure C.4: Datafor NV-body Application
SGI SGI SGI | Cenju Cenju Cenju | PC PC PC SGI SGI
app sSize NP || pred time spdp | pred time spdp | pred time spdp w H S TWk
sp 25k 1 006 007 10 0.06 0.07 1.0 004 005 10 0.06 4 8 0.06
sp 25k 2 005 004 18 0.07 0.05 14 006 006 08 005 244 50 0.09
sp 25k 4 004 003 23 0.07 0.05 14 012 012 04 004 399 59 0.09
sp 25k 8 004 003 23 0.16 0.15 05 034 063 01 003 883 83 0.13
sp 25k 16 || 005 0.1 0.7 0.33 0.31 0.2 - - - 004 1382 101 || 0.19
sp 10k 1 052 053 10 0.52 0.56 1.0 035 035 10 0.52 4 8 0.52
sp 10k 2 031 026 20 0.32 0.29 19 023 022 16 031 457 50 0.52
sp 10k 4 014 012 44 0.16 0.14 4.0 017 016 22 014 806 47 0.46
sp 10k 8 012 01 53 0.23 021 27 036 052 07 012 1407 74 051
sp 10k 16 || 009 012 44 0.32 0.3 19 - - - 008 1954 83 0.64
sp 40k 1 254 252 10 254 2.56 1.0 169 151 10 254 4 8 254
sp 40k 2 153 146 17 154 149 17 105 091 17 153 1308 56 253
sp 40k 4 082 075 34 0.85 0.81 32 066 0.7 22 081 1774 68 225
sp 40k 8 049 041 61 0.61 054 47 066 059 26 048 2198 86 2.01
sp 40k 16 || 028 026 9.7 0.56 0.48 53 - - - 026 2820 101 || 1.88
Figure C.5: Datafor Shortest Path Application
SGI SGI SGI | Cenju Cenju Cenju PC PC PC SGI SGI
app size NP pred time spdp | pred time spdp pred time spdp w H S TWk
msp 25k 1 1.18 12 1.0 1.18 1.25 1.0 079 08 10 1.18 28 9 1.18
msp 25k 2 0.81 0.74 16 0.83 0.74 17 058 062 14 0.8 4833 51 151
msp 25k 4 0.52 0.46 26 057 0.48 2.6 049 047 19 0.52 7569 72 1.66
msp 25k 8 0.43 0.45 27 057 0.48 2.6 068 067 13 0.42 9856 87 2.25
msp 25k 16 0.33 0.47 26 0.64 0.58 22 - - - 031 10030 102 284
msp 10k 1 8.93 89 1.0 8.93 9.95 1.0 594 702 10 8.93 28 9 8.93
msp 10k 2 4.89 4.85 18 4.92 4.99 20 331 322 22 488 10265 57 852
msp 10k 4 2.7 2.63 34 277 254 39 202 193 36 268 23467 78 8.72
msp 10k 8 1.73 172 52 191 1.69 59 1.76 17 41 169 28938 102 9.48
msp 10k 16 114 1.36 6.5 154 127 7.8 - - - 11 26717 120 || 11.29
msp 40k 1 4436 4434 10 | 44.36 - - 2954 346 10 44.36 28 9 44.36
msp 40k 2 2421 2443 18 | 2427 - - 1625 179 19 2418 34879 60 4528
msp 40k 4 1241 122 36 | 1249 1314 - 853 103 34 1237 35056 78 42.04
msp 40k 8 6.83 7.05 6.3 7.04 6.89 - 524 483 71 6.79 38849 105 || 37.96
msp 40k 16 364 471 94 412 3.68 - - - - 358 39874 138 || 39.57

Figure C.6: Datafor Multiple Shortest Paths Application

