Robots & Spiders & Crawlers:
How Web and intranet search engines
follow links to build indexes

A white paper
By Avi Rappaport, Search Tools Consulting

®

infoseek

SOFTWARE

Purpose

This white paper is intended to give general information regarding the way search engines

collect information to fill the search index. Also discussed are potential problems that spiders

may have with certain types of content and how to overcome those problems. Organization

notes:

« Shaded boxes within the sections explain the way Ultraseek Server 3.1 handles the topic
discussed

» Exhibits mentioned with the text are located in Section XI

» The author frequently refers to other sites; links to those sites are in Section X

This paper was originally published in October 1999 online at http://software.infoseek.com.

About the Author

Avi Rappoport is the founder of Search Tools Consulting, providing analysis and advice on Web
site, Intranet and portal search engines. She also analyzes the search tools industry and
information retrieval issues, and publishes reports at www.searchtools.com. Avi is a

librarian who has spent ten years in software design, implementation and management, and is
pleased to have found a way to combine both areas of expertise. You can reach her at
consult@searchtools.com.

Table of Contents

l. L oo [0 Tox 1] o P PP PP 3
(1. How Robots Follow Links t0 Find PAOES ..ocucieieiiiiieiniiieieiiiiisiiiieiiiiiiis 3
I11. _Communicating With RODOES ... 7
IV, INdeXing PrOCeSS s 9
V. Details of Following Links and Crawling Sites.............oeeeeieeieeieeeeieeeeeens 11|
VI. Dealing with DYNAamMIC Datal ... eieaana, 21
VI, Detecting DUDICAtE PaOeS . ou it 26|
VI, Revisiting Sites & Updating INAeXES . tuuuuuueeuireeiireeirreiireeiireeaieeiireeirzeeiizeiezearzzazeeeiezeenss 27|
S 000 (o] [V Y[o NPT P PP PP 28
X. USETUI RODOT SITES .. uiu ittt ettt et ettt et ettt eeteee et sesenesneseenseneneensenseneensrnseneenns 29
XL, EXNIIOIES . ettt it ittt ittt e it ettt e ittt iteeeteetseeteesessesseesssesiessesssessessiessiesssessessiessiesnerrareees 30

l. Introducing Search Engine Robots & Spiders

Search engine robots are programs that follow links on Web sites, gathering data for search
engine indexes. They are considered robots rather than programs because they are somewhat
independent: no programmer has told them what pages to find. Other names for these programs
are spider or crawler (because they follow links on the Web), worm, wanderer, gatherer, and so
on.

Web-wide search engines, such as Go Network, AltaVista and HotBot use robots because they
are accessing the pages remotely, just as a person browsing a site would view the pages in their
browser. Intranet and site search engines, such as Ultraseek Server, can also use robots to
gather the data for indexing. All of these search robots behave in essentially similar ways, so
designing links for one robot to crawl will likely improve your compatibility with the other robots
as well.

You may be wondering why the robots crawl your site at all -- why not just search the files when
someone types a word and hits a button? The reason is efficiency: thirty years of Information
Retrieval research have found that storing data in indexes reduces the load on the server, allows
very large collections to be searched by many people at the same time, and lets the search
engine list the pages in order by the relevance of their text to the search terms.

Note: The other way search indexers may gather data is to read files from specified folders. This
is faster than using a robot, and it can use the file system information to check whether a file has
been changed since the last index. However, robots can access multiple servers without having
to mount volumes on a network, and they are also less likely to index private or obsolete data,
because they follow links rather than indexing everything in the folders.

This paper explains how robots gather data for search engines, how they follow links, how to
control robots indexing and updating, and more. If you're running a search engine indexing
robot, you may notice trouble with certain sites. Sometimes the robot never gets anywhere,
stops after the first page, or misses a whole section of the site. This is usually because the Web
page creators made links that are easy for humans using the Netscape Navigator or Microsoft
Internet Explorer browsers to follow, but are somehow invisible to the robots.

Il. How Robots Follow Links to Find Pages

Robots start at a given page, usually the main page of a site, read the text of the page just like a
Web browser, and follow the links to other pages. If you think of a site as a Web, the robot starts
in the center, and follows links from strand to strand until it has reached every one.

Some robots will also follow links to other sites, while most stay in the same server host name
(such as www.example.com) or domain name (example.com), depending on your search
administration settings.

Breadth-First Crawling

The idea of breadth-first indexing is to retrieve all the pages around the starting point before
following links further away from the start. This is the most common way that robots follow links.
If your robot is indexing several hosts, this approach distributes the load quickly, so that no one
server must respond constantly. It's also easier for robot writers to implement parallel processing
for this system.

In this diagram, the starting point is at the center, with the darkest gray. The next pages, in
the medium gray, will be indexed first, followed by those they link (in the light gray), and the
outer links, in white.

'

Depth-First Crawling

The alternate approach, depth-first indexing, follows all the links from the first link on the
starting page, then the first link on the second page, and so on. Once it has indexed the first
link on each page, it goes on to the second and subsequent links, and follows them. Some
unsophisticated robots use this method, as it can be easier to code.

In this diagram, the starting point is at the center, with the darkest gray. The first linked
page is a dark gray, and the first links from that page are lighter grays.

1]
/

—
.

Other Indexing Issues
Spidering Depth

Another issue with robots is how deep they will go into a site. In the example above of depth-
first searching, the starting point is level 0, and the grays indicate an additional three levels of
linking. For some sites, the most important information is near the starting point and the pages
deep in the site are less relevant to the topic. For other sites, the first few levels contain mainly
lists of links, and the detailed content is deeper in. In the second case, make sure the robot will
index the detailed pages, as they are valuable to those who come to search the site. Some Web-
wide robots will only index the top few levels of Web sites, to save space.

Ultraseek Server's spider lets you control this by limiting the
number of directories in a URL (the number of slashes), which

starts with 0 at the root directory and defaults to 10 directories.

Server Load

Search engine robots, like Web browsers, may use multiple connections to read data from the
Web server. However, this can overwhelm servers, forcing them to respond to robot requests to
the detriment of human site visitors. When monitoring the server or analyzing logs, the Web
administrator may notice many requests for pages from the same IP address. Many search
engine robots allow administrators to throttle down the robot, so it does not request pages from
the server at top speed. This is particularly important when the robot is limited to a single host
and the server is busy with user interactions.

Overloaded servers, especially those with large files that do not change very often, or which pay
per byte, may prefer robots that use the HTTP commands HEAD or CONDITIONAL GET. These
commands allow a client, in this case the robot, to get meta information about a page, in
particular, the date it was last modified. This means that the server only sends pages when they
have been changed, rather than sending every page, when the robot traverses the site -- which
can reduce the load on the server considerably.

Ultraseek Server's spider will only retain one outstanding
request at a time from a server, although the default is to have
up to five simultaneous threads, indexing five separate servers.
The spider can also slow down to reduce the server load: in the
Network panel, you can define the URLs and the number of
seconds to delay.

The spider uses HTTP commands to check whether the file has
been changed since the last time it was requested (this is known
as "If-Modified-Since" and may show up in server logs as
"CONDITIONAL_GET". Using this system means that the server
only sends the entire page when it has been changed, rather
than sending every page when the robot traverses the site, and
can reduce the load on the server considerably. For more
information, see the HTTP 1.1 Protocol, section 14.25.

Robots and Private Data
Password-Protected Pages

If a site has a private, password-protected section, the robot may not be able to index the data
stored there. In most cases, that is the right behavior, as a search on private data could reveal
damaging or embarrassing information. In other situations, you may want to allow the robot
access to the private section. Some local search engine robots, such as those used for sites or
intranets, can store user names and passwords, and index those private sections.

Ultraseek Server's administrative interface allows you to specify
a password for the spider to use when accessing each protected
area. For example, you may want to make a special collection
for planning documents, and only allow users who have access
to those documents to search them. On the other hand, if you
are selling reports, you might want to let prospective customers
search your documents, to locate the most useful ones before
urchase.

Encrypted Data

The SSL (Secure Sockets Layer) HTTPS protocol ensures that private data is encrypted and
authenticated during transit through the Web. In addition to uploading credit card numbers, Web
servers can use this system to encrypt banking information, patient records, student grades, and

6

other private data that should be kept confidential. Browsers contain special code to check the
authenticity of a page and decrypt the text.

To index and search the private data, a search indexing robot must either include the SSL
decryption code, access the pages without encryption (which can cause security problems), use a
backend database rather than a search engine, or index using the file system rather than a robot.
Note that the data is not encrypted in the search engine index, so search administrators should
treat the index as sensitive and confidential, and implement stringent security measures.

Ultraseek Server offers SSL Spidering as an add-on. With this
option, the spider includes SSL code, so no data will be

transferred without encryption. When a searcher clicks on a link
to a protected page in the search results, the code in their
browser continues to protect the data as it is transferred.

I11. Communicating With Robots

You'd think it would be hard to communicate with robots -- they are computer programs written
by someone else, after all. But the designers of the robots have set up some ingenious ways for
Webmasters to identify robots, track them and tell them where they are welcome or unwanted.

User Agents in Web Server Logs

Search engine robots will identify themselves when they request a page from a server. The Web
HTTP communication protocol includes some information called a header, which contains data
about the capabilities of the client (a Web browser or robot program), what kinds of information
the request is for, and so on. One of these header fields is User - Agent , which stores the name
of the client (the program requesting the information), whether it's a browser or a robot. If the
server monitor or log system stores this information, the Web server administrator can see what
the robot has done.

For example, if the Infoseek Web-wide robot is crawling a site, the text | nf oSeek Si dewi nder
will be in the log. If a Web administrator has a problem with this robot, they can look up the
information and contact the search administrator. The best search engine indexers allow the
search administrator to set the text of this data, so it includes contact information, such as an
email address or a URL to a Web page with an explanation of the robot and a feedback form.

The default Ultraseek Server User Agent is "Ultraseek," but
search administrators can add their contact Web site and email
address (for all or individual sites) in the Networking Panel.

Customizing this information improves communication with the
administrators of the sites indexed, allowing them to contact the
owner of the spider if they have any questions.

For listings of search engine user agents, see the SearchEngineWatch Spider Spotting Chart,
which is mainly for Web-wide search engines such as Infoseek, AltaVista and HotBot, or the Web
Robots Database and the BotWatch list which cover robots of all kinds, including email harvesters
and download bots. For a Perl script to analyze bots on a local site, see BotWatch.

Robots.txt

Robots should also check a special file in the root of each server called r obot s. t xt , which is,
as you may guess, a plain text file (not HTML). Robots.txt implements the Robots Exclusion
Protocol, which allows the Web site administrator to define what parts of the site are off-limits to
specific robot user agent names. Web administrators can disallow access to cgi, private and
temporary directories, for example, because they do not want pages in those areas indexed.

Ultraseek Server allows for full robots.txt support according to

the robots.txt standard. Administrators can customize the user
agent to meet their needs.

There is only one r obot s. t xt file per Web server, and it must be located in the root directory,
for example http://www.domain.com/robots.txt.

The syntax of this file is obscure to most of us: it tells robots not to look at pages that have
certain paths in their URLs (that's why it's called an "exclusion" protocol). Each section includes
the name of the user agent (robot) and the paths it may not follow. There is no way to allow a
specific directory, or to specify a kind of file.

A robot may reasonably access any directory path in a URL that is not explicitly disallowed in this
file.

This protocol is a form of communication between Web site administrators and robots; it does
nothing to prevent a robot from accessing a file. There are other ways in which certain domains
can be excluded from sites, if necessary. Your search indexing robot should honor these settings
in most cases; contact the Webmaster for changes. The only exception is if an unresponsive
Webmaster excludes all robots from the entire domain, and the person who is responsible for
part of that domain would like to be indexed.

For more information, see the Standard for Robot Exclusion and the Web Server Administrator's
Guide to the Robots Exclusion Protocol. You can also check for errors with the online robots.txt
syntax checker.

For an explanation please see Exhibit 1.

Robots META Tag

In addition to server-wide robot control, Web page creators can also specify that individual pages
should not be indexed by search engine robots, or that the links on the page should not be
followed by robots. This is also useful where a page author does not have permission to change
the robots.txt file.

A robots META tag, placed in the HTML <HEAD> section of a page, can specify either or both of

these actions. Many, but not all, search engine robots will recognize this tag and follow the rules
for each page. If certain pages are not indexed, check their headers to see if these tags are

included.
Ultraseek Server's spider recognizes the Robots META tag and
follows the rules for each page.

8

The robot will still read the page, at least as far as the META tag, and the Web server log will
show that the page was sent to the robot, even if it was not indexed. And, as with the robots.txt
file, this is a form of communication between a page creator and a cooperating robot rather than
a way to truly keep a page private.

For Robots META tag syntax, please see Exhibit 2.

Note: if you add Robot META tags to a framed site, be sure to include them on both the
FRAMESET and the FRAME pages.

For more information, see the HTML Author's Guide to the Robots META tag.

IV. Indexing Process

This paper has been talking about robots following links and reading pages, but there's another
step involved. Indexing is the process of extracting useful data from the source, in this case a
Web page, and storing it in a file for later retrieval by the search engine.

Indexing starts by extracting individual words from the text of a page. Simple search indexers
just read every word that's not in a tag, while others, such as the Ultraseek Server indexer, look
for words by using sophisticated algorithms, so even those with punctuation, such as RJ-11, e-
mail and AS/400, are searchable. They may also store text from useful HTML tags, such as the
META Keywords and META Description tags, ALT tags (text related to images), and URL text. The
indexer will also store the page URL and title, the Meta Description text (if any) so that it can
display it in the results, and additional metadata, such as the author and date, especially when
it's kept in a standard tag set such as the Dublin Core.

Ultraseek Server supports the Dublin Core set of META Tags and
provides fielded searching using those tags.

Tracking the Robot

There are several ways you can follow the path of your search indexing robot, to understand
what links it is following and which pages it is indexing and why. This can help you explain to site
administrators and page creators why their data is not found during searches.

Site Map or Page Listing
Some search indexers generate a listing of the folders and files on the site (which they may call a

site map). You can compare that to your understanding of the organization of the site, based on
your navigation around the site, and identify sections that did not get indexed.

To see a listing of the pages located by Ultraseek Server's
spider, select the View Sites button on the Collection Status
panel of the admin. The list page shows the sites in the
collection, with the number of URLs in the current queue, the
number completed, and the number of documents (pages and
other files) indexed. Clicking on the link to a site will show you a
listing of the pages on that site.

Robot Index Log

Many search indexing robots keep logs of their progress, tracking each page they include in the
index. When you start indexing a new site, or find problems locating some pages on the site, you
can look at the log to find out which links the robot successfully followed. Some provide a lot of
detail, including notice of problems and duplicate pages found.

Ultraseek Server's spider keeps a log of its progress, tracking
each page it includes in the index. To activate the log, check the
box labeled "Log disallowed URLs", then click OK on the
Collections Filters panel of the admin. An example of the log,
along with explanations is attached as Exhibit 3.

The index log may be viewed two ways:

e Collection Status panel View Log button, which will show
you the recent spider activity for the current collection
only.

Server Parameters panel View Log button, which will
show you a list of the stored query, access and error
logs (the default is to only store seven of each). The
error log also includes successful index entries, and
covers all collections on this instance of Ultraseek
Server.

Web Server Logging

If you have trouble figuring out why a robot can't find certain pages, you can use the Web server
logs to watch it and track its progress through a site. While it's not a single line through the site,

and you can't tell which page directs a specific URL, it does help you understand what was found
and what was not (a bad link usually has a STATUS code of 404).

In Exhibit 4, you can see the robot traversing the SearchTools site. First it gets the robots.txt file,
to learn about the disallowed sections, then it starts at the main index page and gathers several
URLs to index. When it comes back to a page that it has seen before, it only gets the data if the
page has changed since the last time it tried to index the page. If any pages have been removed
since the last time the robot requested them, the error code is 404 and the indexer should
remove that page information from the index.

10

V. Details of Following Links and Crawling Sites

For many sites, following links is easy and the robot spider logic is quite simple. So what is a link?
A link is a legitimate URL, usually in the form (for a file in the same
directory on the same server) or (for
files on other servers), and so on. Seems fairly straightforward, so even a dumb robot can handle
these links. (For a good introduction, see the Anatomy of an HTTP URL at WebReference.com
and for technical information, see A Guide to URLSs.)

However, some sites are hard to crawl. JavaScript, frames, image maps and other features added
to HTML will confuse robots which can only follow links in text areas of the page. When you
encounter a site which your robot can't crawl, investigation will reveal which of the many
techniques the Web page creator has used to implement linking. This section will help you
identify the code and offer suggestions for improvements.

Note: Visually-impaired people, and the browsers designed to help them surf the Web, have
many of the same problems locating links, and need to follow links from pages rather than refer
to a site map page. When sites are designed with accessibility in mind, robot spiders benefit as
well. For more information, see the W3C Web Content Accessibility Guidelines. To test pages and
locate problem areas, you can use the accessibility analyzer Bobby.

The Site Map Solution and its Limitations

One solution for these problems is to create and maintain a site map or page list, with links to all
pages on your site. Then you could just use that as the starting page, and have the robot follow
all links from there. There are three main problems with this plan:

e The larger the site, the more complex and confusing the site map page will become. This
is somewhat of a problem with robot starting pages, but a more serious problem for
humans trying to understand the site. Most useful maps for site visitors are carefully
designed to convey information and organization using text, colors, shapes and/or spatial
relationships. They do not link to every page or attempt to be complete, because that
would be too confusing.

« It is extremely difficult to keep track of all changes on a site. In most cases, it will be
easier for content creators and site designers to make robot-readable links on their
pages, rather than trying to update the main site map page every time they add or
change a link.

e To generate the site map automatically, a software program can gather the pages by
following links or traversing folders. If it tries to follow links, it will have the same
difficulties as a search robot indexer. If it uses the local file system to traverse folders,
the administrator must be constantly careful about not adding files before they are
public, removing obsolete files and excluding secure areas. These are difficult tasks and
require a great deal of attention

If possible, request that Web page creators provide alternate navigation on the same page
whenever they use one of the special navigation systems described below.

11

Image Maps

Image maps are graphic images with links or actions associated with sections of the image. For
example, a map of the US would have different links when you click on California, lllinois or
Maine. There are two kinds of image maps, Client-Side and Server-Side:

Client-Side Image Maps

These are graphic files with associated information in the HTML page, including links. Some robot
spiders can follow links in these formats, because they include the familiar HREF codes (without

the "A" anchor tag).

Here is a simple image with client-side image map codes:

The associated map commands look like this:
<map name="client-side-map"> <area shape="circle" coords="91,49,38" href="client-map-

circle.html"> <area shape="rect" coords="180,19,293,78" href="client-map-rect.html">
</map>

Ultraseek Server's spider can follow the links in client-side image

maps, because they include the familiar HREF codes (without
the "A" anchor tag).

Server-Side Image Maps

These maps store their links on the server and wait for the user to click on a particular location in
the image before serving the link. Robots can't click on the map, so they are stuck. To serve
robots (and non-graphic browsers), any site with server-side image maps should also have text
links on the map pages, or a link to a page that lists all the image map links.

For example, the U.S. Government Census map has a nice link to a text listing of the states, next

to the image map itself. Using this link, robots can access the information; if it wasn't there, they
would be unable to get to any of the state pages.

12

O=——— Netscape: Map Stasi =—"————————

1=}

L m

=
| Metsite: g [nttp -/ P sensus gov/datamapsw findesc im

U.S. Census Bureau

Map Stats

Textonly

=== [25 0 P 2l W2

&

The code itself is very simple, with the ISMAP attribute telling browsers that the image should be
treated as an image map.

Robots and non-graphical browsers can't click on the map, so it's a good thing that the listing on
the maptxt page is an alphabetical list of states. This allows robots to follow the links to the state
pages and index the text on those pages.

For more information, see the W3C HTML 4 Specification for Image Maps.

Frames and Framesets

Frames are widely used for Web site navigation, but they are not easy for robots to navigate. In
most cases, the first page loaded is the frameset page, which links all the pages together. Many
automated and graphical HTML authoring tools do this automatically, so page creators may not

even know that this frameset page exists! Robots do know, and they need some help navigating
frames.

Some robots will simply not follow links inside the <FRAMESET> tag. Web page creators should

always include links within the <NOFRAMES> tag section to provide alternate access. If you are

running a robot like that, and there are no helpful links in NOFRAMES, try to locate a site map or
text listing of links for this site.

Ultraseek Server's spider follows links in FRAMESET pages and
indexes those pages.

In addition to problems locating framed pages, both Web-wide and local search engines display
those pages individually, rather than loading the frameset first. Many of these pages were never

13

meant to be seen separately, so they don't have any navigation features. This puts the searcher
into a dead end, with no way to find the home page of the site, much less related pages. Search
administrators should encourage all content creators to add links to the home page and, if
possible, to the parent page or frameset page.

Exhibit 5 is an example of a page that has a FRAMESET of three frames (main, right and
bottom), and a NOFRAMES section with a link to the main page and links to other useful pages.
Any non-graphical or non-frame browser will be able to see navigate the site and locate the
information it contains.

JavaScript Pages

JavaScript is a programming language that allows page creators to manipulate elements of Web
browsers. For example, JavaScript can open a new window, switch images when a mouse passes
over a button to produce a "rollover" effect, validate data in forms, and so on. JavaScript can
also create HTML text within a browser window, and that can cause many problems for robot
spidering and indexing text.

JavaScript HTML Generation

JavaScript can write text in HTML files, using the docunent . writ e or docunent . witeln
command. Unless a robot contains a JavaScript engine, it's hard for them to recognize the links
within these scripts. A robot can scan the script looking for "A HREF", ".htm", ".html", and
"http://", but few do. In addition, many scripts create URLs dynamically, putting elements
together on the fly, and cannot be detected programmatically unless a client includes a full
JavaScript interpreter.

Ultraseek Server does not include a JavaScript interpreter, so it

cannot recognize or follow these links; however, the spider will
follow links inside NOSCRIPT tags.

Exhibit 6 is a simple JavaScript example. It displays two different pieces of text, depending on
whether the JavaScript interpreter is available or not. JavaScript browsers process the commands
in the SCRIPT tag, while older browsers ignore all text in the HTML comment tag, but they
display text in the <NOSCRIPT> tag. This allows page creators to set up an alternate display,
and allows non-JavaScript browsers and robots access to the text and links.

JavaScript Menus and Lists

Many sites use JavaScript menus and scrolling lists as navigation systems. This allows users to
select an item and go to the associated page. Unfortunately, most robots (and browsers without
JavaScript) can't easily follow these paths, because the browser's scripting system puts together
the "href" and the file path after a user has selected an item. While a robot could just try all
items starting with "http://" or ending with "htm" or "html", most do not. In addition, some of
these menus are built by on the fly by scripts that use customer IDs and other special codes,
which are not available to robots.

Again, the solution is to request that the Web page creators use the <NOSCRIPT> tag, duplicate
their popup menus and scrolling lists as bullet lists, and thus allow the robots to follow the links.

14

Redirecting Links

Redirect links provide a path from an old or inappropriate URL to a working URL. Redirects are a
great thing for Web site creators, because they do not break bookmarks, old search engine
indexes, or other links. When a request comes in for an old page, the redirect code tells the
browser to get the new URL instead. However, they can cause problems for robots following
these links.

Server Redirect Files
Many Web servers recognize a standard redirect format, although they may require a special file

type or setting. This includes an HTTP version line and another line with the target URL in the
standard format. For example:

HTTP/1.1 302
Found Location: http://www.domain.com/new/specials.html

When the server gets a request for the original page, it locates the redirect file and works with
the browser or other HTTP client to send the target page defined in the redirect.

Most browsers and robots accept the target in place of the original URL, and most search
indexers will store the target as the URL in the index. However, some robots may be storing the
original URL as an empty file, or match the contents of the target page with the original URL. If
the redirect file is ever removed, the search engine may lose track of the target file.

Ultraseek Server's spider correctly accepts the target in place of

the original URL, storing the target as the document in the
index.

To be sure the robot will always find redirected target files, the Web site maintainer should keep
a list of these files on another page or a site map, so there's an alternate path.

META Refresh Redirection

Some servers do not provide access to redirect files; in this case, page creators can use a META
tag to work with browsers or other HTTP clients to move to the preferred URL. The META tag is
http-equiv="Refresh", meaning that it acts as an HTTP command, rather than as plain text.
The format is:

<META http-equiv="Refresh" content="10; URL=target.html">

The content parameter is the delay interval, the number of seconds that the browser should
display the current page before moving to the target. The URL parameter is the path of the
target page. Many Web page creators will set the delay to 10 seconds or more, allowing users to
see the message that the page has been moved before bringing up the new page. This makes it
more likely that they will update bookmarks and other links.

15

The text on this page should also include a normal link to the target page. Many old browsers
and robots do not recognize the META Refresh URL and will not follow that link, so an HREF link
in the text will allow them to find the target page. As they do not recognize the META Refresh
tag, this technique will work even with a refresh delay interval of 0.

Tip: In most cases, page creators will want links followed, but they will not want this page
indexed, so they should use <META name="ROBOTS" cont ent =" NO NDEX" >.

Other Web Interfaces

Other Web interfaces, such as Java, and plug-ins such as Macromedia Flash, do not generate
HTML Web pages. They are not part of the browser, although the page creator might not be
aware of that. If you encounter one of these pages, request that the page creator provide an
alternate HTML version. Some applications, such as Macromedia's AfterShock, will do this
automatically (if the page creator uses the options to list all text and URLS).

Future standards, such as the W3C's Scalable Vector Graphics (SVG) specification, will provide
standard formats for software to generate graphics from text, which will preserve the text. This
means that non-graphical browsers, including robots, will be able to access the information and
follow the links. Until that time, they will need plain HTML versions of the pages. Another
important standard is XML (eXtensible Markup Language), which will have its own more powerful
linking format called XLink. As these standards are growing, robots should be prepared to follow
these links and to recognize and index XML-tagged text. For more information, see XML and

Search.
Ultraseek Server 3.1 provides XML field searching and XML
namespace support.

The Web used to have a simple interface: just HTML and graphics, as rendered by a browser.
These formats are too simple for many of the interactive and graphical features that
programmers have wanted, so they have invented other ways of interacting with end-users,
within the context of the Web browser.

Graphic Text

Some designers like to control the look of their text on the page and generate GIFs or JPEG files
with text. Although a human can read these words, a robot cannot read or index them.

While Ultraseek Server does not actually index the graphics, the

spider reads the ALT tags attached to the graphics and enters
them into the index for that document.

16

Plug-ins

Web designers use Plug-Ins to add features that are not available in the browsers. The most
important of these are the Shockwave and Flash animation programs from Macromedia. These
display within the browser window, so end users and even designers may not be aware that they
are not HTML and are therefore invisible to robot spiders.

Macromedia provides a utility, AfterShock, which will generate HTML pages and links, if the
designer uses the options to list all text and URLs. In this case, the search engine robots can
index the pages.

Acrobat

Adobe Acrobat displays documents in a printable format with all layout and design intact, either
as a standalone application or as a browser plug-in. Most of these documents were generated
from word processing or layout programs, and they contain both the visual interface and the
document text, while others were created by scanning, so they don't have any machine-readable
text. Some search engine robots can follow links to PDF files, reading and indexing any available
text, while others cannot.

Ultraseek Server's spider follows links to PDF files, then reads
and indexes any available text.

Java

Java applets are supported by the major browsers, and can display within the browser windows,
but again, they are invisible to robots. In general, these applets should be used only for optional
interactive features, such as mortgage rate calculation. Unfortunately, some sites use Java to
generate site maps, which are unusable by robot indexers.

Java applications on the server, such as those written to the

Java Servlet API, can generate straightforward HTML pages,
patible with Ultraseek Server's spider.

ActiveX

Microsoft Internet Explorer browsers have an additional interface, connecting the browser to the
Windows operating system. ActiveX interacts directly with the end user and sends back
information to the server. None of this data is accessible to any Web robot. Any site using this
format should also have a simple HTML version as well, for cross-platform compatibility, so the
robot should be able to read and follow links in that version.

Non-Text File Formats

Some Web sites serve files in formats other than HTML and text, with file name extensions such
as ".doc" (Microsoft Word), ".xIs" (Microsoft Excel), and so on. When a site visitor clicks on a link
to one of these pages, the browser downloads the file to the local hard drive, then works with
the operating system to launch an application to read that file. Some search indexing robots have

17

compatibility modules that can translate those formats to text, so they can index the files. In that
case, it will follow links with the operative file name extension, receive the file information,
convert the text, and store the data in the index.

Ultraseek Server licenses technology from Inso that converts
such non-text file formats as MS Word .doc and MS Excel .xlIs

(among many others) into an index-capable format. Content
from these documents is then stored in the index.

New Standard File Formats

The Web community, aware of the limits of HTML, is working on nonproprietary solutions for
presenting information. Because these formats are open standards, and because the formats are
designed to separate the text from the display, future versions of robots will be able to follow
links and index text in very complex pages.

The most important of these standards is XML (eXtensible Markup Language), which will have its
own powerful linking format called XLink. As these standards are growing, robots should be
prepared to follow these links and to recognize and index XML-tagged text. A few search indexers
can already recognize XML documents, and store some of the XML fields for separate searching.

Ultraseek Server recognizes XML documents, and the XML
Mappings panel of the server settings allows search
administrators to set up searches by field. For example, if you

have a large set of book reviews, you can set up fields that were
never in HTML documents, such as "Book Title", "Series",
"Publisher" and "Reviewer", and allow searchers to specify which
field they want.

Another standard, Scalable Vector Graphics (SVG) will provide standard ways for software to
generate graphics from text, instead of using a proprietary text animation system. This means
that non-graphical browsers, including robots, will be able to access the information and follow
the links.

Complex URLs

Robot indexers often have trouble with URLs that have unusual file name extensions or
characters in the path.

18

Files with Extensions Other than .html and .htm

Some pages are text, while others are created by server applications which generate HTML files,
rather than being typed and saved onto disk. These files sometimes retain the original file
extension, rather than the more usual “.html" and ".htm" extensions.

Examples of these include:

e no extension - HTML files formatted correctly by the server but missing the extension
entirely.

e .txt - plain text files without HTML markup

e .ssi - HTML files containing text inserted by Server-Side Includes.

e .shtml - HTML files containing text inserted by Server-Side Includes.

e .pl - HTML files generated by Perl on the server.

e .cfm - HTML files generated by Allaire Cold Fusion on the server.

e .asp - HTML files generated by Microsoft Active Server Pages on the server.

« .lasso - HTML files generated by the Lasso Web Application Server.

« .xml - XML (eXtensible Markup Language) text files with special content-oriented tags
rather than HTML tags

Some robot indexers will follow links to these files and attempt to index them as HTML or plain
text, while others will ignore the files entirely. If your robot encounters one of these pages, it
may fail to follow the link and therefore leave one or more pages not indexed. In that case, the
page creator should change the options on their system or work with the server administrator to
generate files with the .html extension.

Ultraseek Server's spider follows links to these files, using both

the file name extension and the server's MIME type to recognize
the text and HTML.

Note that some of the pages are created dynamically. For those cases, see the Locating Dynamic
Data section.

Punctuation in URLS

Robot indexers follow links when the URLs are set up using the standard punctuation, as defined
in the W3C Universal Resource identifiers in WWW documents. These rules allow file names to
include letters, numbers, . (period), ~ (tilde), - (dash), and _ (underscore).

Robots should also handle file paths with the delimiters used in standard URLSs:
e/ (Slash, delimiting directory hierarchy)
* . (Period, delimiting host name elements)

: (Colon, delimiting port numbers)

e # (Hash or Pound Sign, delimiting anchor links)

* 9% (Percent Sign, for encoding spaces and other special characters)

All robots should be able to follow links with these characters in the URLs, and should never have
any trouble with them. For more information, see the standard at RFC1808: Relative Uniform
Resource Locators.

19

Ultraseek Server's spider finds documents conforming to the

W3C document defined above, along with RFC 2396, including
documents in file paths containing the described delimiters.

Some URLs, usually those involved with dynamic data, have other punctuation marks. These are:
* ? (Question Mark or Query): defined by the HTML standard for sending form data to the
server using the HTTP Get function
* $ (Dollar Sign): often used for sending form data
e = (Equals Sign): used in the same standard for control name/value pairs
» & (Ampersand): used in the same standard for separating name/value pairs
e ; (Semicolon): also used for separating parameters

Unchecking the "Disallow all URLs with query strings" checkbox
in Ultraseek Server's Collections Filters panel will allow the
spider to follow links with these punctuation marks, indexing the
content. Maintaining the default "checked" in this checkbox tells
the spider to ignore any URLs with a question mark (?). There is
no other punctuation limit in the spider.

Relative Links

Relative links are links to other files on the server without the full http:// URL format. They follow
the standard Unix rules for relative file paths, and robots resolve them by comparing the current
URL to the path in the link and adjusting as necessary.

For example, if you have a Web directory that looks like this:

— o P J—
— test eyl R
are. himl five. hirml

ke bl Ehree himl feur. hirml

20

Relative URLs would look like this:

type originating file link points to
name followed by a/ (slash) and /1 evel 1/ four.h <A HREF= /level 1/1 ev
a file name: start at this level, go into | t "level 2/six |el2/six.htm
the directory, and open the document -htm "> |
/ (slash): start at the top /test/two. htm <A HREF= [five.htm
| evel of this host "/five.htm
">
../ (dot, dot, slash): start at the next | /| evel 1/1 evel 2 | <A HREF= /1 evel 1/ fou
level up, in the parent directory /'six. htm "../four.ht |r.htn
m">
./ (dot slash) start at the current /test/two. htm <A HREF= /test/three
directory (this may be a typo) n1 /three.ht |.htm
">

Relative Link Problems

Robots encounter many relative link problems, often due to misunderstandings of how relative
file paths should work. For example, some links include more parent directories (../) than are
included in the current file path, so that the link points at a file that is not in the Web directory

tree. Others use the special "." symbols incorrectly, or when they are not necessary.

and "..

These are particularly prevalent in directory listings, where the server automatically displays a
page containing links to all the files and subdirectories in the current location.

If your indexing robot misses some pages, malformed relative URLs may be the reason. Robots
may attempt to resolve them, report errors, or silently ignore them. You can search for links to
these pages, or use a local or Web-based link checker. They should be able to check the URLs in
much the same way as your search indexing robot. Once you find the problems, inspect them
closely, retype them, and perhaps even create an absolute URL (starting from /).

For more information, see RFC 2396, W3C Addressing: URLs, Partial Form and W3C RFC 1808:
Relative Uniform Resource Locators.

VI. Dealing with Dynamic Data

Dynamic data is text and HTML generated by a server application, such as a database or content-
management system. Sometimes, this data is inserted into a normal HTML page, and no
browser, robot or other client will ever know where it came from. In other cases, the page is
created in response to a user entry in a form, and may only be applicable to a specific person at
a specific time, rather than a static page. For example, a sales person might look up their
commission for the quarter-to-date, or a reporter might check the votes counted for a candidate.
Neither of these pages is appropriate for search indexing, but dynamically-generated catalog
entries and informational pages are. The trick is in telling the difference.

Some search engine robots, especially those of public Web search engines such as AltaVista,
Infoseek and Hotbot, do not want to index dynamic pages, so they tend to ignore links with ? in
the URL. A few of the site, intranet and portal search engines, including Ultraseek Server, can

21

handle these pages properly, allowing the search engine to index the pages generated by the
database or automated system together with static pages.

Pages from Content-Management Systems

Content-Management systems provide Web site creation teams with automated tools to store
text and pictures, and generate Web pages in a specific format and structure. Many large sites
take advantage of these products to track and control their sites more effectively, but there are
some implications for search indexing robots.

Ultraseek Server's spider follows these URLs when the "Disallow

all URLs with query strings" option is unchecked in the
Collections Filters panel.

Page ldentifiers

Content-management systems often use URLs with codes to identify specific pages. For example,
the articles on the SFGate site have URLs that look like this:

http://ww. sfgate.com cgi-bin/article.cgi?
file=/chroniclelarchivel/ 1998/ 10/ 20/ BU21765. DTL

In this case, the ? starts the query information and the = provides a path to the file

For this site, you would want your robot indexer to recognize the question mark and equal sign,
so it can locate the pages.

Entry Ids

Some sites like to know where you came from, so they can keep track of user movement from
one section of a site to another. For example, the WebMonkey site uses "tw=" to figure out if you
followed a link from a specific place, in this case, the home page:
http://www.hotwired.com/Webmonkey/99/36/index3a.html?tw=frontdoor

and if you come in from the archive of server-related topics, it will be:

http://www.hotwired.com/Webmonkey/99/36/index3a.html?tw=backend

They are really the same page, but the URL is slightly different, so you have to make sure you
get rid of duplicate entries.

Session lds

Some content-management systems generate a session id for identifying a specific user, instead
of using a cookie. For example, the Sun Java Web Server can generate a unique number for each
user and add it to the end of the URLs, so they look like this:

www.example.com/store/catalog; $sessionid$DA32242SSGE2

However, a search indexing robot may traverse the server in apparently-random order, and may
pause between requests to avoid overloading the server. In that case, the server would add a

22

different session ID to some requests, so the URLs would be different. A robot that does not strip
the ending section could continue to index endlessly, because there would always be links to
"new" pages (those with different session IDs in the URLS).

However, a spider that does try to interpret the URL and strips a
suspected session ID, may not be able to access the content
either. A Web server that provides a session ID is likely to have
session-based content. Session-based content may not be
something that should be spidered -- order forms, preference
setting pages, mailing list subscriptions, whatever.

Sun's Java Web Server (and their JSP engine) assume that a
servlet JSP page needs a session. The servlet or JSP code must
explicitly turn off sessions. So session IDs may be present on
pages that don't really require them. Web servers should not
place session IDs on stateless content, and should work with the
search engine admin to decide what content should be
searchable, and how to make that content available to the
search engine.

Ultraseek Server's spider does not try to strip Java Web Server
session IDs from URLs. If these URLs cause a problem for the
spider, a filter disallowing them can be added:
;\$sessionid\$

If there are pages with gratuitous session IDs, these can be
accessed directly without a session ID. The site could be listed
under an "allow text" filter, and the Webmaster could provide a
page with links to all pages that should be indexed. Those links,
without session IDs, would "seed" the spider with good URLSs.
The URL for that page should be added to the roots for the
collection.

Cookies

Cookies are stored user identification in a format set up by browsers. They are generally required
for shopping baskets and other interactive processes. Active Server Pages have cookies built in,
but many never use them. A few search engines, including Ultraseek, can recognize stored cookie
information.

In the Network panel of the Ultraseek Server admin, the
"Additional HTTP Headers" section can include permanent
cookies.

Lotus Notes Pages

The Lotus Notes Web server provides a very rich document structure, allowing site visitors to
view the same information in many different ways. For example, the notes.net site allows you to
view newsletter articles by author, date, language, level and product version, and to click

23

disclosure triangles to see links to the individual pages. Therefore, the main page of the archive
has the URL:

http://notes.net/today.nsf/Author?OpenView

but each of the small triangles is an image link to another page, with another URL like this:
http://notes.net/today.nsf/Author?OpenView&Start=1&Count=30&Expand=3#3

which itself contains additional links to other pages. As you can imagine, this can send a robot
into almost infinite gyrations, as it attempts to chase every combination of pages. If you are

attempting to spider a Lotus Notes-driven site, consider using a robot that already knows about
these kinds of sites.

Checking the "Filter Lotus Domino navigation links" in the

Collections Filters panel enables Ultraseek Server's spider to
correctly handle Domino-driven sites.

Pages from Catalog-Style Databases

Database and middleware systems can generate Web pages in real time, formatting the content
of records in the database into HTML. If the search indexing robot can traverse the links to these
pages, it can incorporate the data into the index with the static pages, allowing site visitors to
search both kinds of information at the same time, and see the results in relevance ranking
order. Catalog-style databases are even more complex than content-management systems. For
example, the URL for the Wonder Woman action figure page at Things from Another World looks
like this (in its simple form):

http://www.tfaw.com/Level4.htm|I?SEC=HERE&SUBSEC=toys&I TEM=ARR1000000397

The item number is key here: each item is unique and should be indexed separately.
There are several approaches to having robots follow links for database and catalog data:

1. Generate static text pages from a database, store them in the file system, and create a
page of links to these pages. Every time the database or catalog changes, the static
pages must be regenerated.

2. Have the database itself generate pages that use a standard format so the robot cannot
tell that the data is generated on the fly. Instead of the URL
www. exanpl e. cont pr oduct s?name=bl uewi dget : | evel =3, you could set it to
www. exanpl e. cont product s/ bl uewi dget/ 3. ht m . That is what Amazon does, for
example, generating plain URLs using the Texis relational database system.

3. Choose a search indexing robot that can follow links to the dynamic data.

Unchecking the "Disallow all URLs with query strings" in the

Collections Filters panel will tell Ultraseek Server's spider to
follow these types of URLs.

When indexing dynamic data, robots should generally index the data itself, but not follow links
onto listing pages. Robots should not index any directory or listing pages -- these pages do not

24

contain data that a searcher would want to locate. When these listing pages are generated, they
should have META ROBOTS NOINDEX tags, so the robot can recognize their status.

Ultraseek Server by default ignores listings on these pages, but
follows links except for parent links (i.e., the ".." link to the

parent directory). These settings can be changed in the
Collections Filters panel.

For example, a mailing list archive should not allow data on the listing pages to be indexed,
because the individual messages are the ones which present the actual data. In message pages
themselves, robots should not follow "previous"” and "next" links, as they are simply alternate
ways of getting to other messages, so the page should be generated with the META ROBOTS
NOFOLLOW setting.

Dynamic Web Applications and Black Holes

Another form of dynamic data is generated in real time by systems such as Web Calendars.
These can automatically create new year pages and new day pages almost endlessly -- they do
not expect people to follow the "Next year" link or to click on every day's link. Robots will
continue to request these URLs, even five or ten years into the future, although there is no
information to index. They can't tell that they are simply having a mechanical conversation with
an automated system.

Some search engine robots can limit the number of hops from the Root URL. The limit reduces
the likelihood that the robot will get into some other kind of endless loop, such as a long-term
calendar or other dynamic data source, that may increment a date rather than add a directory
layer. So the robot might follow links in the calendar for 100 months but no more.

In addition, a limit to the number of directories (delimited by slashes) avoids the situation where
a file can accidentally link to itself, such as an alias, shortcut or symbolic link loop. For example, it
might look like this: www. domai n. comtest/test/test/test/test/test/. The default
limit of 10 keeps this from going forever, although you can override it if the site is very deep.

Administrators can set the maximum numbers of hops from the
root URL, along with the maximum number of directories in a

URL on the Collection Filters panel of the Ultraseek Server
admin.

25

VII. Detecting Duplicate Pages

A search indexing robot may encounter a page following links from several other pages, but it
should only index it once. It must keep a list of the URLs it has encountered before, but in some
cases the URL is different but the pages are the same. Search indexing systems can be
programmed to recognize some of these cases, while others are only detectable by tracking
pages carefully and comparing new pages to those already in the database.

Ultraseek Server's Collections Dupes panel provides
sophisticated tools for defining duplicates and deciding which of
the two or more pages to consider definitive. It allows you to
define whether a page is a duplicate by comparing the title and
summary or by completing a more thorough comparison of the
entire page.

Default Index Pages

The HTTP protocol supports links to a directory, and allows servers to display a default page in
that case. That's how we can link to a host home page without typing the page name every time,
so www.example.com is the same as www.example.com/index.html (or default.htm, etc). Robot
indexers should recognize this relationship, and only index each page once.

Ultraseek Server's spider recognizes this relationship and only
indexes each page once.

Capitalization

Some Web servers are case-sensitive (they consider a directory or file name with capital letters
as different from the same words with lowercase letters). For those servers, two pages with the
same name but different cases (example.html vs. Example.html) might or might not be the same.
The only way to tell is to compare the pages themselves.

Ultraseek Server compares the pages. The Collections Tuning
panel also provides a checkbox to change the option from the

default setting of ignoring page name text case, to account for
those few sites where the pages are different.

Server Mirroring

If your robot is indexing several hosts in the same domain, one or more of them may mirror
another. One may be named www.example.com, for example, and the other
www?2.example.com. DNS routers can automatically direct incoming HTTP request to one or the
other to balance the server load. Therefore the indexing robot may locate a page on both
servers, but they are truly duplicate pages. In this case, you really need a robot that can store
the equivalence and convert all secondary host names to the primary host name before following
links.

26

Ultraseek Server's spider will follow all links, even on different

servers, but the Collection Dupes panel lets you prefer the main
host when the indexer gets the same page from two hosts.

Redirects

Server redirects accept one URL but serve a different URL. These are useful for updating site
structure, changing names and dealing with errors. If a site uses redirects, the robot should

not store the original URL for the page, but that of the ultimate page served. Otherwise, the
page could appear twice in the index, once for each URL.

Alternate Paths and Page Copies

In some sites, the content-management system can serve the same page in several
categories. Although hypertext allows links from one category to another, the back end
system may not be able to do the same, so the same page is created although the path to
the page is different. On other sites, designers simply create copies of useful pages, rather
than linking to the page in a different directory. This can result in duplicate pages, and in
unsynchronized changes to these pages. A few search indexers, such as Ultraseek Server,
will compare page contents and only index one copy.

Entry IDs

With Entry IDs, the same page can have multiple URLs with different links at the end. Any
robot which follows these links will get a URL that is identical except for the final parameters,
and which points at the same page. If an indexer doesn't recognize that they are the same
page, it can't delete it from the index.

Ultraseek Server's Duplicate URL Preference lets you indicate

that those with the Entry ID code at the end should be ignored
if there is one without that ID.

VIII. Reuvisiting Sites & Updating Indexes

As sites change, a search engine robot must return periodically to update the index. Searchers
justifiably hate to work with an index that does not match the current state of the data exactly,
so the index updating system should be synchronized to the site content updates.

Update Schedules

The simplest updating scheme allows a search administrator or Webmaster to have the
robot check for new data when they publish new content on the site. This simply tells the
search indexing robot to start following links and reading pages again.

27

Ultraseek Server has a very powerful scheduling system. In
addition to an on-demand index option, the Collection Tuning
panel has a schedule for updating the index. Ultraseek also has
an internal system that keeps track of how often each page is

updated, and revisits the frequently-changed pages first. This is
a very efficient solution because it concentrates on those sites
or sections which change often, and spends less time checking
those which are static.

Locating changed pages

As mentioned above, if the Web server reports the page modification date properly,
some robots will only retrieve changed pages, and just get notification if the page was
the same. However, some servers do not report the modification date correctly. Other
robots just retrieve every page and re-index it, or compare it to the contents of the index
and update if the page has changed.

Ultraseek Server's index update does not start from scratch, it
modifies the index so you can continue to search while updating
in the background. For the servers that do not properly report
the modification date of files, Ultraseek Server can compare the
pages and track when the content was actually changed. The
tracking system reduces the number of times that the spider will
check the server for relatively static data, and makes sure that
changing data is indexed most often.

IX. Conclusion

Running a robot is always a challenge, so you want your search tool to make it as easy as
possible. Search indexing robots should follow all the robot standards and allow you to control
the speed of crawling. The right robot for you is the one that works properly on your sites,
whether you have image maps, frames, JavaScript, complex URLs, relative links or dynamic data.
It should provide helpful indexing reports, detect duplicate pages, and update according to your
content change schedule. Use this article as a checklist to understand the strengths and
weaknesses of your search engine robot, and how well it matches your sites.

Ultraseek Server's spider makes building an index as easy as
possible. The browser administration lets you control the spider
with filters and options, or define which duplicate file should be
retained, and view the logs to track the spider's progress from

any machine on your network. Even if you have a complex set
of servers with a variety of formats, Ultraseek Server gives you
the power to find and index all the pages you need.

28

Useful Robot Sites

W3C HTTP 1.1 Protocol, Section 14.25:

httg://www.w3.org/ProtocoIs/rchG16/secl4.25|

Search Engine Watch Spider Spotting Chart:

httg ://searchenginewatch.com/Webmasters/spiderchart.html |

Robots Exclusion Protocol:

http://info.Webcrawler.com/mak/Qro'|ects/robots/norobots.htmII

Admin’s Guide to the W3C Robot Exclusion Protocol:
http://info.Webcrawler.com/mak/projects/robots/exclusion-admin.html|

HTML Author’s Guide to the Robots META Tag:

http://info.Webcrawler.com/mak/projects/robots/meta-user.html|

Dublin Core Metadata Initiative: http://purl.oclc.org/dc/|

Anatomy of an HTTP URL: http://www.Webreference.com/html/tutorial2/2.html|
A Guide to URLs: http://www.netspace.org/users/dwb/url-quide.html|

W3C Web Content Accessibility Guidelines: |ttp://www.w3.ora/WAI/GL/|

Bobby: http://www.cast.org/bobby//

W3C HTML 4 Specification for Image Maps:
http://www.w3.0rg/TR/html401/struct/objects.html|

W3C HTML 4 Specification for Frames:

httg ://www.w3.org/TR/html401/present/frames. htmI|

W3C Scalable Vector Graphics specification: http://www.w3.0rg/TR/SVG/|

W3C’s XML page: |http://www.w3.ora/XML/Activity|

W3C’s Xlink page: http://www.w3.0rg/TR/xlink/|

XML and Search: http://www.searchtools.com/related/xml.htmi|

W3C Universal Resource Identifiers: http://www.w3.org/Addressing/URL/uri-|

RFC1808: http://www.w3.org/Addressing/rfc1808]|

RFC2396: http://www.ics.uci.edu/gub/ietf/uri/rf02396.txt|
Form Data Standards: http://www.w3.0rq/TR/1998/REC-html|40-
[[9980424/interact/forms.html#h-17.13.3]

29

http://www.w3.org/Protocols/rfc2616/sec14.25
http://searchenginewatch.com/webmasters/spiderchart.html
http://info.webcrawler.com/mak/projects/robots/norobots.html
http://info.webcrawler.com/mak/projects/robots/exclusion-admin.html
http://info.webcrawler.com/mak/projects/robots/meta-user.html
http://purl.oclc.org/dc/
http://www.webreference.com/html/tutorial2/2.html
http://www.netspace.org/users/dwb/url-guide.html
http://www.w3.org/WAI/GL/
http://www.cast.org/bobby/
http://www.w3.org/TR/html401/struct/objects.html
http://www.w3.org/TR/html401/present/frames.html
http://www.w3.org/TR/SVG/
http://www.w3.org/XML/Activity
http://www.w3.org/TR/xlink/
http://www.searchtools.com/related/xml.html
http://www.w3.org/Addressing/URL/uri-spec.html
http://www.w3.org/Addressing/URL/uri-spec.html
http://www.w3.org/Addressing/rfc1808
http://www.ics.uci.edu/pub/ietf/uri/rfc2396.txt
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#h-17.13.3
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#h-17.13.3

XI.

W3C HTML 4.0 Specification, Appendix B, Notes on helping search engines
index your Web site: http://www.w3.ora/TR/PR-html40/appendix/notes.html|

Web Robots FAQ: http://info.Webcrawler.com/mak/projects/robots/fag.html|
Web Robots Database: http://info.Webcrawler.com/mak/projects/robots/active.html|

Guidelines for Robot Writers:

UKOLN WebWatch Robots.txt checker: http://www.ukoln.ac.uk/Web- |
focus/Webwatch/services/robots-txt/|

BotWatch robots.txt syntax checker:
http://www.tardis.ed.ac.uk/~sxw/robots/check/|

BotSpot: http://www.botspot.com/|

Exhibits

Exhibit 1: Robots.txt Syntax

Exhibit 2: Robots META Tag Syntax

Exhibit 3: Ultraseek Server Index Log Contents
Exhibit 4: Sample Log File

Exhibit 5: FRAMESET Example

Exhibit 6: Sample Java Script Code

30

http://www.w3.org/TR/PR-html40/appendix/notes.html
http://info.webcrawler.com/mak/projects/robots/faq.html
http://info.webcrawler.com/mak/projects/robots/active.html
http://www.ukoln.ac.uk/web-focus/webwatch/services/robots-txt/
http://www.ukoln.ac.uk/web-focus/webwatch/services/robots-txt/
http://www.tardis.ed.ac.uk/~sxw/robots/check/
http://www.botspot.com/

Exhibit 1. Robots.txt Syntax

Exclude all robots from
part of the server

Di sal | ow. /cgi -
bi n/
Di sal |l ow. /tnp/

Task Entry Notes
Allow robots complete [User -agent: * * means all user agents (robots). Because nothing
access to the server [Di sal | ow is disallowed, everything is allowed.
User -agent: *

* means all user agents. The robots should not
visit any pages in these directories.

Exclude a robot from a
single file

links/listing.h
tm
User-agent: *
Di sal | ow. /tnp/
Di sal | ow:

private/

Di sal | ow:
private/
LBngrB;)?gent ' In this case, the BadBot robot is not allowed to
Di sal | ow * see anything. All other agents (*) can see
Exclude a single robot everything.
User-agent: * The blank line indicates a new "record"” - a new
Di sal | ow: /pri v/ [User agent command.
User - agent :
\Wei r dBot
Di sal | ow. This keeps the WeirdBot from visiting the listing

page in the links directory, while all other robots
can see everything except the temp and private
directories.

The * for all other robots should always be at the
end of the robots.txt file.

31

Exhibit 2: Robots META Tag Syntax

Task Entry Notes
Use this for pages with many links on them, pages
Do not index <neta name=" ROBOTS" without not much useful data (such as a large

but follow links

cont ent =" NO NDEX" >

image map); or for data that changes very
frequently, such as news headlines. Because
"follow" is the default, you don't have to include it.

Index, but do
not follow links

<met a nane="ROBOTS"
cont ent =" NOFOLLOW >

Use this for pages which have useful content but
links which may be irrelevant or obsolete, or which
may point to other sites.

Do not index or
follow links

<net a name="ROBOTS"
cont ent =" NO NDEX, NOF
OLLOW >

This is for pages which should not be indexed at
all. If you put that in every page, the site should
not be indexed.

Index and follow

links

<met a nanme="ROBOTS"
cont ent =" | NDEX, FOLLO

W >

This is the default behavior: you don't have to
include this tag.

32

Exhibit 3: Ultraseek Server Index Log Contents

The Ultraseek Server robot reports everything it encounters, if you have
the "Log disallowed URLS" checked.

Simple pages without duplication look like this:

Sep 09 11:32:36 Info: [searcht] 200 &K
http://ww. searcht ool s. com i nf o/ gui de. ht m

Pages on other sites (which are not part of the collection) look like this:

Sep 09 11:32:35 Info: [searcht] 406 Disal |l owed by
URL filter: http://perl.org/

Pages on the same site which are not allowed by the filters look like this:

Aug 31 14:10:44 Info: [avi] 200 &K

http://ww. hot wi red. conl Webnonkey/

Aug 31 14:10:44 Info: [avi] 406 D sall owed by URL
filter: http://ww.w red. con’ hone/ copyri ght. htm

Duplicate pages look like this:

Sep 09 11:34:35 Info: [searcht] Duplicate of

htt p://ww. searcht ool s. com i nf o/ conf er ences-
past. htn :

http://ww. searcht ool s. com i nf o/ conf erences. ht m

Pages not changed since the last check look like this:

Sep 09 11:34:52 Info: [searcht] 304 OK,
unchanged:
http://ww. searcht ool s. com t ool s/ overvi ews. ht m

or

Sep 09 10:27:25 Info: [exanple] 304 Not nodified:
http://ww. exanpl e. edu/ fishing/localinfo.htm

Pages changed since the last check look like this:

Aug 31 14:08:05 Info: [avi] Del eted previous
http://ww. hotw red. coml Webnonkey/ ki ds/ | essons/ W\
b. ht m

Aug 31 14:08:06 Info: [avi] 200 OK

http://ww. hotw red. coml Webnonkey/ ki ds/ | essons/ W\
b. htm

URLSs which are the source of redirects:
33

Aug 31 11:38:09 Info: [avi] 302 Mved
Tenporarily: http://ww Webnonkey. cont

Aug 31 14:11:06 Info: [avi] 301 Moved
Per manent | y:

http://ww. hot wi red. conl Webnonkey/ sof t war e

URLSs with parameters (text after question marks) are disallowed if not explicitly
allowed, and the errors look like this:

Aug 31 14:10:44 Info: [avi] 406 D sallowed by URL
filter:

http://ww. hot wi red. conl Webnonkey/ xml / ?t w=f r ont do
or

Excessively long URLs are reported as errors:

Aug 31 14:08:04 Info: [avi] 406 URL too | ong:

htt p://ads. exanpl e. conf event . ng/ Type=cl i ck&Pr of i |
el D=8167&

Runl D=16250&8Ad| D=21542&G oupl D=1&Fam | yl D=3008&

TagVal ues=2. 5. 6. 25. 156. 159. 174. 322. 374. 389. 411. 73
975. 74235. 74975. 75378&

Redi r ect =ht t p: %2F%2FWebf ar m exanpl e. con?2Fcl i ck_t
hru_r equest %
2F164- 1361k- 1052%3Fr %8D1999. 8. 31. 21.7.29.0

Pages with the META NOINDEX or NOFOLLOW tags are recognized:

Sep 09 11:35:29 Info: [searcht] 200 OK, nofollow
robots neta tag:

http://ww. searcht ool s. com t est/ robot s/ net a-
nof ol | ow. ht m

Sep 09 11:35:30 Info: [searcht] 200 OK, noi ndex
robots neta tag, nofollow robots neta tag:
http://ww. sear cht ool s. com t est/robot s/ net a-

noi ndex- nof ol | ow. ht m

Formats and MIME-types not recognized by the Ultraseek indexer:

Sep 09 16:15:42 Info: [searcht] 406 Unsupported
content-type application/octet-stream
http://test.searchtools.conftool s/tools.bin

When the server does not respond quickly, the page is never received:

Aug 31 14:09:05 Info: [avi] 503 tsocket.tineout:

34

http://ww. hot wi red. coml Webnonkey/ gui des/ Wb/ nav_
page6. ht m

When the server can't be found, the log includes an error (and keeps trying):

503 socket.error: host not found:
htt p: // nonexi st ant . exanpl e. com

35

Exhibit 4: Sample Log File

In this log file, we have simplified the columns to the following information:

* CS-URIlisthe URL

e CS-STATUS is the result code (200 for good pages, 301 and 302 for redirects,
304 for unchanged, and 404 for not found)

 METHOD is the kind of request from the browser or robot, GET is the usual form
for static pages, CONDITIONAL_GET indicates that the client only wants the
page if it's changed since a specific date)

* AGENT is the User-Agent name of the robot (you can change this in Collection
Network panel, and customize it for specific hosts)

 HOSTNAME is the server on which the Ultraseek server software is running

e« BYTES_SENT is the amount of data transferred

e TRANSFER_TYPE is the time to send the data, in seconds

CS-URI CS- STATUS METHOD AGENT HOSTNAME BYTES_SENT
TRANSFER_TI ME

/robots.txt 200 GET U traseek sunset.infoseek.com 389 1

/index. htnml 200 CGET U traseek sunset.infoseek.com 36998
27

/infolguide.htm 200 GET U traseek sunset.infoseek.com
34904 17

/tool s/tools.htil 200 GET U traseek sunset.infoseek.com
17702 2

/info/news. htnml 200 CONDI TI ONAL_GET Ul traseek
sunset . i nfoseek. com 34847 21

[surveys/ 302 CGET U traseek sunset.infoseek.comO0 2

/ surveys/surveys. htm 200 GET U traseek
sunset . i nfoseek.com 4218 16

/index.htm 304 CONDI TI ONAL_GET U traseek
sunset . i nfoseek.com 151 4

[tenp/ surveys/index. htm 404 GET U traseek
sunset . i nfoseek.com 2742 10

In particular, watching the 404 error entries tells you about bad link URLs, and site administrators
should check these whenever possible.

36

Exhibit 5: Frameset Example

<FRAMESET col s="160, *" border =0>
<FRAME src="http://ww. domai n. com mai n. ht " scrolling="auto"
border=10 NAME="pami n">
<FRAME src="right.htm" scrolling="auto" border=10
NAMVE="ri ght ">
<FRAME src="bottom htm " scrolling="no" border=0 margi nwi dt h=0
mar gi nhei ght =0 NAME="bot t oni' >
</ FRAMESET>

<NOFRAMES>
<BODY><H1>Wel cone to our Site!</Hl>
<H2>Mai n
Page</ A></ H2>
<H2>Ct her Pages</ H2>

<Ll >Tr ees</ A></ LI >
<Ll >Fl ower s</ A></ LI >
<Ll >Manmal s</ A></ LI >
<Ll >] nsect s</ A></ LI >
<Ll >Fi sh</ A></ LI >
</ UL>
<P>Hone</ A></ P>
<P>About Us</ A></P>
</ BODY>

</NOFRAMES>

In this example, the FRAMESET will show the pages main.html, right.html and bottom.html, while
the NOFRAMES will direct a user or robot to the main page or specific other pages.
For the definitive reference information, see the HTML 4 specification for Frames.

37

Exhibit 6: Sample Java Script Code

<SCRI PT LANGUAGE ="JavaScri pt">

<I--

docunent.witeln ("<H3>JavaScri pt Exanpl e</ H3>\

<P>This text is generated by a JavaScript. If you can see
it, you are using a \

JavaScri pt - conpati bl e \

browser or other HTTP client that contains a JavaScri pt
interpreter. For \

nore information, see \

our JavaScri pt Pages. <\P>\

")

[-->
</ SCRI PT>

<NOSCRI PT>

<P>This is only visible to browsers that cannot interpret
JavaScri pt.

For nore information,

see the

our JavaScri pt Pages. <\P>

</NOSCRIPT>

In the NOSCRIPT section of the code, the link is available for robots and non-JavaScript
browsers.

38

	About the Author
	Table of Contents

	II.	How Robots Follow Links to Find Pages
	Other Indexing Issues
	III.	Communicating With Robots
	IV.	Indexing Process
	V.	Details of Following Links and Crawling Sites
	VI.	Dealing with Dynamic Data
	VII.	Detecting Duplicate Pages
	Default Index Pages
	Capitalization
	Server Mirroring

	VIII.	Revisiting Sites & Updating Indexes
	IX.	Conclusion
	X.	Useful Robot Sites
	XI.	Exhibits

