Computer Vision
Introduction

Guido Gerig
CS-GY 6643, Spring 2017
gerig@nyu.edu

Acknowledgements: some slides from Marc Pollefeys and Prof. Trevor Darrell, trevor@eecs.berkeley.edu
Administrivia

- **Classes:** Tue, 6 – 8.30pm
 Room RH 215
- **Instructor:** Guido Gerig
 gerig@nyu.edu
- **TA’s:** Rupanta Rwiteej Dutta
 Guangqi Chen
- **Prerequisites:** Graduate standing, CS-GY 5403 & MA-UY 2012, or equiv.
- **Textbook:** "Computer Vision: A Modern Approach" by Forsyth & Ponce
- **Organization:**
 Admin/Grading/Uploads: NYU Classes
 Slides, documents and assignments: Course Website
Administrivia

- Textbook:
 “Computer Vision: A Modern Approach” by Forsyth & Ponce

Version 1 Version 2e 2012

- The Version 1 is sufficient for this course, but you can also buy the new updated version.
Web-Site

- NYUClasses CS-GY 6643 for assignments and announcements
- Linked to my home page (teaching page):
Briteclass Lecture Recording

- Lectures will be recorded automatically using a system called Briteclass.
- Recorded lectures will be available for viewing online, generally within 12 hours.

You may access the recordings directly from NYU Classes. For best result, use a Chrome or Firefox Browser. Other browsers won’t work.

- Login to NYU Classes
- Click on your course tab
- You can access the “Briteclass Lecture Capture” recordings in two ways:
 - Click on the “BriteClass Lecture Capture” link on the Home page information section.
 - Click on the “Resources” link on the left menu bar and find the “BriteClass Lecture Capture” link to access.
- This will take you to the Briteclass dashboard where you can select the desired classroom recording based on date and time.
TA / SW Tools / Office Hours

- **TA:** Rupanta Rwiteej Dutta
 Guangqi Chen

- **HW/SW:** Matlab (free), Octave (free)

- **Office Hours TA**
 Hours/location: tbd

- **Office Hours instructor:** tbd
MATLAB

• This course will support MATLAB for practical parts of assignments. C++ or other languages can be used but there will be no support and we need proof that code is fully developed by the student.

• If students want to purchase their own copy, Matlab for students is $50, or $99 (including 10 toolboxes.), link

• We will NOT USE Toolboxes but implement our own code.
NYU Honor Code

Students are expected to work on their own, as instructed by the Professor. Students may discuss projects with other individuals either in the class or outside the class, but they may not receive code or results electronically from any source that is not documented in their report. Students must write their own code, conduct their own experiments, write their own reports, and take their own tests. Any use of sources (for projects or tests) that are not specifically given to the student by the Professor or TA, must be discussed with the Professor or TA or documented in the report. Any student who is found to be violating this policy will be given a failing grade for the course and will be reported to the authorities as described in the University's Student Code of Conduct:

- [NYU Tandon Student Code of Conduct](#)
- [Student Code of Conduct (PDF)](#)
GNU Octave is a high-level language, primarily intended for numerical computations. It provides a convenient command line interface for solving linear and nonlinear problems numerically, and for performing other numerical experiments using a language that is mostly compatible with Matlab. It may also be used as a batch-oriented language.

Octave has extensive tools for solving common numerical linear algebra problems, finding the roots of nonlinear equations, integrating ordinary functions, manipulating polynomials, and integrating ordinary differential and differential-algebraic equations. It is easily extensible and customizable via user-defined functions written in Octave's own language, or using dynamically loaded modules written in C++, C, Fortran, or other languages.

GNU Octave is also freely redistributable software. You may redistribute it and/or modify it under the terms of the GNU General Public License (GPL) as published by the Free Software Foundation.

Octave was written by John W. Eaton and many others. Because Octave is free software you are encouraged to help make Octave more useful by writing and contributing additional functions for it, and by reporting any problems you may have.
Prerequisites

• General Prerequisites:
 – Data structures
 – A good working knowledge of programming (or willingness and time to pick it up quickly!)
 – Linear algebra
 – Vector calculus

• Assignments include theoretical paper questions and programming tasks (Matlab/Octave or C++).

• Students who do not have background in signal processing / image processing: We will provide support for most basic image processing methods.

• THIS IS NOT AN IMAGE PROCESSING COURSE BUT FOCUSES ON 3D VISION ASPECTS.
Grading - Weights

- Assignments (4 theory/progr.): 30%
- About 5 in-class quizzes (to test understanding of the major topics): 25%
- Midterm Exam: 20%
- Final Project (Groups): 25%
Assignments & Projects

- Assignments: Theoretical and Practical Part: Example
- Strict deadlines: 10% deduction per day late, no more accepted after 3 days.
- Assignments solutions include:
 - Solutions to theoretical parts (can be handwritten and scanned)
 - Detailed report on practical solution (pdf document)
 - Code used to solve practical part
- Important:
 - Be creative with own images and experiments with your code. Try different scenarios and discuss pro’s and con’s.
 - Report needs to include description of what you did, description of results, and critical assessment of results, limitations, etc.
 - Code with image data submitted a separate tar/zip file.
Other Resources

- A first point of contact for explanations of different image related concepts and techniques. CVonline currently has about 2000 topics, 1600 of which have content.
- See list of other relevant books in syllabus.
Some Basics

• Instructor and TA do not use email as primary communication tool.

• It will be your responsibility to regularly read the Announcements on NYUClasses.

• We don’t need a laptop for the class, please keep them closed !!!!!

• Please interact, ask questions, clarifications, input to instructor and TA.

• No need for cell phones, you surely know.
Syllabus

• See separate syllabus (linked to web-site and included on NYUClasses).
• Document
Goal and objectives

• To introduce the fundamental problems of computer vision.

• To introduce the main concepts and techniques used to solve those.

• To enable participants to implement solutions for reasonably complex problems.

• To enable the student to make sense of the literature of computer vision.
CV: What is the problem?

Image Formation: From World to Image
- Camera model (optics & geometry): From points in 3D scene to points on 2D image.
- Photometry: From lights and surfaces in scene to intensity (brightness) and color in image.

Vision: From Image to (Knowledge of the) World
- Reconstruct scene (world model) from images.
- Extract sufficient information for detection/control task.
CV: A Hard Problem

- Under-constrained inverse problem – 3D world from 2D image.
- Images are noisy – shadows, reflections, focus, (ego-)motion blur – and noise is hard to model.
- Appearances – shape, size, color – of objects change with pose and lighting conditions.
- Image understanding requires cognitive ability (“AI-complete”).
- Robotics & Control: massive data rate, real-time requirements.
What is Computer Vision?

• Automatic understanding of images and video
 – Computing properties of the 3D world from visual data (*measurement*)
 – Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities. (*perception and interpretation*)
Vision and graphics

Images \quad \xrightarrow{\text{Vision}} \quad \text{Model}

\xleftarrow{\text{Graphics}}

Inverse problems: analysis and synthesis.
Related disciplines

- Artificial intelligence
- Machine learning
- Cognitive science
- Graphics
- Image processing
- Algorithms
- Computer vision
Object recognition (in mobile phones)

- This is becoming real:
 - Lincoln Microsoft Research
 - Point & Find, Nokia
 - SnapTell.com (now amazon)
Smart cars

- **Mobileye**
 - Vision systems currently in high-end BMW, GM, Volvo models
 - By 2010: 70% of car manufacturers.
 - Video demo
 - YouTube, TestMovie

Slide content courtesy of Amnon Shashua
Modeling 3D Structure from Pictures or 3D Sensors
Modeling ctd.
Main topics

- Shape (and motion) recovery
 “What is the 3D shape of what I see?”
- Segmentation
 “What belongs together?”
- Tracking
 “Where does something go?”
- Recognition
 “What is it that I see?”
Why study Computer Vision?

• Images and movies are everywhere
• Fast-growing collection of useful applications
 – building representations of the 3D world from pictures
 – automated surveillance (who’s doing what)
 – movie post-processing
 – CAM (computer-aided manufacturing
 – Robot navigation
 – face finding
• Various deep and attractive scientific mysteries
 – how does object recognition work?
• Greater understanding of human vision
Clothing

- Scan a person, custom-fit clothing
3D urban modeling

drive by modeling in Baltimore
Earth viewers (3D modeling)

Image from Microsoft's Virtual Earth
(see also: Google Earth)
Industrial inspection

- Verify specifications
- Compare measured model with CAD
Scanning industrial sites

as-build 3D model of off-shore oil platform
Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.
Robot navigation

ESA project
our task: Calibration + Terrain modelling + Visualization

small tethered rover

pan/tilt stereo head
Robotics

NASA’s Mars Spirit Rover

http://www.robocup.org/
https://www.youtube.com/watch?v=GuXLvrBrO3s
Architecture

Survey
Stability analysis
Plan renovations
Architecture

Survey
Stability analysis
Plan renovations
Cultural heritage

Stanford’s Digital Michelangelo

Digital archive
Art historic studies
IBM’s pieta project
Photometric stereo + structured light

more info:
Archaeology

accuracy ~1/500 from DV video
(i.e. 140kb jpegs 576x720)
Examples of Research Projects

Combining photo-consistency and silhouette constraints

http://www.cs.unc.edu/~marc/research.html
Visual Cues: Stereo and Motion
Disparity map from Stereo

image $I(x,y)$ Disparity map $D(x,y)$ image $I'(x',y')$

$$(x',y') = (x + D(x,y), y)$$
Dynamic Programming (Ohta and Kanade, 1985)

Optical flow

Where do pixels move?
Optical flow

Where do pixels move?
Results
Active Vision: Structured Light
Active Vision: Structured Light
Binary Coding

Example: 7 binary patterns proposed by Posdamer & Altschuler

Codeword of this pixel: 1010010 → identifies the corresponding pattern stripe
“Cheap and smart” Solution

Example: Bouguet and Perona, ICCV’98
Structured Light Using a Rotating Table
James Clark, 3D CV F2009
Structured Light
Anuja Sharma, Abishek Kumar
Structured Light
Anuja Sharma, Abishek Kumar
Range Sensor Data Processing to get 3D Shapes
Input Data: Depth Maps

Range Image (left) and gray level image (right)

This infrared image shows the laser grid Kinect uses to calculate depth.

A slide from Microsoft’s E3 Conference showing a diagram of the technologies in Kinect.

The depth map is visualized here using color gradients from white (near) to blue.

Figure 9: Continuation of the example scene consisting of four objects. (e) and (f) grasping the Scotch tape roller, and (g) and (h) grasping the coffee cup.
3D Shape Cues: Shape from Silhouettes
3D Shape from Silhouettes
3D shape from silhouettes: Two Mirrors and uncalibrated camera

Forbes et al., ICCV2005
Christine Xu, Computer Vision Student Project
3D shape from silhouettes

Build 3D model

Visualize 3D model from arbitrary viewing angles
Example

- Compute visual hull with silhouette images from multiple calibrated cameras
- Compute Silhouette Image
- Volumetric visual hull computation
- Display the result
Shape from Shading
Photometric Stereo
Christopher Bireley

Bandage Dog

Imaging Setup
Preprocessing

- Remove background to isolate dog
- Filter with NL Means
Photometric Stereo
Christopher Bireley

Albedo image
Surface Normals
3D mesh
Results – Lord Buddha Images – Pre-Processed Images
Guozhen Fan and Aman Shah

Original Image
Albedo Map
Surface Normals

Obtained Surfaces from different angles
Object Tracking
Object Tracking: Using Deformable Models in Vision
Object Tracking: Using Deformable Models in Vision: II

Unifying Boundary and Region-based information for Geodesic Active Tracking
Object Tracking III
Computer Vision Systems
Webcam Based Virtual Whiteboard
Student Project
Jon Bronson James Fishbaugh

- Blackboards came first
- Whiteboards eventually followed
- Virtual Whiteboards are coming
- Basic Idea:
 - Write on any surface
 - Use no ink/chalk
 - Store all information to disk
Webcam Based Virtual Whiteboard
Jon Bronson James Fishbaugh
Detecting the 3D position of glowsticks in real-time using two cameras.
Realtime Glowstick Detection
Andrei Ostanin

- Capture the 3D position of glowsticks in real-time using two webcams
- Environment dark enough that glowsticks are easily segmented out
- Prefer speed over correctness

movie
Student Project: Playing Chess, Recognition and Simulation

- Track individual chess pieces
- Maintain state of board
- Graphically represent state changes and state
- D. Allen, D. McLaurin UNC

Major ideas:
- 3D from stereo
- Detect and describe changes
- Use world knowledge (chess)
Calibration, Rendering & Replay
Next: Image Formation
Chapter 1: Cameras

• Please find pdf copies of Chapters 1&2, Forsyth&Ponce, on the website.
• Purchase the course book on your own.

Assignment:

• Read Chapter 1: Cameras, Lenses and Sensors: See Course home page