Image Formation III
Chapter 1 (Forsyth&Ponce)
Cameras “Lenses & Sensors”

Guido Gerig
CS-GY 6643, Spring 2017

(slides modified from Marc Pollefeys, UNC Chapel Hill/ ETH Zurich,
With content from Prof. Trevor Darrel, Berkeley)
Pinhole size / aperture

How does the size of the aperture affect the image we’d get?
Adding a lens

A lens focuses light onto the film

- Rays passing through the center are not deviated
- All parallel rays converge to one point on a plane located at the *focal length* f
Cameras with lenses

- A lens focuses parallel rays onto a single focal point
- Gather more light, while keeping focus; make pinhole perspective projection practical
Focus and depth of field

Image credit: cambridgeincolour.com
The depth-of-field
Focus and depth of field

- How does the aperture affect the depth of field?

- A smaller aperture increases the range in which the object is approximately in focus

Field of view

- Angular measure of portion of 3d space seen by the camera

Field of view depends on focal length

- As f gets smaller, image becomes more wide angle
 - more world points project onto the finite image plane
- As f gets larger, image becomes more telescopic
 - smaller part of the world projects onto the finite image plane

from R. Duraiswami
Field of view depends on focal length

Size of field of view governed by size of the camera retina:

\[\varphi = \tan^{-1}\left(\frac{d}{2f}\right) \]

Smaller FOV = larger Focal Length
Distortion

magnification/focal length different for different angles of inclination

Can be corrected! (if parameters are know)
Chromatic aberration

rays of different wavelengths focused in different planes

blue red

Fig. 1 Axial chromatic aberration

Fig. 2 Magnification chromatic aberration

The image is blurred and appears colored at the fringe.

cannot be removed completely

sometimes *achromatization* is achieved for more than 2 wavelengths
Vignetting
Physical parameters of image formation

• Geometric
 – Type of projection
 – Camera pose

• Optical
 – Sensor’s lens type
 – focal length, field of view, aperture

• Photometric
 – Type, direction, intensity of light reaching sensor
 – Surfaces’ reflectance properties

• Sensor
 – sampling, etc.
Digital cameras

- Film → sensor array
- Often an array of charge coupled devices
- Each CCD is light sensitive diode that converts photons (light energy) to electrons
Historical context

- **Pinhole model:** Mozi (470-390 BCE), Aristotle (384-322 BCE)
- **Principles of optics (including lenses):** Alhacen (965-1039 CE)
- **Camera obscura:** Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- **First photo:** Joseph Nicephore Niepce (1822)
- **Daguerréotypes** (1839)
- **Photographic film** (Eastman, 1889)
- **Cinema** (Lumière Brothers, 1895)
- **Color Photography** (Lumière Brothers, 1908)
- **Television** (Baird, Farnsworth, Zworykin, 1920s)
- **First consumer camera with CCD:** Sony Mavica (1981)
- **First fully digital camera:** Kodak DCS100 (1990)
Digital Sensors

CCDs move photogenerated charge from pixel to pixel and convert it to voltage at an output node. CMOS imagers convert charge to voltage inside each pixel.
Resolution

• sensor: size of real world scene element that images to a single pixel
• image: number of pixels
• Influences what analysis is feasible, affects best representation choice.

[fig from Mori et al]
Digital images

Think of images as matrices taken from CCD array.
Digital images

Intensity: $[0, 255]$
Color sensing in digital cameras

Bayer grid

Estimate missing components from neighboring values (demosaicing)

Source: Steve Seitz
Color images, RGB color space