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Static Hedging of Standard Options 

ABSTRACT 

We consider the hedging of options when the price of the underlying asset is always exposed to 

the possibility of jumps of random size. Working in a single factor Markovian setting, we derive 

a new spanning relation between a given option and a continuum of shorter-term options written 

on the same asset. In this portfolio of shorter-term options, the portfolio weights do not vary with 

the underlying asset price or calendar time. We then implement this static relation using a finite 

set of shorter-term options and use Monte Carlo simulation to determine the hedging error thereby 

introduced. We compare this hedging error to that of a delta hedging strategy based on daily 

rebalancing in the underlying futures. The simulation results indicate that the two types of hedging 

strategies exhibit comparable performance in the classic Black-Scholes environment, but that our 

static hedge strongly outperforms delta hedging when the underlying asset price is governed by 

Merton (1976)’s jump-diffusion model. The conclusions are unchanged when we switch to ad hoc 

static and dynamic hedging practices necessitated by a lack of knowledge of the driving process. 

Further simulations indicate that the inferior performance of the delta hedge in the presence of 

jumps cannot be improved upon by increasing the rebalancing frequency. In contrast, the superior 

performance of the static hedging strategy can be further enhanced by using more strikes or by 

optimizing on the common maturity in the hedge portfolio. 

We also compare the hedging effectiveness of the two types of strategies using more than six 

years of data on S&P 500 index options. We find that in all cases considered, a static hedge using 

just five call options outperforms daily delta hedging with the underlying futures. The consistency 

of this result with our jump model simulations lends empirical support for the existence of jumps 

of random size in the movement of the S&P 500 index. We also find that the performance of our 

static hedge deteriorates moderately as we increase the gap between the maturity of the target call 

option and the common maturity of the call options in the hedge portfolio. We interpret this result 

as evidence of additional random factors such as stochastic volatility. 

JEL CLASSIFICATION CODES: G12, G13, C52. 

KEY WORDS: Static hedging; jumps; option pricing; Monte Carlo; S&P 500 index options; stochastic 

volatility. 



Static Hedging of Standard Options
 

Over the past two decades, the derivatives market has expanded dramatically. Accompanying this 

expansion is an increased urgency in understanding and managing the risks associated with derivative 

securities. In an ideal setting under which the price of the underlying security moves continuously 

(such as in a diffusion with known instantaneous volatility) or with fixed and known size steps (such 

as in a binomial tree), derivatives pricing theory provides a framework in which the risks inherent in a 

derivatives position can be eliminated via frequent trading in only a small number of securities. 

In reality, however, large and random price movements happen much more often than typically 

assumed in the above ideal settings. The last two decades have repeatedly witnessed turmoil in the 

financial markets such as the 1987 stock market crash, the 1997 Asian crisis, the 1998 Russian default 

and the ensuing hedge fund crisis, and the tragic event of September 11, 2001. Juxtaposed between 

these large crises are many more mini-crises, during which prices move sufficiently fast so as to trigger 

circuit breakers and trading halts. When these crises occur, a dynamic hedging strategy based on small 

or fixed size movements often breaks down. Worse yet, strategies that involve dynamic hedging in the 

underlying asset tend to fail precisely when liquidity dries up or when the market makes large moves. 

Unfortunately, it is during these financial crises such as liquidity gaps or market crashes that investors 

need effective hedging the most dearly. Indeed, several prominent critics have gone further and blamed 

the emergence of some financial crises on the pursuit of dynamic hedging strategies. 

Perhaps in response to the known deficiencies of dynamic hedging, Breeden and Litzenberger 

(1978) (henceforth BL) pioneered an alternative approach, which is foreshadowed in the work of Ross 

(1976) and elaborated on by Green and Jarrow (1987) and Nachman (1988). These authors show that a 

path-independent payoff can be hedged using a portfolio of standard options maturing with the claim. 

This strategy is completely robust to model mis-specification and is effective even in the presence of 



jumps of random size. Its only real drawback is that the class of claims that this strategy can hedge is 

fairly narrow. First, the BL hedge of a standard option reduces to a tautology. Second, the hedge can 

neither deal with standard options of different maturities, nor can it deal with path-dependent options. 

Therefore, the BL strategy is completely robust but has limited range. In contrast, dynamic hedging 

works for a wide range of claims, but is not robust. 

In this paper, we propose a new approach for hedging derivative securities. This approach lies 

between dynamic hedging and the BL static hedge in terms of both range and robustness. Relative 

to BL, we place mild structure on the class of allowed stochastic processes of the underlying asset 

in order to expand the class of claims that can be robustly hedged. In particular, we work in a fairly 

general one-factor Markovian setting, where the market price of a security is allowed not only to move 

diffusively, but also to jump randomly to any non-negative value. In this setting, we derive a simple 

spanning relation between the value of a given European option and the value of a continuum of shorter-

term European options. The required position in each of the shorter-term options is proportional to the 

gamma (second price derivative) that the target option will have when the options in the hedge portfolio 

expire. As the target option’s future gamma does not vary with the passage of time or the change in 

the underlying price, the weights in the portfolio of shorter-term options are static over the life of these 

options. Given this static spanning result, no arbitrage implies that the target option and the replicating 

portfolio have the same value for all times until the shorter term options expire. As a result, we can 

effectively hedge a long-term option, at least in theory, even in the presence of large random jumps in 

the security price movement. Furthermore, given the static nature of the strategy, we do not need to 

rebalance the hedge portfolio until the shorter-term options mature. Therefore, we do not need to worry 

about market shutdowns and liquidity gaps in the intervening period. The strategy remains viable and 

can become even more useful when the market is in stress. As an added advantage, the static hedge only 

requires a correct specification of the underlying price dynamics between the two option maturities. In 
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contrast, delta hedging only succeeds if the model is correctly specified throughout the life of the target 

option. 

As transactions costs and illiquidity render the formation of a portfolio with a continuum of options 

physically impossible, we develop an approximation for the static hedging strategy using only a finite 

number of options. This discretization of the ideal trading strategy is analogous to the discretization 

of a continuous-time dynamic trading strategy (e.g., delta hedging). To discretize our static hedge, 

we choose the strike levels and the associated portfolio weights based on a Gauss-Hermite quadrature 

method. We use Monte Carlo simulation to gauge the magnitude and distributional characteristics of 

the hedging error introduced by the quadrature approximation. We compare this hedging error to the 

hedging error from a delta-hedging strategy based on daily rebalancing with the underlying futures. 

The simulation results indicate that the two strategies have comparable hedging effectiveness in the 

classic Black and Scholes (1973) environment. The mean absolute hedging errors are comparable when 

the two strategies involve the same number of transactions. Nevertheless, since the bid-ask spread is 

typically lower for the underlying asset than it is for the options, these results favor the delta-hedging 

strategy. 

The conclusion changes when we perform the simulation under the Merton (1976) jump-diffusion 

environment, in which the underlying asset price can exhibit jumps of random size. In the presence of 

random jumps, the performance of daily delta hedging deteriorates dramatically, but the performance 

of the static strategy hardly varies. As a result, under the Merton model, a static strategy with merely 

three options outperforms delta hedging with daily updating. Further simulations indicate that these 

results are robust to model misspecification, so long as we perform ad hoc adjustments based on the 

observed implied volatility. Finally, we also find that increasing the rebalancing frequency in the delta-

hedging strategy does not rescue its performance as long as the underlying asset price can jump by a 
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random amount. In contrast, we can further improve the static-hedging performance by increasing the 

number of strikes used and by choosing the appropriate maturities for the hedge portfolio. We conclude 

that the superior performance of static hedging over daily delta hedging in the jump model simulations 

is not due to model misspecification, nor is it due to the approximation error introduced via discrete 

rebalancing. Rather, this outperformance is due to the fact that delta hedging is inherently incapable 

of dealing with jumps of random size in the underlying asset price movement. In contrast, our static 

spanning relation can handle random jumps and our approximation of this spanning relation performs 

equally well with and without jumps in the underlying asset price process. 

To compare the effectiveness of the two types of hedging strategies in practice, we also investigate 

the historical performance of the two strategies in hedging S&P 500 index options. Based on over six 

years of data on S&P 500 index options, we find that in all the cases considered, a static hedge using no 

more than five options outperforms daily delta hedging with the underlying futures. The consistency 

of this result with our jump model simulations lends empirical support for the existence of jumps of 

random size in the movement of the S&P 500 index (Aı̈t-Sahalia (2002)). 

We also find that our static strategy performs better when the maturity of the options in the hedge 

portfolio is closer to the maturity of the target option being hedged. As the maturity gap increases, 

the hedging performance deteriorates moderately, indicating the likely existence of additional random 

factors such as stochastic volatility. 

For clarity of exposition, this paper focuses on hedging a standard European option with a portfolio 

of shorter-term options under a one-factor Markovian setting. However, the underlying theoretical 

framework extends readily to the hedging of more exotic, potentially path-dependent options, such as 

discretely monitored Asian and barrier options, Bermudan options, passport options, cliquets, ratchets, 

and many other structured notes. We use a globally floored, locally capped, compounding cliquet as 
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an example to illustrate how this option contract with intricate path-dependence can be hedged with a 

portfolio of European options. The hedging strategy is semi-static in the sense that trades only need to 

occur at the discrete monitoring dates. 

In related literature, the effective hedging of derivative securities has been applied not only for 

risk management, but also for option valuation and model verification (Bates (2003)). For example, 

Bakshi, Cao, and Chen (1997), Bakshi and Kapadia (2003), and Dumas, Fleming, and Whaley (1998) 

use hedging performance to test different option pricing models. Bakshi and Madan (2000) propose a 

general option-valuation strategy based on effective spanning using basis characteristic securities. 

This paper is organized as follows. Section 1 develops the theoretical results underlying our static 

hedging strategy. Section 2 uses Monte Carlo simulation to enact a wide variety of scenarios under 

which the market not only moves diffusively, but also jumps randomly. Under each scenario, we 

analyze the hedging performance of our static strategy and compare it with dynamic hedging. Section 3 

applies both strategies to the S&P 500 index options data. Section 4 shows how to extend our theory 

into the hedging of path-dependent options. Section 5 concludes. 

1. Spanning Options with Options 

We develop our main theoretical results in this section. Working in a continuous-time one-factor 

Markovian setting, we show how we can span the risk of a European option by holding a continuum of 

shorter-term European options. The weights in the portfolio are static as they are invariant to changes 

in the underlying asset price or the calendar time. We then illustrate how we can use a quadrature rule 

to approximate the static hedge using a finite number of shorter-term options. 
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1.1. Assumptions and notation 

We assume frictionless markets and no arbitrage. To fix notation, we let St denote the spot price of an 

asset (say, a stock or stock index) at time t ∈ [0,T ], where T is some arbitrarily distant horizon. For 

realism, we assume that the owners of this asset enjoy limited liability, and hence St ≥ 0 at all times. For 

notational simplicity, we further assume that the continuously compounded riskfree rate r and dividend 

yield δ are constant. No arbitrage implies that there exists a risk-neutral probability measure Q defined 

on a probability space (Ω,F ,Q) such that this instantaneous expected rate of return on every asset 

equals the instantaneous riskfree rate r. We also restrict our analysis to the class of models in which 

the risk-neutral evolution of the stock price is Markov in the stock price S and the calendar time t. 

Our class of models includes local volatility models, e.g., Dupire (1994), and models based on Lévy 

processes, e.g., Barndorff-Nielsen (1998), Bates (1991), Carr, Geman, Madan, and Yor (2002), Carr 

and Wu (2003a), Eberlein, Keller, and Prause (1998), Madan and Seneta (1990), and Merton (1976), 

but does not include stochastic volatility models such as Bates (1996, 2000), Bakshi, Cao, and Chen 

(1997), Heston (1993), and Hull and White (1987). 

We use Ct (K,T ) to denote the time-t price of a European call with strike K and maturity T . Our 

assumption that the state is fully described by the stock price and time implies that there exists a call 

pricing function C(S, t; K,T ;Θ) such that 

Ct (K,T ) = C(St , t;K,T ;Θ), t ∈ [0,T ],K ≥ 0,T ∈ [t,T ]. (1) 

The call pricing function relates the call price at t to the state variables (St , t), the contractual parameters 

(K,T ), and a vector of fixed model parameters Θ. 
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We use q(S, t;K,T ;Θ) to denote the probability density function of the asset price under the risk-

neutral measure Q, evaluated at the future price level K and the future time T and conditional on the 

stock price starting at level S at some earlier time t. Breeden and Litzenberger (1978) show that this 

risk-neutral density relates to the second strike derivative of the call pricing function by 

∂2Cr(T −t)q(S, t;K,T ;Θ) = e (S, t;K,T ;Θ). (2) 
∂K2 

1.2. Spanning standard European options with shorter-term European options 

The main theoretical result of the paper comes from the following theorem, which introduces a new 

spanning relation between the value of a European option at one maturity and the value of a continuum 

of European options at some nearer maturity. The practical implication of this theorem is that we can 

span the risk of a given option by taking a static position in a continuum of shorter-term, usually more 

liquid, options. 

Theorem 1 Under no arbitrage and the Markovian assumption in (1), the time-t value of a European 

call option maturing at a fixed time T ≥ t relates to the time-t value of a continuum of European call 

options at a shorter maturity u ∈ [t,T ] by 

∞ 

C(S, t; K,T ;Θ) = w(K )C(S, t;K ,u;Θ)dK , u ∈ [t,T ], (3) 

0 

for all possible nonnegative values of S and at all times t ≤ u. The weighting function w(K ) is given 

by 

∂2 

w(K ) = C(K ,u;K,T ;Θ). (4) 
∂K 2 
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The spanning relation holds for all possible values of the spot price S and at all times up to the 

expiry of the options in the spanning portfolio. The option weights w(K ) are independent of S and 

t. This property characterizes the static nature of the spanning relation. Under no arbitrage, once we 

form the spanning portfolio, no rebalancing is necessary until the maturity date of the options in the 

spanning portfolio. 

The weight w(K ) on a call option at maturity u and strike K is proportional to the gamma that 

the target call option will have at time u, should the underlying price level be at K then. Since the 

gamma of a call option typically shows a bell-shaped curve centered near the call option’s strike price, 

the greatest weight go to the options with strikes that are close to that of the target option. Furthermore, 

as we let the common maturity u of the spanning portfolio approach the target call option’s maturity T , 

the gamma becomes more concentrated around K. In the limit when u = T , all of the weight is on the 

call option of strike K. Equation (3) reduces to a tautology. 

Proof. Under the Markovian assumption in (1), we can compute the initial value of the target call 

option by discounting the expected value it will have at some future date u, 

∞ 

C S t;K T ;Θ e−r(u−t( , , ) = ) 
� 

q(S, t;K ,u;Θ)C(K ,u;K,T ;Θ)dK 

0 
∞ 

� ∂2 

= C(S, t;K ,u;Θ)C(K ,u;K,T ;Θ)dK . (5) 
∂K 2 

0 

The first line follows from the Markovian property. The call option value at any time u depends only 

on the underlying security’s price at that time. The second line results from a substitution of equation 

(2) for the risk-neutral density function. 
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� ∞ ∂2 

C(K ,u;K,T ; )(Su K )
+dK . 

∂K 2 Θ
0 

−

We integrate equation (5) by parts twice and observe the following boundary conditions, 

∂ C(S, t;K,u;Θ)
 

 

= 0, C(S, t;K,u; )∂K Θ K = 0,
 ∞ K

| →→∞ (6) 
∂ C(0,u;K,T ;Θ) = 0, C(0,u;K,T ; ) = 0. ∂S Θ

result of these operations is as in equation (3). The final 

Equation (3) represents a constraint imposed by no-arbitrage and the Markovian assumption on the 

relation between prices of options at two different maturities. Given that the Markovian assumption is 

correct, a violation of equation (3) implies an arbitrage opportunity. For example, if we suppose that 

at time t, the market price of a call option with strike K and maturity T (left hand side) exceeds the 

price of a gamma weighted portfolio of call options for some earlier maturity u (right hand side), then, 

conditional on the validity of the Markovian assumption (1), the arbitrage is to sell the call option of 

strike K and maturity T , and to buy the gamma weighted portfolio of all call options maturing at the 

earlier date u. The cash received from selling the T maturity call exceeds the cash spent buying the 

portfolio of nearer dated calls. At time u, the portfolio of expiring calls pays off: 

Integrating by parts twice implies that this payoff reduces to C(Su,u;K,T ;Θ), which we can use to 

close the short call position. 

To understand the implications of our theorem for risk management, suppose that at time t there are 

no call options of maturity T available in the listed market. However, it is known that such a call will 

be available in the listed market by the future date u ∈ (t,T ). An options trading desk could consider 

writing such a call option of strike K and maturity T to a customer in return for a (hopefully sizeable) 
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premium. Given the validity of the Markov assumption, the options trading desk can hedge away the 

risk exposure arising from writing the call option over the time period [t,u] using a static position in 

available shorter-term options. The maturity of the shorter-term options should be equal to or longer 

than u and the portfolio weight is determined by equation (3). Then at date u, the assumed validity of 

the Markov condition (1) implies that the desk can use the proceeds from the sale of the shorter-term 

call options to purchase the T maturity call in the listed market. Thus, this hedging strategy is semi-

static in that it involves rolling over call options once. In contrast to a purely static strategy, there is a 

risk that the Markov condition will not hold at the rebalancing date u. We will continue to use the terser 

term “static” to describe this semi-static strategy when it is contrasted to a classical dynamic strategy. 

However, we warn the practically minded reader that our use of this term does not imply that there is 

no model risk. 

Theorem 1 states the spanning relation in terms of call options. The spanning relation also holds if 

we replace the call options on both sides of the equation by their corresponding put options of the same 

strike and maturity. The relation on put options can either be proved analogously or via the application 

of the put-call parity to the call option spanning relation in equation (3). 

These static spanning relations stand in sharp contrast to traditional dynamic hedging strategies, 

which are based on continuous rebalancing of positions in the underlying asset. In what follows, we 

investigate the effectiveness of the two types of strategies using both Monte Carlo simulation and an 

empirical study. 

1.3. Finite approximation with Gaussian quadrature rules 

In practice, investors can neither rebalance a portfolio continuously, nor can they form a static portfolio 

involving a continuum of securities. Both strategies involve an infinite number of transactions. In the 
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presence of discrete transaction costs, both would lead to financial ruin. As a result, dynamic strategies 

are only rebalanced discretely in practice. The trading times are chosen to balance the costs arising from 

the hedging error with the cost arising from transacting in the underlying. Similarly, to implement our 

static hedging strategy in practice, we need to approximate it using a finite number of call options. The 

number of call options used in the portfolio is chosen to balance the cost from the hedging error with 

the cost from transacting in these options. 

We approximate the spanning integral in equation (3) by a weighted sum of a finite number (N) of 

call options at strikes K j, j = 1,2, · · · ,N, 

∞ N 

w(K )C(S, t;K ,u;Θ)dK ≈ ∑ W jC(S, t;K j,u;Θ), (7) 
0 j=1 

where we choose the strike points K j and their corresponding weights based on the Gauss-Hermite 

quadrature rule. 

∞ −xThe Gauss-Hermite quadrature rule is designed to approximate an integral of the form −∞ f (x)e
2 
dx, 

where f (x) is an arbitrary smooth function. After some rescaling, the integral can be regarded as an 

expectation of f (x) where x is a normally distributed random variable with zero mean and variance of 

two. For a given target function f (x), the Gauss-Hermite quadrature rule generates a set of weights wi 

and nodes xi, i = 1,2, · · · ,N, that are defined by 

N∞ 2 N! 
√

π f (2N) (ξ)−xf (x)e dx = ∑ w j f (x j)+ (8) 
−∞ 2N (2N)!j=1 

for some ξ ∈ (−∞,∞). The approximation error vanishes if the integrand f (x) is a polynomial of degree 

equal or less than 2N −1. See Davis and Rabinowitz (1984) for details. 
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To apply the quadrature rules, we need to map the quadrature nodes and weights {xi,w j}N
j=1 to our 

choice of option strikes K j and the portfolio weights W j. One reasonable choice of a mapping function 

between the strikes and the quadrature nodes is given by 

x Kexσ 
√ 

2(T −u)+(δ−r−σ2/2 T uK ( ) = )( − ), (9) 

where σ2 denotes the annualized variance of the log asset return. This choice is motivated by the 

gamma weighting function under the Black-Scholes model, which is given by 

∂2C(K ,u;K,T ;Θ) n(d1)
W (K ) = = e−δ(T −u) √ , (10) 

∂K 2 K σ T −u 

where n(·) denotes the probability density of a standard normal and the standardized variable d1 is 

defined as 

ln(K /K)+(r −δ +σ2/2)(T −u)
d1 ≡ √ .

σ T −u 

√ 
We can then obtain the mapping in (9) by replacing d1 with 2x, which can also be regarded as a 

standard normal variable. 

Thus, given the Gauss-Hermite quadrature {w j,x j}N
j=1, we choose the strike points as 

√ 
2(T −u)+(δ−r−σ2/2)(T −u)K j = Kex jσ . (11) 

The portfolio weights are then given by 

w(K j)K j 
′ (x j) w(K j)K jσ 

� 

2(T − t)
W j = 2 w j = 2 w j . (12) 

e−x j e−x j
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Conceivably, we can use different methods for the finite approximation. The Gauss-Hermite quadra­

ture method chooses both the optimal strike levels and the optimal weight under each strike. This 

method is applicable to a market where options at many different strikes are available, such as the S&P 

500 index options market at the Chicago Board of Options Exchange (CBOE). On the other hand, for 

some over-the-counter options markets where only a few fixed strikes are available, it would be more 

appropriate to use an approximation method that takes the strike points as given and only solves for the 

weight for each strike. 

2. Simulation Analysis Based on Popular Models 

Consider the problem faced by the writer of a call option on a certain stock. For concreteness, suppose 

that the call option matures in one year and is written at-the-money. The writer intends to hold this 

short position for a month, after which the option position will be closed. During this month, the writer 

can hedge his market risk using various exchange traded liquid assets such as the underlying stock, 

futures, and/or options on the same stock. 

We compare the performance of the following two strategies: (i) a static hedging strategy using one-

month standard options, and (ii) a dynamic delta hedging strategy using the underlying stock futures. 

The static strategy is based on the spanning relation in equation (3) and is approximated by a finite 

number of options, with the portfolio strikes and weights determined by the quadrature method. The 

dynamic strategy is discretized by rebalancing the futures position daily. The choice of using futures 

instead of the stock itself for the delta hedge is intended to be consistent with our empirical study in the 

next section on S&P 500 index options. For these options, direct trading in the 500 stocks comprising 

the index is impractical. Practically all delta hedging is done in the very liquid index futures market. 
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Given our assumption of constant interest rates and dividend yields, the simulated performances of the 

delta hedges based on the stock or its futures are almost identical. Hence, this choice does not affect 

our results. 

We compare the performance of the above two strategies based on Monte Carlo simulation. For 

the simulation, we consider two data generating processes: the benchmark Black-Scholes model (BS) 

and the Merton (1976) jump-diffusion model (MJ). Under the objective measure, P, the stock price 

dynamics in the two models follows the stochastic differential equations, 

BS: dSt /St = µdt +σdWt , 
(13) 

MJ: dSt /St = (µ −λg)dt +σdWt +dJ(λ), 

where W denotes a standard Brownian motion in both models, and J(λ) in the MJ model denotes a 

compound Poisson jump process with constant intensity λ > 0. Conditional on a jump occurring, the 

MJ model assumes that the log price relative is normally distributed with mean µ j and variance σ j, with 

1 σ2 
the mean percentage price change induced by a jump given by g = eµ j+ 2 j −1. 

We specify the data generating processes in equation (13) under the objective measure P. To price 

the relevant options and to compute the weights in the hedge portfolios, we also need to specify their 

respective risk-neutral Q-dynamics, 

BS: dSt /St = (r −q)dt +σdW t 
∗ , 

(14) 

MJ: dSt /St = (r −q −λ∗ g ∗)dt +σdW ∗ +dJ∗(λ∗),t 

where W ∗ denotes a standard Brownian motion under measure Q. The compound Poisson process 

under measure Q, J∗, is assumed to have constant intensity λ∗ > 0. Conditional on a jump occurring, 

∗the jump size is normally distributed with mean µ j and variance σ2 
j . See Bates (1991) for an equilibrium 
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economy that supports such a measure change. For the simulation, we benchmark the parameter values 

of the two models to the S&P 500 index. We set µ = 0.10, r = 0.06, and δ = 0.02 for both models. We 

∗further set σ = 0.27 for the Black-Scholes model and λ = λ∗ = 2.00, µ j = µ j = −0.10, σ j = 0.13, and 

σ = 0.14 for the Merton jump-diffusion model. 

In each simulation, we generate a time series of daily underlying asset prices according to an Euler 

approximation of the respective data generating process. The starting value for the stock price is set to 

$100. We consider a hedging horizon of one month and simulate paths over this period. We assume 

that there are 21 business days in a month. To be consistent with the empirical study on S&P 500 

index options in the next section, we think of the simulation as starting on a Wednesday and ending 

on a Thursday four weeks later, spanning a total of 21 week days and 29 actual days. The hedging 

performance is recorded and, when needed, updated only on week days, but the interest earned on the 

money market account is computed based on actual over 360. 

At each week day, we compute the relevant option prices based on the realization of the security 

price and the specification of the risk-neutral dynamics. For the dynamic delta hedge, we also compute 

the delta each day based on the risk-neutral dynamics and rebalance the portfolio accordingly. For 

both strategies, we monitor the hedging error (profit and loss) at each week day based on the simulated 

security price and the option prices. The hedging error at each date t, et , is defined as the difference 

between the value of the hedge portfolio and the value of the target call option being hedged, 

D rΔtet = Bt−Δte +Δt−Δt (Ft −Ft−Δt )−C(St , t;K,T ); 

S rt −C(St , t;K,T ),e = W jC(St , t;K j,u)+B0e (15) t 
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where the superscripts D and S denote the dynamic and static strategies, respectively, Δt denotes the 

delta of the target call option with respect to the futures price at time t, Δt denotes the time inter­

val between stock trades, and Bt denotes the time-t balance in the money market account. The balance 

includes the receipts from selling the one-year call option, less the cost of initiating and possibly chang­

ing the hedge portfolio. In the case of the static hedging strategy, under no arbitrage, the value of the 

portfolio of the shorter-term options should be equal to the value of the long term target option, and 

hence B0 should be zero. However, since we use a finite number of call options in the static hedge to 

approximate the spanning relation, the money market account captures the value difference due to the 

approximation error, which is normally very small. No rebalancing is needed in the static strategy. 

Under each model, the delta is given by the partial derivative ∂C(S, t; K,T ;Θ)/∂F , with F = 

Se(r−δ)(T −t) denoting the forward/futures price. If an investor could trade continuously, this delta hedge 

removes all of the risk in the BS model. The hedge does not remove all risk in the MJ model, but 

has nonetheless emerged as the market standard for implementing delta-hedges in jump models. The 

hedge portfolio for the static strategy is formed based on the weighting function w(K ) in equation (4) 

implied by each model, the Gauss-Hermite quadrature nodes and weights {xi,wi}, and the mapping 

from the quadrature nodes and weights to the option strikes and weights, as given in equations (11) and 

(12). In computing the strike points, the annualized variance is v = σ2 for the Black-Scholes model and 
 

( )

2v = σ2 +λ µ j +σ2 for the Merton jump-diffusion model. Given the chosen model parameters, j 

. 
v = 0.272 for both models. Appendix A details the option pricing formulae, the formulae for delta 

∂C(S, t;K,T ;Θ)/∂F , and the weighting functions w(K ) for both models. 
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2.1. Hedging comparison under the diffusive Black-Scholes world 

Table 1 reports the summary statistics of the simulated hedging errors, based upon 1,000 simulations. 

Panel A in Table 1 summarizes the results based on the Black-Scholes model. Entries are the summary 

statistics of the hedging errors at the last step (at the end of the 21 business days) based on both 

strategies. For the dynamic strategy (the last column), we perform daily updating. For the static 

strategy, we consider hedge portfolios with N = 3,5,10,15,21 one-month options. If the transaction 

cost for a single option is comparable to the transaction cost for revising a position in the underlying 

security, we would expect that the transaction cost induced by buying 21 options at one time is close 

to the cost of rebalancing a position in the underlying stock 21 times. Hence, it would be of interest 

to compare the performance of daily delta hedging with the performance of the static hedge with 21 

options. 

Our simulations of the underlying geometric Brownian motion indicate that the daily updating 

strategy beats the static strategy with 21 options in terms of the standard error, the root mean squared 

error (RMSE), the mean absolute error (MAE), and the mean short fall (MSF). The static strategy with 

21 options does slightly better in terms of maximum profit or loss (Min and Max). Overall, the two 

strategies are comparable with a slight edge to the dynamic strategy. Since the stock market is much 

more liquid than the stock options market, the simulation results favor the dynamic delta strategy over 

the static strategy, if indeed stock prices move as in the Black-Scholes world. 

The hedging errors from the two strategies show different distributional properties. The kurtosis 

of the hedging errors from the dynamic strategy is larger than that from all the static strategies. The 

kurtosis is 4.68 for the dynamic hedging errors, but is below two for errors from all the static hedges. 

Therefore, when an investor is particularly concerned about avoiding large losses, the investor may 

prefer the static strategy. 
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The last row shows the accuracy of the Gauss-Hermite quadrature approximation of the integral in 

pricing the target options. Under the Black-Scholes model, the theoretical value of the target call option 

is $12.35, which we put under the dynamic hedging column. The approximation error is about one cent 

when applying a 21-node quadrature. The approximation error increases as the number of quadrature 

nodes declines in the approximation. 

2.2. Hedging comparison in the presence of random jumps as in the Merton world 

In Table 1, Panel B shows the hedging performance under the Merton jump-diffusion model. For ease 

of comparison, we present the results in the same format as in Panel A for the Black-Scholes model. 

The performance of all the static strategies are comparable to their corresponding cases under the 

Black-Scholes world. If anything, most of the performance measures for the static strategies become 

slightly better under the Merton jump-diffusion case. In contrast, the performance of the dynamic 

strategy deteriorates dramatically as we move from the diffusion-based Black-Scholes model to the 

jump-diffusion process of Merton (1976). The standard error and the root mean squared error increase 

by a factor of ten for the dynamic strategy. The mean absolute error increases by a factor of four. As a 

result, the performance of the dynamic strategy is worse than the static strategy with only three options. 

The distributional differences between the hedging errors of the two strategies become even more 

obvious under the Merton model. The kurtosis of the static hedge errors remains small (below six), 

but the kurtosis of the dynamic hedge errors explodes from 4.68 in the BS model to 59.79 in the MJ 

model. The maximum loss from the dynamically hedged portfolio is $12.12, even larger than the initial 

revenue from writing the call option ($11.99). In contrast, the maximum loss is less than two dollars 

for the static hedge with only three call options. 

18
 



Figure 1 plots the simulated sample paths and the corresponding hedging errors under the two 

models, the BS model in the left panels and the Merton model in the right panels. In the top two panels 

of Figure 1, we compare the simulated sample paths of the underlying security price under the two 

models. The daily movements under the Black-Scholes model are usually small, but the Merton-jump 

diffusion model generates both small and large movements. 

The middle two panels in Figure 1 compare the sample paths of the hedging errors from the static 

hedging strategy using ten options. We apply the same scale for ease of comparison. Although the 

sample paths of the static hedging errors look different under the two models, the relative magnitudes 

of the errors are similar. The performance of the static hedging strategy is relatively insensitive to the 

specification of the underlying process. 

The bottom two panels illustrate the sample paths of the dynamic hedging error under the two 

models. Under the Black-Scholes model, the dynamic hedging errors are smaller than the static hedging 

errors (the scale of the graphs remains the same); but under the Merton jump-diffusion model, the 

hedging errors from the dynamic strategy become so much larger that we have to adopt a much larger 

scale in plotting the error paths (right, bottom panel). The large hedging errors from the dynamic 

strategy correspond to the large moves in the underlying security price. 

Another interesting feature is that, under the Merton model, most of the large errors from the 

dynamic strategy are negative, irrespective of the direction of the large move in the underlying security 

price. The reason is that the option price function exhibits positive convexity with the underlying 

futures price. Under a large movement, the value of the delta portfolio is always below the value of the 

option contract. Therefore, most of the large hedging errors for selling an option contract are losses 

(negative values). 
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The daily delta hedging strategy performs reasonably well under the diffusion-based Black-Scholes 

model, but fails miserably when the underlying price jumps randomly. In contrast, the performance of 

the static hedging strategy with a few shorter-term options is much less sensitive to the nature of the 

underlying price process. These simulation results parallel what theory predicts for continuously re­

balanced delta hedges and for static hedges with a continuum of short term options. The continuously 

revised delta hedge is not designed to handle jumps of random size, but the static hedge with a con­

tinuum of short-term options takes these jumps in stride. The discretizations needed to implement 

both strategies do not change the result that introducing jumps destroys the effectiveness of the delta 

strategy, but has little impact on our static hedging strategy. 

2.3. Effects of model uncertainty and misspecification 

We perform the above simulation under the assumption that the hedger knows exactly under which 

model the options are priced. In practice, however, we can only use different models to approximately 

fit market option prices. Hence, model uncertainty is an inherent part of both pricing and hedging. To 

investigate the sensitivity of the hedging performance to model misspecification, we further compare 

the two types of hedging strategies when the hedger does not know the data generating process and 

must develop a hedging approach in the absence of this information. We assume that the actual under­

lying asset prices and the option prices are generated from the Merton jump diffusion model, but the 

hedger forms the hedge portfolios using the Black-Scholes model, with an ad hoc adjustment using the 

observed option implied volatility. 

For the static strategy, we compute the weighting function w(K ) based on the Black-Scholes model, 

but use the eleven-month at-the-money option implied volatility as the input for annualized volatility. 

For the dynamic strategy, we compute the daily delta based on the Black-Scholes formula using the 
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implied volatility of the target call option as the volatility input. In practice, updating Black-Scholes 

deltas based on the market observed implied volatilities is in wide use as an ad hoc defense against 

model risk. Also, empirical studies in, for example, Engle and Rosenberg (2002), Jackwerth and 

Rubinstein (1996), and Bollen and Raisel (2003) have generally found that this approach works as well 

or better than the alternative approach of estimating a sophisticated model and delta-hedging with it. 

We summarize the hedging performance in Panel C of Table 1. For the dynamic strategy, as long 

as we compute the delta based on the market implied volatility, the impact of model misspecification 

is minimal. For the static strategy, we observe some slight deterioration in performance when there are 

more than ten option contracts in the hedge portfolio, but the performance actually improves slightly 

when fewer option contracts are used in the hedge portfolio. Overall, model misspecification is not an 

over-riding concern in hedging. 

These remarkable results illustrate that, in hedging, being able to span the right space is much more 

important than specifying the right parametric model. Even if an investor has perfect knowledge of the 

stochastic process governing the underlying asset price, and hence can compute the perfectly correct 

delta, a dynamic strategy in the underlying asset still fails miserably when the underlying asset price 

can jump by a random amount. In contrast, as long as an investor uses a few short-term call options of 

different strikes in the hedge portfolio, the hedging error is about the same regardless of whether jumps 

can occur or not. This result holds even if the investor does not know which model to use to pick the 

appropriate strikes and portfolio weights. 

2.4. Effects of rebalancing frequency in delta hedging 

In the above simulations, we approximate the sample paths of the underlying stock price process using 

an Euler approximation with daily time steps and consider dynamic delta strategies with daily updating. 
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We are interested in knowing how much of the failure of the delta-hedging strategy under the Merton 

jump-diffusion model is due to this somewhat arbitrary choice of discretization step. 

Under the Black-Scholes environment, the dependence of the delta hedging error on the discretiza­

tion step has been studied extensively in, for example, Black and Scholes (1972),Boyle and Emanuel 

(1980), Bhattacharya (1980), Figlewski (1989), Galai (1983), Leland (1985), and Toft (1996). Several 

of these authors show that, under the Black-Scholes environment, the standard deviation of the hedg­

ing error arising from discrete rebalancing over a time step of length Δt declines to zero slowly like 

√ 
O( Δt). Thus, doubling the trading frequency reduces the standard deviation by about thirty percent. 

√
π f (2N)(ξ)In contrast, the discretization error in the Gaussian quadrature method is N! . This error drops 2N (2N)! 

by much more when the number of strikes N is doubled. Indeed, our simulations indicate that the 

standard deviation of the hedging error drops rapidly as the number of strikes increases. 

This subsection focuses on relating the delta-hedging error to the rebalancing frequency under the 

Merton-jump diffusion model. We also simulate the Black-Scholes model as a benchmark reference. 

Table 2 shows the impacts of the rebalancing frequency on the hedging performance under three dif­

ferent cases: (A) the Black-Scholes model, (B) the Merton jump-diffusion model, assuming that the 

hedger knows the underlying data generating process, and (C) an ad hoc Black-Scholes delta hedging 

under the Merton world, assuming that the hedger does not have knowledge of the data generating 

process. We consider rebalancing frequencies from once per day, to twice, five times, and ten times 

per day. To ease comparisons, we perform all the hedging exercises on the same simulated sample 

paths. To accommodate the more frequent rebalancing, we now simulate the sample paths based on 

the Euler approximation with a time interval of one-tenth of a business day. The slight differences 

between the dynamic hedging with daily updating in this table and in Table 1 reflects this difference in 

the simulation of the sample paths. 
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Our simulation of the Black-Scholes model is consistent with the results in previous studies. As 

the updating frequency increases from once to two, five, and ten times per day, the standard error of the 

√ 
hedging error reduces from 0.10 to 0.07, 0.04 and to 0.03, adhering fairly closely to the Δt rule. 

However, this speed of improvement in hedging performance is no longer valid when the under­

lying data generating process follows the Merton jump-diffusion model, irrespective of whether the 

hedger knows the model or not. In the case when the process is known (Panel B), the standard error 

of the hedging errors remains around 1.02 − 1.03 as we increase the rebalancing frequency. In the ad 

hoc rebalancing case (Panel C), the standard error hovers around 0.88 − 0.93 and exhibits no obvious 

dependence on the rebalancing frequency. Therefore, we conclude that the failure of the delta hedg­

ing strategy under the Merton model is neither due to model misspecification, nor due to infrequent 

updating, but due to its inherent incapability in spanning risks associated with jumps of random size. 

We note that the Achilles heel of delta hedging in jump models is not the large size of the movement 

per se, but rather the randomness of the jump size. For example, Cox and Ross (1976) and Dritschel and 

Protter (1999) show that dynamic delta hedging can span all risks arising in their pure jump models. 

Under these jump models, the jump size is known just prior to any jump. This is analogous to the 

binomial model where only two subsequent asset prices are possible. Under both cases, delta hedging 

can remove all risks. Therefore, it is the a priori randomness in the jump size that creates the difficulty 

in dynamic delta hedging. 

2.5. Effects of target and hedging instrument choice 

For concreteness, the above simulations focus on the hedging of a one-year call option with one-month 

options in the static portfolio. In this subsection, we compare the hedging performance when we 

choose different target options being hedged and different maturities for the options in the static hedge 
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portfolio. In theory, if we use a continuum of options at a certain maturity, the spanning is perfect 

regardless of the exact maturity choice for the hedge portfolio. In practice, however, the Gaussian 

quadrature approximation error may vary with the target strike and with the maturities used. The 

simulation analyzes how the hedging error introduced by the quadrature approximation varies over 

different choices of target and hedging options. Along the same lines, we also analyze how the dynamic 

hedging error varies with the choice of the target option. 

Table 3 summarizes the results of this exercise. To save space, we only report static hedges with 

three and five options and compare their performance with that of delta hedging with daily updating. 

First, we investigate the impact of varying the target option maturity given the same hedging instru­

ments. We choose target option maturities of two months, four months, and 12 months. For the static 

hedging strategy, as we lower the target option’s maturity, the hedging errors become smaller in the 

Black-Scholes model, but slightly larger in the Merton jump-diffusion model. We conjecture that these 

variations in performance are related to the different accuracies of the quadrature approximation for 

different integrands. 

For the dynamic strategy, the hedging errors are larger for hedging shorter term options than for 

hedging longer term options under all simulated scenarios. This deteriorating performance with de­

clining maturity is probably linked to the gamma of the target option. The shorter the maturity, the 

larger is the gamma for an at-the-money option. Since we can regard the delta strategy as a linear 

approximation, the hedging error normally increases with gamma, especially in the presence of large 

moves. 

Our static spanning relation allows the use of different maturities in forming the static hedge port­

folios. Thus, holding the same one-year option as the target option, we also compare how different 

maturity options fare in spanning the risk of this target option. Under all three scenarios, we find that 

24
 



the hedging performance improves quite significantly when the maturity of the hedging options in­

creases. Under the Black-Scholes environment, the standard error of the hedging error is 0.66 when 

we use five one-month options to hedge the one-year option. This performance is much worse than 

daily delta hedging, which generates a standard error of 0.10. However, as we replace the one-month 

options in the portfolio by two-month options and then by four-month options, the performance of the 

static hedge improves quite dramatically. The standard error of the hedging error declines to 0.25 when 

using two-month options and to 0.04 when using four-month options. Thus, when longer-term options 

are liquid and available in the market, we can further improve the performance of the static hedging 

strategy such that it outperforms daily delta hedging even under the Black-Scholes environment. Com­

paring this to Table 2, we see that to achieve the static hedging error of 0.04, a dynamic delta strategy 

must be updated five to ten times per day. 

The same trend follows under the Merton jump-diffusion world. Under the Merton world, the 

standard error of the hedging error is 0.47 when hedging one-year options with five one-month options. 

The standard error reduces to 0.29 when using five two-month options and to 0.16 when using five 

four-month options, which is much smaller than the standard error of the dynamic hedging error (1.05) 

under daily updating. 

The simulation exercises illustrate that when the underlying asset price can jump by a random 

amount, our static strategy with a few appropriately chosen options delivers much smaller hedging 

errors than the dynamic delta strategy. But probably the biggest advantage of the static strategy lies 

in its flexibility. For the same target option, we have the freedom to choose options at different ma­

turities to form the hedge portfolio. Furthermore, while the Gauss-Hermite quadrature rule provides 

a convenient way in performing finite approximations, there is ample room left for future research in 
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developing better approximating schemes that can potentially further improve the performance of the 

static strategy. 

The fact that a static hedging strategy with merely three to five options can outperform a dynamic 

strategy with daily updating is remarkable. In addition to the above mentioned flexibility and poten­

tially reduced transaction costs due to fewer transactions, there are other advantages in implementing 

the static strategy. First, since the static hedge employs neither short stock positions nor substantial 

borrowing,1 it is not subject to either short sales restrictions or leverage constraints. In contrast, delta 

hedges of options always involve a short position in either the risky asset or a riskfree bond, and hence 

always face one of these restrictions. Furthermore, the use of a static hedge also allows one to econo­

mize on the monitoring costs (e.g., paying for traders and real time data feeds) associated with dynamic 

rebalancing. These costs are much larger in practice than typically assumed in theory and potentially 

explain the current situation where dynamic hedging is usually only performed by specialized institu­

tions. 

3. Hedging S&P 500 Index Options: An Applied Example 

The simulation study in the previous section compares the performance of the two different types of 

hedging strategies under controlled conditions. In this section, we investigate the historical perfor­

mance of the two strategies in hedging the sale of S&P 500 index options. Although the simulation 

allows us to benchmark the magnitude of the approximation error in various Markov models, only an 

empirical study can gauge the likely effectiveness of the two types of hedging strategies in practice. 

Furthermore, since the simulations indicate that the two strategies exhibit comparable performance 

1The money market account induced by the approximation error for the static strategy is normally very small, and can be 

reduced to zero via a rescaling of portfolio weights without much effect on the hedging performance. 
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when the stock price follows geometric Brownian motion, but the static strategy has superior perfor­

mance when the stock price follows Merton’s jump diffusion process, the relative performance of the 

two strategies in the past can also serve as an indirect test on whether the S&P 500 index has moved 

purely diffusively or has also experienced jumps of random size. 

3.1. Data and estimation 

The data on S&P 500 index options are obtained from OptionMetrics, a financial research and con­

sulting firm specializing in econometric analysis of the options markets. The “Ivy DB” data set from 

OptionMetrics is the first widely-available, up-to-date, and comprehensive source of high-quality his­

torical price and implied volatility data for the US equity and index options markets. Encompassing six 

years of data, Ivy DB contains accurate historical prices of options and their associated underlying in­

struments, correctly calculated implied volatilities, and option sensitivities. The index options data we 

have obtained from OptionMetrics are from January 1996 to August 2002. They are standard European 

options on the spot index and are listed at the Chicago Board of Options Exchange (CBOE). The data 

set includes, among other information, the closing quotes on each options contract (bid and ask) and 

implied volatilities based on the mid quote. Also included in the data set is a unique option contract 

identifier to facilitate the tracking of an option contract over time. The underlying index level at close, 

the interest rate curve, and the projected dividend yield for the calculation of implied volatility are also 

supplied by OptionMetrics. Our hedging exercises are based on the mid option price quotes. 

In parallel with the hedging exercises in the simulation studies, we perform month-long hedging 

exercises on the index options. The S&P 500 index options expire on the Saturday following the third 

Friday. Since the terminal payoff is computed based on the opening price on that Friday morning, trades 

and quotes on the expiring options effectively stop on the preceding Thursday. Hence, we start the 

27
 



hedging exercise each month 30 days prior to the expiring Friday, which is a Wednesday. The available 

number of one-month option contracts at each of the starting dates ranges from 48 to 142, half of them 

call options and half of them put options. From these starting dates, we can perform month long hedging 

exercises for 79 non-overlapping months, from January 1996 to July 2002. Sampling properties of the 

hedging errors can then be computed from the 79 hedging experiments. To be comparable with the 

simulations, we normalize the option prices and hedging errors as percentages of the underlying index 

level at the starting date of each month. 

At each starting date, we classify options into four maturity groups, matching those used in the 

simulations: (i) one-month options, (ii) two-month options, (iii) options with maturities four to six 

months, and (iv) options with maturities 12 to 17 months. The variations in maturities in the last two 

maturity groups necessary to obtain a monthly series because we do not have four- and twelve-month 

options in all months. As in the simulations, we use the first three groups (one, two, and four month 

options) in forming static hedge portfolios and the last three maturity groups (two, four, and twelve 

month options) for the target option being hedged. We choose the target option as the one with the 

strike price nearest to the spot index level at the starting date. 

Since we do not know the true data generating process nor the option pricing model underlying the 

market prices, we adopt the ad hoc strategy using the Black-Scholes model. For the dynamic strategy, 

we delta hedge with the underlying futures based on the Black model, using the observed implied 

volatility to compute the delta. For the static strategy, we form the portfolio according to the Black-

Scholes formula, using the at-the-money implied volatility of the appropriate maturity as the needed 

volatility input. Our simulations indicate that these ad hoc hedging strategies perform about as well as 

the hedges conducted when the true process is known. 
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When quotes at the appropriate strikes are not available, we use the nearest available strike contract 

as a replacement.2 For the static strategy, we can pick any number of shorter term options based on the 

quadrature rule. However, a large order quadrature rule often requires some deep out-of-the-money or 

deep in-the-money option contracts that are not available on the market. Thus, we focus on analyzing 

the performance of the static hedge with only three to five option contracts. 

We follow both strategies for 29 actual days, running from the starting date to the Thursday of 

the fourth following week, the last day of trading for the one-month options used in the static hedge. 

For the static strategy, we only need to track the price of the short term options at each date and 

record the difference between the price of the hedge portfolio and the price of the target call option. 

When there is a discrepancy between the price of the target call option and the cost of the quadrature-

determined hedge portfolio at the starting date, we also monitor the typically small money market 

account balance. For the dynamic strategy, we need to compute a new delta at each date based on the 

newly observed underlying price level and implied volatility and perform the appropriate rebalancing. 

For obvious reasons, we do not rebalance during weekends, holidays, or other market closures. For ease 

of comparison, we align the hedging errors based on the week days of each week and then compute the 

sample properties of the hedging errors at each week day. 

3.2. Static versus dynamic hedging in practice 

Table 4 presents the summary statistics for the hedging errors of the various hedging exercises on S&P 

500 index options. To ease comparisons, we present the results in a similar format to those from the 

simulations summarized in Table 3. As in the simulation exercise, we represent the option prices and 

hedging errors as percentages of the underlying index level at the starting date of each month. 

2The weight, however, is not adjusted. 
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We consider the hedging of three maturity groups of target options: (i) two-month calls, (ii) four-

to-six month calls, and (iii) 12-month and longer calls. We find that the performance varies with the 

maturity group of the option being hedged. First, we consider the hedging of the sale of a two-month 

call option. Daily delta hedging with the underlying futures generates hedging errors with a standard 

error of 0.57, a root mean squared error of 0.59, and a mean absolute error of 0.47. The corresponding 

statistics for the static strategy with three one-month options are 0.27, 0.27, and 0.21, respectively, less 

than half of the corresponding values for the dynamic strategy. Using five one-month options makes the 

hedging errors even smaller. Therefore, a static hedge with just three one-month options significantly 

outperforms daily delta hedging in reducing the risks associated with writing two-month call options. 

In hedging the sale of a four-to-six month call option, the dynamic hedging strategy generates a 

standard error of 0.65 and a mean absolute error of 0.49. In contrast, the standard error from the static 

strategy with three one-month call options is 0.62, slightly smaller than the dynamic strategy; but the 

mean absolute error from this static strategy is 0.50, slightly larger than that from the dynamic strategy. 

Overall, the performance from the two strategies are on par in hedging the sale of a four-to-six month 

call option. When using five one-month options rather than three, the static strategy generates smaller 

errors than the dynamic strategy. 

When hedging the sale of a call option with a time-to-maturity of 12 months or longer, the dynamic 

strategy generates a standard error of 0.88 for the hedging error. The mean absolute error is smaller at 

0.64. Both numbers are larger than those for hedging a shorter-term call option. This dynamic hedging 

performance is better than the static strategy with three one-month call options, but on par with the 

static strategy with five one-month call options. The standard error from the static strategy with three 

one-month call options is 1.06, larger than 0.88 from the dynamic strategy. The standard error from 

30
 



the static strategy with five one-month call options is 0.87, about the same as that from the dynamic 

strategy. 

Consistent with the results observed in the simulations, the performance of the static strategy im­

proves if we increase the time-to-maturity of the options in the hedge. In hedging the sale of a 12-month 

or longer call option, the standard error of the hedging errors from the static strategy with three call 

options declines from 1.06 to 0.74 and then to 0.44, as the time-to-maturity of the three call options in 

the hedge portfolio increases from one month to two months, and then to four-to-six months. We also 

observe a similar reduction when using five call options in the static hedge portfolio. 

Overall, the performance of static hedging with three to five call options is on par with or better than 

the performance of daily delta hedging. In addition, the performance of our static strategy can be further 

improved by choosing slightly longer maturities for the options in the hedge portfolio. Therefore, the 

static strategy not only works in theory and in simulations, but it also works on historical data, at least 

for S&P 500 index options, one of the most actively traded derivative contracts. 

3.3. Implications for the index movement 

By comparing the hedging results from the Monte Carlo simulations with those from the historical data, 

we can draw inferences on the type of stochastic process underlying the S&P 500 index movement. The 

issues that we can draw inferences on include (i) whether the stock index movement displays jumps of 

random size and (ii) whether the risk-neutral stock index process is Markovian in the spot index level 

and the calendar time. 

Our Monte Carlo simulation indicates that the dynamic hedging strategy works very well in the 

Black-Scholes environment, but this dynamic strategy deteriorates dramatically under Merton’s jump­
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diffusion model so that a static hedge with only three options has a hedging performance on par with or 

even better than daily delta hedging. For example, The last column of Table 3 shows that the standard 

error for hedging 12-month options using daily delta hedging is 0.10 under the Black-Scholes model, 

but 1.05 under the Merton model, more than ten times larger. In contrast, the standard error from the 

static strategy with three one-month options is 1.00 under the Black-Scholes model, but 0.72 under 

the Merton model. Comparing these numbers to those for S&P 500 index options in Table 4, we find 

that the standard error from the static strategy with three one-month options is 1.06, and that from the 

dynamic strategy is 0.88, only slightly smaller. Overall, the performance difference is much closer 

to that under the Merton jump-diffusion case than under the purely diffusive Black-Scholes world. 

Therefore, we infer that the S&P 500 index movement may have jumps of random magnitudes. This 

result is consistent with the findings from many parametric studies, e.g., Bates (2000) and Bakshi, Cao, 

and Chen (1997) and also with the results from the more generic tests such as in Aı̈t-Sahalia (2002) 

and Carr and Wu (2003b). 

Figure 2 depicts the normalized sample paths of the S&P 500 index level over the 79 month-long 

hedging experiments. The four major breaks in the sample paths reflect the four weekends of the month. 

There may also be other breaks due to holidays. When we compare this to the simulated sample paths 

under the Black-Scholes model and the Merton model (See Figure 1), we see that the sample paths 

of the index show both small and large movements. However, the jumps are not as dramatic as those 

shown in the simulated paths of the Merton jump-diffusion model. 

The hedging performance on S&P 500 index options does not always match the simulated results 

on the Merton jump-diffusion model. Under the Merton model, the simulated hedging error is smaller 

for hedging longer-term options than for hedging shorter-term options. This holds for both static and 

dynamic strategies. For example, Panel B of Table 3 shows that the standard error of the hedging errors 
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from the static strategy with three one-month options is 0.84 for hedging two-month options, 0.77 

for hedging four-month options, and 0.72 for hedging 12-month options. We also observe a similar 

downward trend under the dynamic strategy. However, the trend is quite the opposite when hedging 

S&P 500 index options. As shown in Table 4, the magnitude of the hedging errors increases when 

the maturity of the target option increases. This observation holds for both the static strategy and, to 

a lesser extent, the dynamic strategy. When hedging with three one-month options, the standard error 

of the hedging errors is 0.27 for hedging two-month index options, 0.62 for hedging four-to-six month 

index options, but 1.06 for hedging 12-month or longer index options, a large increase. A similar trend 

also exist for the hedging errors under the dynamic strategy. 

Figure 3 shows the impact of the maturity of the target index option on the hedging performance. 

In the figure, we plot the 79 sample paths of the hedging errors for the hedging of near-the-money 

index options at maturities of (i) two months (top row), (ii) four-to-six months (middle row), and (iii) 

one year or longer (bottom row). The horizontal axis is the actual number of days forward. Again, 

the four breaks in the sample paths represent the four weekends during the month-long monitoring of 

the hedging performance. We also observe occasional path breaks during the week days, which can be 

either due to holidays or missing data. We record the performance of the static hedge only when the 

market quotes for all the relevant options (the options in the hedge portfolio and the target call option) 

are available. 

The three panels on the left depict the hedging errors based on the static hedge portfolio using three 

one-month options. The panels in the middle are from static hedging with five one-month options, and 

those on the right are errors from on daily delta hedging with futures. For ease of comparison, we 

apply the same scale on all panels in the figure. For all three hedging strategies, the magnitudes of 

the hedging errors increase with the maturity of the target option, more so for the two static strategies 
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than for the dynamic strategy. These results stand in sharp contrast to what we have observed from 

simulating either the Merton model or the Black-Scholes model. 

The different results between the Monte Carlo simulation of single-factor Markovian processes and 

the historical record of S&P500 index options prompt us to conjecture that the underlying index move­

ment may not be Markovian in itself. Additional sources of risk could exist other than the underlying 

index level. These risks could also affect the index option prices. One such risk could be stochastic 

volatility. When there are additional sources of risk, the hedging performance of both strategies should 

deteriorate as the maturity of the target call option increases away from the maturity of the hedge port­

folio. For the pure delta hedging strategy, the effects of neglecting to vega (partial derivative against 

volatility) hedge would become more pronounced as we increase the target call option’s maturity and 

hence its vega. For the static hedging strategy, the difference between the vega of the hedge portfolio 

and the vega of the target call option also increases with the maturity gap between the target call option 

and the call options in the hedge portfolio. As the call options in the static hedge approach the expiry 

date, the resulting payoffs from the maturing options are purely determined by the realized index level 

and do not depend on any other state variables such as volatility. However, the value at that time of the 

unexpired target call option will be sensitive to factors other than price, which will result in replica­

tion error. The magnitude of this replication error increases as this sensitivity of the target call option 

increases. 

Given the same target index option, we also observe that the performance of the static hedge im­

proves as we increase the maturity of the options in the portfolio. Figure 4 shows this phenomenon. In 

this figure, we plot the sample paths of the hedging errors from the static hedge of a target call option 

with maturity one-year or longer. From left to right, the time to maturity of the options in the hedge 

portfolio increases from one month (left panel) to two months (middle panel) and then to four-to-six 
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months (right panel). The top panels are based on portfolios with three options, and the bottom panels 

are based on portfolios with five options. From left to right, as the time to maturity of the options in 

the hedge portfolio increases, the magnitude of the hedging error declines. This result is consistent 

with the simulation results, confirming that longer term options are more effective in spanning the tar­

get option when a quadrature approximation is applied in setting up the portfolio. Furthermore, when 

there exists additional sources of risk such as stochastic volatility, the reduced maturity gap between 

the target option and the options in the static hedge also reduces the exposure of the hedge portfolio to 

these additional risks. 

4. Semi-Static Hedging of Path-Dependent Options 

For ease of exposition, the focus of this paper thus far has been on static hedging of standard European 

options. It is clear that our results extend to path-independent European claims. When comparing this 

extension to the classical result of Breeden and Litzenberger (1978), we make the extra assumption 

that the underlying security price follows a one-factor Markovian process. The gain from this extra 

assumption is that we no longer require the target claim and its hedge portfolio of options to expire 

at the same time, a necessary requirement in the BL result. Therefore, we can effectively hedge a 

path-independent claim with a portfolio of shorter-term European options, as we have elaborated on 

in the case of a European option in the previous sections. In this section, we show that we can also 

form semi-static hedges of path-dependent options with European options, provided that the path is 

discretely monitored. 

Hedging path-dependent options is not possible under the BL framework. Dynamically hedging 

path-dependent options is plausible in theory, but for many path-dependent claims, the reality of jumps 
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often destroys the effectiveness of these hedges in practice. Our semi-static hedging theory takes jumps 

in stride, as we now show. 

We consider the wide class of contingent claims whose single payoff at the fixed time T depends 

on a finite number (n < ∞) of points of the price path of a single underlying asset 

VT = f (St0 ,St1 , . . . ,Stn ), (16) 

where t0 = 0 and tn = T . We label the times t0, t1, . . . , tn as monitoring times. The payoff structure in 

equation (16) excludes various continuously monitored Asian and barrier options, or American claims. 

Although we can always discretize a continuous problem, the analysis of this section assumes that we 

can trade at each fixed monitoring time ti in options maturing at ti+1. 

To simplify the discretely monitored payoff function in equation (16), we note that for many claims, 

we can capture the path-dependence by one or more summary statistics. In what follows, we will work 

with a single summary statistic, but it should be clear how to extend the analysis to multiple such 

statistics. A single summary statistic captures the path-dependence of a claim if we can write the final 

payoff of the claim recursively as follows, 

VT = φ(HT ), (17) 

where 

Hti = gi(Hti−1 ,Sti−1 ,Sti ), i = 1, . . . ,n, (18) 

where φ(·) and gi(·) are known functions, H is the single summary statistic, and H0 and S0 are known 

constants. Examples in this class include discretely monitored Asian and barrier options, Bermudan, 
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passport, and cliquet options, and many structured notes. A concrete example which we will focus on 

is a globally-floored, locally-capped, compounding cliquet with discrete monitoring, 

Sti−1 

VT = S0 max[L,HT ], (19) 

with 

Hti = Hti−1 

�� 

Sti 
� � 

∧U , i = 1, . . . ,n, (20) 

where L is the global floor, U > 1 is the local cap, and n denotes the number of monitoring periods. 

Here, H0 = 1, and S0 is known. In practice, L is typically chosen to be one so that the annualized return 

is always positive. A typical value of the local cap U is 1.35 so that the maximum return for any year 

cannot exceed 35 percent. 

We assume the same one-factor Markovian setting as in equation (1). To hedge the discretely 

monitored options as described by the payoff function in (17) and (18), we assume that at each discrete 

time ti, we can take static positions in European options of all strikes and maturing at ti+1, for i = 

0,1, . . . ,n − 1. Given this access to markets, the algorithm for valuing a path-dependent option of the 

specified type is as follows. 

At time tn−1, conditioning on the history to that time Htn−1 and the contemporaneous stock price 

Stn−1 , and from (17) and (18) with i = n, the final payoff becomes a known function of only the final 

stock price, 

VT = φ(HT ) = φ(gn(Htn−1 ,Stn−1 ,ST )) ≡ fn(ST ; Htn−1 ,Stn−1 ), (21) 

where the last two arguments of fn are known due to the conditioning. 
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Following Breeden and Litzenberger (1978), we can span the final payoff using options maturing 

at time T , 

′ fn(ST ; Htn−1 ,Stn−1 ) = fn(κn;Htn−1 ,Stn−1 )+ fn(κn;Htn−1 ,Stn−1 )[(ST −κn)
+ − (κn −ST )

+]+ (22) 

κn ∞ 
′′ ′′ f (K ;Htn−1 ,Stn−1 )(K −ST )

+dK + f (K ;Htn−1 ,Stn−1 )(ST −K )+dK ,n n 
0 κn 

where the expansion point κn ≥ 0 can be any convenient constant separating the put options from the 

call options. A common choice is the forward price κn = F0(T ). 

We can value this contingent-claim at time tn−1 by taking conditional expectations on both sides 

of equation (22) under the risk-neutral measure Q and then discounting the expectation by the con­

stant riskfree rate. We can then represent the value of this claim in terms of the riskfree rate and the 

contemporaneous option prices, 

V fn ′ = e−r(T −tn−1) fn(κn; Htn−1 ,Stn−1 )+ f (κn; Htn−1 ,Stn−1 )[Ctn−1 (κn,T )−Ptn−1 (κn,T )] tn−1 n


κn ∞
 
′′ ′′ + fn (K ;Htn−1 ,Stn−1 )Ptn−1 (K ,T )dK + fn (K ; Htn−1 ,Stn−1 )Ctn−1 (K ,T )dK . (23) 

0 κn 

Therefore, at the last time step tn−1, we can replicate the contingent claim using a portfolio of standard 

European options maturing at the same time. This result is the same as in Breeden and Litzenberger 

(1978) and does not need the Markovian assumption. 

However, to be able to replicate the claim at any other time steps, we need the one-factor Markovian 

assumption. Substitution of the Markovian property (1) into equation (23) implies that the time-tn−1 

value of this contingent claim is a known function of Htn−1 and Stn−1 , 

V fn ′ 
tn−1 

= e−r(T −tn−1) fn(κn;Htn−1 ,Stn−1 )+ fn(κn;Htn−1 ,Stn−1 )[C(Stn−1 , tn−1;κn,T ;Θ)−P(Stn−1 , tn−1;κn,T ;Θ)] 
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+ 
� κn ∞ 

f n
′′ (K ;Htn 1 ,Stn 1 )P(Stn 1 , tn 1;K ,T ;Θ)dK + 

�

f ′′ (K n ;Htn 1 ,St )C(St , tn 1;K ,T ; Θ)dK 
0 

− − − − n 1 n 1 
κn 

− − − −

≡ V (Htn−1 ,Stn−1 , tn−1). (24) 

Now, we step back to time tn−2 and condition on the history to that time Htn−2 and the contempo­

raneous stock price Stn−2 . From the Markovian representation in (24) and the definition of the history 

summary statistic in (18) with i = n − 1, we can write the time-tn−1 value of this claim as a known 

function of only the contemporaneous stock price at tn−1, 

V fn 
tn−1 

= V (Htn−1 ,Stn−1 , tn−1) = V (gn−1(Htn−2 ,Stn−2 ,Stn−1 ),Stn−1 , tn−1) ≡ fn−1(Stn−1 ;Htn−2 ,Stn−2 ), (25) 

where Htn−2 and Stn−2 are known through the conditioning. Therefore, at time tn−2, we can simply regard 

fn−1(Stn−1 ;Htn−2 ,Stn−2 ) as the terminal payoff of a one-step claim, expressed as a function of the terminal 

stock price Stn−1 . We can again follow Breeden and Litzenberger (1978) and replicate this payoff using 

options maturing at tn−1, analogous to the steps in equations (22) and (23). Furthermore, we can again 

exploit the Markovian assumption in (1) and derive the new value function V (Htn−2 ,Stn−2 , tn−2) and the 

new target payoff function fn−2(Stn−2 ;Htn−3 ,Stn−3 ) by performing operations analogous to (24) and (25). 

We repeat the procedure until we obtain the value function at time 0. For this final iteration, we 

only need to condition on the known values of H0 and S0. 

Therefore, the semi-static hedging of this path-dependent claim goes as follows. At time 0, we 

use a portfolio of European options maturing at time t1 to span the value function of the claim. At 

time t1, we collect the receipts from the expiring options in the hedge portfolio and form another hedge 

portfolio maturing at time t2. This procedure continues until time T = tn, when the payoff from the 

hedge portfolio formed at time tn−1 matches the payoff from the path-dependent claim. The hedging 
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is static and no portfolio rebalancing is needed in between monitoring times. But at each monitoring 

step, the options in the hedge portfolio expire and a new hedge portfolio needs to be formed. Thus, 

the rebalancing frequency matches the monitoring frequency, reflecting the semi-static nature of the 

strategy. 

5. Conclusion 

Dynamic hedging has been widely used due to its flexibility in hedging a wide class of contingent 

claims. However, the performance of this strategy deteriorates dramatically in the presence of jumps 

of random size. The static hedging strategy introduced by Breeden and Litzenberger (1978) addresses 

this model risk, but can only be applied to a narrow range of payoffs. In this paper, we propose a new 

approach that is more robust than dynamic hedging and covers a much wider class of claims than BL. 

For simplicity, we illustrate our theory when the target claim is a European option. Since a perfect static 

hedge requires a continuum of options in the hedge portfolio, we develop a discrete approximation of 

the static hedge and test its effectiveness using historical data and Monte Carlo simulations. 

The simulation results indicate that the static hedge approximation has about the same effective­

ness as delta hedging with daily rebalancing in the Black-Scholes environment. However, when the 

simulated underlying price process can also experience jumps of random size, the performance of the 

delta hedge deteriorates dramatically. In contrast, the performance of our static option hedge is rela­

tively insensitive to the change from a purely diffusive process to a jump diffusion. The conclusions 

are unchanged when we switch to ad hoc static and dynamic hedging practices necessitated by a lack 

of knowledge of the driving process. Further simulation indicates that increasing the rebalancing fre­

quency cannot improve the inferior performance of the delta hedge in the presence of random jumps, 
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but the superior performance of the static hedging strategy can be further enhanced by using more 

strikes or by optimizing on the common maturity in the hedge portfolio. As a result, the static hedge 

can achieve superior risk reduction with as few as three options in the hedge portfolio. 

Accompanying the superior performance of the static hedge are the potentially lower transaction 

and monitoring costs. Furthermore, since delta hedging also requires short positions in either the risky 

asset or the money market account, complications can arise from short sales restrictions and leverage 

constraints. Neither complication arises in our static hedging strategy. 

To investigate how our static strategy performs in a realistic setting, we investigate its effectiveness 

in hedging S&P 500 index options and compare its performance with daily delta hedging with the 

index futures. We find that the superior performance of our static hedge found in the simulations of 

the Merton model also extends to the index options data. This finding lends indirect support to the 

existence of jumps of random size as part of the S&P 500 index dynamics. We also find that the 

hedging errors from both the static and the dynamic strategies become larger when the maturity of the 

target call increases, indicating the potential existence of additional risk factors affecting option prices. 

One such risk can come from stochastic volatility. Hence, based on the availability and liquidity of 

the relevant option contracts, future research should be directed towards developing and testing static 

hedging strategies which account for a second risk factor. Such strategies would in general involve 

simultaneous positions in multiple strikes and maturities. 

Although we focus on the hedging of a standard European option for ease of exposition, our the­

oretical results extend readily to the semi-static hedging of exotic options, including discretely moni­

tored path-dependent options. We provide a summary of the theory underlying this semi-static hedging 

strategy. Once data for path-dependent option prices become available, a line for future research is to 

investigate the practical effectiveness of the strategy in real situations. 
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Appendix A. Option Pricing and Hedging under BS and MJ models 

Appendix A.1. The Black-Scholes model 

Under the Black-Scholes model, the spot price follows geometric Brownian motion under measure Q, 

dSt /St = (r −δ)dt +σdW ∗ .t 

The time-t value of a European call with strike K and maturity T is given by 

√ 
C(S, t;K,T ;Θ) = Se−δ(T −t)N(d1(S, t;K,T ;r,δ,σ))−Ke−r(T −t)N(d1(S, t; K,T ;r,δ,σ)−σ T − t), 

where N(·) denotes the standard normal distribution function and 

ln(S/K)+(r −δ +σ2/2)(T − t)
d1(S, t;K,T ;r,δ,σ) = √ .	 (A1) 

σ T − t 

The delta and strike weighting functions are given by 

∂C(S, t;K,T ; Θ)
Δ ≡	 = e−r(T −t)N(d1(S, t;K,T ; r,δ,σ)),

∂F 
∂2C(K ,u; K,T ;Θ) −δ(T −u) n(d1(K ,u;K,T ;r,δ,σ)) 

w(K ) =	 = e √ ,
∂K 2	 K σ T −u 

where n(·) denotes the probability density function of a standard normal, 

1 −d1
2/2n(d1) = √ e . 

2π 

Given the Gauss-Hermite quadrature {x j,w j}N
j=1, the static portfolio strikes and weights are given by, 

√ 
2(T −u)+(δ−r−σ2/2)(T −u)K j = Kex jσ	 , 

−δ(T −u)w(K j)K jσ 2(T −u) e
=	 = √ w j.W j	 2 w j−xe j	 π 
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√ 
Note that given the definition of K j, we have d1(K j,u;K,T ) = 2x j and hence 

1 −x2 
n(d1(K j,u;K,T ;r,δ,σ)) = √ e j . 

2π 

The cancellation then follows for the portfolio weight W j. 

Appendix A.2. The Merton jump-diffusion model 

The Merton (1976) jump-diffusion model assumes the following risk-neutral dynamics for the underlying secu­

rity price movement, 

dSt /St = (r −δ −λ∗ g ∗ )dt +σdW ∗ +dJ∗ (λ∗ ),t 

where dJ∗ denotes a compound Poisson jump with intensity λ∗. Conditional on a jump occurring, the log price 

∗relative is normally distributed with mean µ j and variance σ2 
j . Conditional on a jump occurring, the mean 

( )

∗ µ j +σ2 
j /2percentage price change is given by g = e

∗ −1 . 

The price of a European call can be written as a weighted average of the Black-Scholes call pricing functions, 

with the weights given by the Poisson distribution, 

∞ 
C(S, t;K,T ;Θ −r(T −t) T t) = e ∑ Pr r δ(n)

[

Se( n− )( − )N(d1n(S, t;K,T )) KN(d1n(S, t;K,T ) σn 
√ 

T t) , 
n=0 

− − −
]

where Pr(n) is the Poisson probability mass function, which gives the probability of having n jumps between 

time t and T , 

) = e −t T 
Pr λ∗ T (λ∗ n (

(n − ( ) − t))
, 

n! 

d1n(S, t; K,T ) is defined as 

ln(S/K)+(rn −δ −σ2/2)(T − t)nd1n(S, t;K,T ) = √ ,
σn T − t 
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with 

rn = r −λ∗ g ∗ +n(µ∗ j +σ2 
j /2)/(T − t), 

σ2 2 2 
n = σ +nσ j /(T − t).

In Merton’s jump diffusion model, the delta and strike weighting function are given by 

∞ 
Δ e−2r(T −t) ∑ Pr n r T t= ( )e n( − )N(d1n(S, t;K,T )), 

n=0 
∞ 

δ n(d1n(K ,u;K,T )) 
w(K ) = e−r(T −u) ∑ Pr n r T u( )e( n− )( − ) √ , 

K n=0 σn T −u 

We define the strike price points based on the Gauss-Hermite quadrature {x j,w j}N
j=1 as follows, 

Kex j 
√ 

2v(T K j = −u)+(δ−r−v/2)(T −u), 

where 

v = σ2 +λ∗ (µ∗ 2 
j ) +σ2 

j ,

is the annualized variance of the asset return under measure Q. The portfolio weights are then given by 

w(K j)K j 
�

2v(T −u) 
W j = w j.−x2 

e j

√ 
Note that in this case we no longer have the equality d1n = 2x j as v  σ2 

n.= One can regard v as a weighted 

average of σ2 for all n’s. n 
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Figure 1 
Hedging performance under different sample paths 
The two panels in the first row depict the simulated sample paths for the underlying security price 
movement based on the Black-Scholes model (left) and the Merton jump-diffusion model (right). The 
two panels in the second row depict the sample paths of the hedging errors from the static hedging 
strategy with ten option contracts under the two models. The last row depicts the corresponding sample 
paths of the hedging errors from the dynamic delta strategy with the underlying futures and daily 
updating. 
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Figure 2 
Normalized sample paths of the S&P 500 index 
Plots are the sample paths of the S&P 500 index level over the month-long horizon of the hedging 
exercises. We normalize the index level to 100 at the start of each hedging exercise, and align the paths 
based on week days, starting on a Wednesday and ending on a Thursday four weeks later, spanning 29 
days. 
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Figure 3 
Hedging errors from static and dynamic strategies 
Plots are the sample paths of the hedging errors based on (i) static strategies with a portfolio of three 
one-month options (left column), (ii) static strategies with a portfolio of five one-month options (middle 
column), and (iii) dynamic delta hedging strategies with the underlying futures and daily updating (right 
column). The options being hedged are at the money and have maturities of (i) two months (top row), 
(ii) four-to-six months (middle row), and (iii) one year and longer (bottom row). 
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Figure 4 
Errors of static hedging with options of different maturities 
Plots are the sample paths of the hedging errors for the static hedging strategy with a portfolio of three 
options. The time to maturity of the options being hedged is one year or longer. The time to maturity 
of options in the hedge are (i) one month (left), (ii) two months (middle), and (iii) four-to-six months 
(right). The hedge portfolio contains three options in the first row, and five options in the second row. 
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Table 1 
Simulated hedge performance comparisons of static and dynamic strategies 

Hedge Error Static with Options Dynamic with 

No. of Assets 3 5 10 15 21 Underlying 

A. The Black-Scholes Model 

Mean -0.00 0.01 -0.02 0.02 0.01 0.10 
Std Err 1.00 0.66 0.33 0.20 0.14 0.10 
RMSE 1.00 0.66 0.33 0.20 0.14 0.14 
MAE 0.86 0.57 0.29 0.18 0.13 0.12 
MSF -0.43 -0.28 -0.15 -0.08 -0.06 -0.01 
Min -1.62 -1.13 -0.58 -0.38 -0.25 -0.43 
Max 1.86 0.93 0.40 0.24 0.17 0.32 
Skewness 0.01 -0.26 -0.32 -0.61 -0.48 -0.84 
Kurtosis 1.87 1.79 1.70 1.96 1.78 4.68 
Call Value 11.72 12.20 12.34 12.37 12.36 12.35 

B. The Merton Jump-Diffusion Model 

Mean -0.01 0.00 -0.01 0.02 0.02 0.07 
Std Err 0.72 0.47 0.31 0.16 0.12 1.05 
RMSE 0.72 0.47 0.31 0.16 0.12 1.05 
MAE 0.53 0.35 0.27 0.13 0.10 0.48 
MSF -0.27 -0.18 -0.14 -0.05 -0.04 -0.20 
Min -1.73 -1.28 -0.67 -0.58 -0.41 -12.12 
Max 2.84 1.48 0.51 0.20 0.14 0.37 
Skewness 0.56 -0.16 -0.10 -1.77 -1.65 -6.82 
Kurtosis 5.23 4.07 1.83 5.74 5.15 59.79 
Call Value 9.52 11.14 11.93 12.09 12.06 11.99 

C. Ad Hoc Black-Scholes Hedge under the Merton World 

Mean -0.00 0.01 -0.02 0.01 0.01 0.03 
Std Err 0.61 0.38 0.46 0.19 0.21 1.04 
RMSE 0.61 0.38 0.46 0.19 0.21 1.04 
MAE 0.48 0.29 0.39 0.12 0.15 0.45 
MSF -0.24 -0.14 -0.21 -0.05 -0.07 -0.21 
Min -1.57 -1.30 -0.72 -0.92 -0.82 -12.48 
Max 1.63 1.10 0.85 0.68 0.65 2.08 
Skewness -0.26 -0.43 0.12 -0.43 -0.61 -6.45 
Kurtosis 3.13 4.07 1.87 9.23 5.61 56.05 
Call Value 11.53 11.96 11.84 12.07 12.03 11.99 



Table 1 (Continued) 

Entries report the summary statistics (mean, standard error, root mean squared error (RMSE), mean 
absolute error (MAE), mean short fall (MSF), minimum, maximum, skewness, and kurtosis) of the 
hedging error of a one-year call option based on both static and dynamic strategies. The hedging error is 
defined as the difference between the value of the hedge portfolio and the value of the target call option 
being hedged at the closing of the month-long hedging exercise. The static hedge portfolios consist of 
several one-month call options with strikes and weights determined by the static relation and a Gauss-
Hermite quadrature approximation. The portfolios are then hold for one month without rebalancing. 
The dynamic hedge portfolio is a simple delta hedging with the underlying futures, but with daily 
rebalancing. The statistics are computed based on 1,000 simulated paths of the Black-Scholes model 
(Panel A) and the Merton jump-diffusion model (Panel B), assuming that the hedger knows the exact 
model in forming the portfolios. In Panel C, the sample paths and option prices are simulated based on 
the Merton model, but we assume that the hedger does not know this information and is formed to form 
the hedge portfolios based on the Black-Scholes forumla, with ad hoc adjustments to accommodate 
the observed implied volatility. The last row of each panel reports the value of the target call option 
approximated by the quadrature method, with the theoretical value given under the dynamic hedging 
column. 
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Table 2 
Effect of different rebalancing frequencies on the dynamic delta hedge 

Statistics Reblancing Frequency Per Day 

1 2 5 10 

A. The Black-Scholes Model 

Mean 0.11 0.11 0.11 0.11 
Std Err 0.10 0.07 0.04 0.03 
RMSE 0.15 0.13 0.12 0.12 
MAE 0.13 0.12 0.11 0.11 
MSF -0.01 -0.00 -0.00 0.00 
Min -0.36 -0.15 -0.03 0.02 
Max 0.32 0.28 0.22 0.19 
Skewness -0.77 -0.41 -0.34 -0.16 
Kurtosis 4.21 3.23 3.12 2.86 

B. The Merton Jump-Diffusion Model 

Mean 0.09 0.09 0.09 0.09 
Std Err 1.02 1.03 1.03 1.02 
RMSE 1.02 1.03 1.03 1.03 
MAE 0.49 0.49 0.49 0.49 
MSF -0.20 -0.20 -0.20 -0.20 
Min -11.78 -11.84 -11.72 -11.72 
Max 0.38 0.37 0.35 0.35 
Skewness -6.27 -6.30 -6.24 -6.20 
Kurtosis 50.97 51.40 50.34 49.79 

C. Ad Hoc Black-Scholes Hedge under the Merton World 

Mean 0.08 0.09 0.09 0.07 
Std Err 0.88 0.92 0.93 0.88 
RMSE 0.88 0.93 0.93 0.88 
MAE 0.41 0.41 0.42 0.41 
MSF -0.17 -0.16 -0.16 -0.17 
Min -10.13 -10.19 -10.08 -10.07 
Max 1.21 8.97 9.43 0.76 
Skewness -6.31 -4.74 -4.43 -6.25 
Kurtosis 52.66 54.10 53.41 51.59 
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Table 2 (Continued) 

Entries report the summary statistics (mean, standard error, root mean squared error (RMSE), mean 
absolute error (MAE), mean short fall (MSF), minimum, maximum, skewness, and kurtosis) of the 
hedging error of a one-year call option based on a dynamic delta hedge with different rebalancing 
frequencies. The hedging error is defined as the difference between the value of the hedge portfolio 
and the value of the target call option at the closing time of the month-long exercise. The statistics are 
computed based on 1,000 simulated paths of the Black-Scholes model (Panel A) and the Merton jump-
diffusion model (Panel B)assuming that the hedger knows the exact model in forming the portflios. In 
Panel C, the sample paths and option prices are simulated based on the Merton model, but we assume 
that the hedger does not know this information and is formed to form the hedge portfolios based on the 
Black-Scholes forumla, with ad hoc adjustments to accommodate the observed implied volatility. 
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Table 3 
Effect of different target and hedging instrument choice 

Target Mat 2 4 12 12 12 2 4 12 12 12 2 4 12 

Strategy Static with Three Options Static with Five Options Daily Delta 
Instruments 1 1 1 2 4 1 1 1 2 4 Underlying Futures 

A. The Black-Scholes Model 

Mean -0.02 -0.07 -0.00 -0.02 -0.01 -0.01 -0.03 0.01 -0.00 -0.00 0.30 0.21 0.11 
Std Err 0.28 0.56 1.00 0.50 0.15 0.14 0.33 0.66 0.25 0.04 0.26 0.18 0.10 
RMSE 0.28 0.57 1.00 0.50 0.15 0.14 0.33 0.66 0.25 0.04 0.40 0.27 0.15 
MAE 0.24 0.50 0.86 0.43 0.12 0.12 0.29 0.57 0.22 0.03 0.34 0.23 0.13 
MSF -0.13 -0.28 -0.43 -0.22 -0.07 -0.06 -0.16 -0.28 -0.11 -0.02 -0.02 -0.01 -0.01 
Min -0.50 -0.90 -1.62 -0.59 -0.16 -0.26 -0.56 -1.13 -0.31 -0.04 -1.11 -0.77 -0.42 
Max 0.32 0.79 1.86 1.22 0.43 0.18 0.41 0.93 0.44 0.07 0.97 0.63 0.33 
Skewness -0.42 -0.01 0.01 0.70 0.93 -0.31 -0.24 -0.26 0.36 0.54 -0.62 -0.76 -0.83 
Kurtosis 1.73 1.60 1.87 2.37 2.90 1.81 1.61 1.79 1.75 1.99 4.14 4.45 4.64 
Target Call 4.68 6.60 11.72 11.94 12.20 4.70 6.77 12.20 12.28 12.34 4.71 6.81 12.35 

B. The Merton Jump-Diffusion Model 

Mean -0.10 -0.09 -0.01 -0.02 -0.02 -0.06 -0.05 0.00 -0.00 -0.01 0.23 0.16 0.09 
Std Err 0.84 0.77 0.72 0.50 0.27 0.40 0.46 0.47 0.29 0.16 2.55 1.92 1.05 
RMSE 0.85 0.77 0.72 0.50 0.27 0.40 0.46 0.47 0.29 0.16 2.56 1.93 1.05 
MAE 0.68 0.64 0.53 0.35 0.14 0.34 0.37 0.35 0.21 0.06 1.33 0.95 0.49 
MSF -0.39 -0.36 -0.27 -0.19 -0.08 -0.20 -0.21 -0.18 -0.11 -0.03 -0.55 -0.40 -0.20 
Min -1.20 -1.20 -1.73 -0.81 -0.33 -0.69 -0.74 -1.28 -0.72 -0.64 -25.22 -19.83 -12.11 
Max 6.08 2.76 2.84 2.49 1.95 1.87 1.26 1.48 1.25 0.98 1.14 0.76 0.38 
Skewness 1.29 0.51 0.56 1.76 4.76 0.11 0.66 -0.16 1.13 4.44 -5.51 -5.85 -6.81 
Kurtosis 7.89 2.65 5.23 9.43 29.43 2.67 3.38 4.07 7.10 26.23 39.24 43.87 59.66 
Target Call 3.76 4.80 9.52 9.76 10.15 3.72 5.33 11.14 11.19 11.18 4.11 6.34 11.99 

C. Ad Hoc Black-Scholes Hedge under the Merton World 

Mean -0.10 -0.07 -0.01 -0.02 -0.02 -0.06 -0.04 0.00 -0.00 -0.00 0.18 0.11 0.05 
Std Err 0.84 0.55 0.63 0.46 0.27 0.40 0.31 0.41 0.26 0.14 2.26 1.73 1.04 
RMSE 0.85 0.55 0.63 0.46 0.27 0.40 0.31 0.41 0.26 0.14 2.26 1.73 1.05 
MAE 0.68 0.43 0.45 0.31 0.11 0.34 0.25 0.32 0.19 0.06 1.18 0.85 0.47 
MSF -0.39 -0.25 -0.23 -0.17 -0.06 -0.20 -0.14 -0.16 -0.10 -0.03 -0.50 -0.37 -0.21 
Min -1.20 -0.81 -1.42 -0.70 -0.65 -0.69 -0.53 -1.10 -0.67 -0.59 -22.01 -17.43 -12.46 
Max 6.08 1.59 2.53 2.38 1.87 1.87 0.89 1.12 1.07 0.83 2.36 2.16 2.10 
Skewness 1.29 1.06 0.81 2.16 5.12 0.11 0.47 -0.42 0.92 4.13 -5.38 -5.68 -6.45 
Kurtosis 7.89 4.26 5.93 11.28 31.09 2.67 3.25 3.53 6.27 24.24 38.74 42.88 55.98 
Target Call 3.76 4.94 10.03 9.94 10.24 3.72 5.80 11.55 11.38 11.34 4.11 6.34 11.99 
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Table 3 (Continued) 

Entries report the summary statistics (mean, standard error, root mean squared error (RMSE), mean 
absolute error (MAE), mean short fall (MSF), minimum, maximum, skewness, and kurtosis) of the 
hedging errors when hedging different target options and using different hedging hedging instruments. 
The first row denotes the maturity of the target at-the-money option being hedged. The second row 
denotes the strategy, and the third row denotes the maturity of the options in the case of the static 
hedging strategy. The statistics are computed based on 1,000 simulated paths of the Black-Scholes 
model (Panel A) and the Merton jump-diffusion model (Panel B)assuming that the hedger knows the 
exact model in forming the portflios. In Panel C, the sample paths and option prices are simulated 
based on the Merton model, but we assume that the hedger does not know this information and is 
formed to form the hedge portfolios based on the Black-Scholes forumla, with ad hoc adjustments to 
accommodate the observed implied volatility. The last row of each panel reports the value of the target 
call option approximated by the quadrature method, with the theoretical value given under the dynamic 
hedging column. 
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Table 4 
Static and dynamic hedging of S&P 500 index options 

Target Mat 2 4 12 12 12 2 4 12 12 12 2 4 12 

Strategy Static with Three Options 
Instruments 1 1 1 2 4 

Static with Five Options 
1 1 1 2 4 

Daily Delta 
Underlying Futures 

Mean -0.03 -0.13 -0.03 -0.09 0.00 
Std Err 0.27 0.62 1.06 0.74 0.44 
RMSE 0.27 0.63 1.05 0.74 0.44 
MAE 0.21 0.50 0.85 0.61 0.35 
MSF -0.12 -0.31 -0.44 -0.35 -0.17 
Min -0.79 -1.78 -2.90 -1.95 -1.55 
Max 0.55 1.34 1.90 1.34 0.76 
Skewness -0.19 -0.21 -0.35 -0.22 -0.87 
Kurtosis 3.00 3.20 2.81 2.51 4.16 
Target Call 3.63 5.92 10.49 10.41 11.47 

-0.00 -0.10 -0.01 -0.07 0.01 
0.23 0.50 0.87 0.64 0.42 
0.23 0.51 0.86 0.64 0.42 
0.18 0.38 0.69 0.52 0.33 

-0.09 -0.24 -0.35 -0.29 -0.16 
-0.62 -1.55 -2.32 -1.97 -1.58 
0.50 1.09 1.56 1.10 0.86 

-0.28 -0.51 -0.46 -0.45 -0.74 
3.12 3.70 2.91 2.89 4.51 
3.68 6.16 10.94 10.76 11.52 

0.16 0.03 -0.01 
0.57 0.65 0.88 
0.59 0.65 0.87 
0.47 0.49 0.64 

-0.15 -0.23 -0.32 
-1.28 -2.23 -2.51 
1.45 1.42 1.76 

-0.49 -0.78 -0.76 
3.34 4.47 3.83 
3.65 6.14 11.58 

Entries report the summary statistics (mean, standard error, root mean squared error (RMSE), mean 
absolute error (MAE), mean short fall (MSF), minimum, maximum, skewness, and kurtosis) of the 
hedging errors for the hedging exercises on S&P 500 index options. The maturities (in months) of 
target options being hedged are given in the first row. They are near-the-money options. The hedging 
strategy is either static with a portfolio of three options, five options, or dynamic with the underlying 
futures and daily updating. The maturity of the options in the static hedge portfolio (in months) are 
given in the third row. The statistics are computed based on the 79 non-overlapping month long hedging 
exercises over a sample period of six years (from January 1996 to August 2002). The hedging errors 
are computed in percentages of the spot index level at the starting date of each exercise. The hedging 
strategies are designed based on the Black model with ad hoc adjustments to the observed implied 
volatilities. The last row reports the sample average of the value of the target call option approximated 
by the quadrature-based hedge portfolio. Numbers under the dynamic hedging columns are the sample 
average of the observed target call option price, all in percentages of the underlying spot index level at 
the starting date of each month. 
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