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for both currencies as numéraire. Within this context, we interpret the lack of 
the martingale property of an exchange-rate as a reflection of the possibility 
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1 Introduction 

We propose to modify the notion of a contingent claim price in the setting 
where the source of uncertainty is a strict local martingale rather than a mar­
tingale. More precisely, we propose to use the minimal cost for superreplicating 
a given contingent claim under two probability measures simultaneously as a 
pricing operator for contingent claims. In the case of Foreign Exchange mar­
kets with X modelling the exchange rate (for example, the price of one Euro 
in Dollars) the two measures can be thought of as a “Dollar measure” and a 
“Euro measure” corresponding to the choice of Dollars or Euros as numéraires. 
The two measures are not equivalent if X is a strict local martingale (that is, 
a local martingale that is not a martingale). In this case, the cost for joint 
superreplication is higher than the expected value under the local martingale 
measure. 

Our main result is Theorem 3.4, which provides a formula for the minimum 
joint superreplication cost in a complete market. This approach restores put-
call parity and international put-call equivalence for model prices, and gives 
the price X0 for the contingent claim that pays XT at time T . Our pricing 
formula agrees with the proposals of other authors (Lewis [25], Madan and 
Yor [26], Andersen [1]); the novelty is the rigorous justification of this formula 
as a hedging cost. 

The mathematical contribution of this paper is mainly contained in Sec­
tion 2 and the appendix. We show how to construct the measure corresponding 
to a numéraire that is allowed to vanish. Towards this end, we construct the 
Föllmer measure for nonnegative local martingales, extending the correspond­
ing results for strictly positive local martingales. We also develop a stochastic 
calculus for the suggested change of measure, in which neither measure domi­
nates the other one. 

Section 3 contains the main financial results of the paper. Our approach 
uses two numéraires simultaneously, which requires us to reintroduce the no­
tions of market completeness and superreplication. We introduce a model of 
the market and define trading strategies and contingent claim replication. Af­
ter proving our main result on the minimal replicating price, we give numerous 
corollaries and examples. 

In Section 4, we consider a physical measure under which both currencies 
might completely devalue against the other. In such a situation an equiva­
lent probability measure cannot exist under which the exchange rate follows 
local martingale dynamics. Instead each of the risk-neutral measures is only 
absolutely continuous with respect to the physical measure. However, as one 
may use both currencies as hedging instruments, superreplication of contin­
gent claims might still be possible. We provide a set of conditions under which 
replicating strategies exist and we show in Proposition 4.2 how the minimal 
cost for such a strategy is exactly given by the pricing operator of this paper. 

This point of view gives us an interpretation of the lack of martingale 
property of an exchange rate under a risk-neutral probability measure as the 
positive probability of complete devaluations of currencies (corresponding to 



3 On the hedging of options on exploding exchange rates 

explosions of the exchange rate) occurring under some dominating probability 
measure. We remark that this dominating probability measure does usually 
not correspond to the Föllmer measure, which we shall discuss below, but is 
equivalent to the sum of the Föllmer measure and the original measure. 

Related literature 

We now link our financial results to relevant literature: 
Strict local martingales, that is, local martingales that are not martingales, 

have recently been introduced in the financial industry to model exchange rates 
under the risk-neutral measure. This is due to the fact that they are able to 
capture observed features of the market well such as implied volatility surfaces 
and that they are easily analytically tractable. An important example is the 
class of “quadratic normal volatility” models, a family of local martingales, 
which for example are studied in Andersen [1] and in our companion paper 
Carr et al. [2]. 

There is a vast literature on pricing options in strict local martingale mod­
els, often coined “bubbles.” For an overview of this literature, we refer the 
interested reader to the recent survey by Protter [31]. Heston et al. [18] were 
among the first to point out that put-call parity usually does not hold in strict 
local martingale models. For a discussion of these models specifically in the 
context of Foreign Exchange, we refer the reader to Jarrow and Protter [21]. 

Further models in which strict local martingales appear can be found 
among the class of stochastic volatility models; Sin [40] was among the first to 
point this out. For example, in the log-normal SABR model, if the asset price 
process is positively correlated with the stochastic volatility process, then it 
follows strict local martingale dynamics; see Example 6.1 in Henry-Labordère 
[17]. 

Several papers suggest adjustments to the pricing of contingent claims by 
expectations in strict local martingale models in order to address the lack of 
put-call parity: 

Lewis [25] proposes to add a correction term to the price of a call. However, 
this approach lacks a clear economic motivation. As his starting point is exactly 
put-call parity for model prices, it is not clear how other contingent claims 
should be priced. 

Cox and Hobson [4] suggest to consider collateral requirements when pric­
ing contingent claims; such collateral requirements correspond to a constraint 
on the class of admissible trading strategies. This leads to a higher contingent 
claim price, but usually does not restore put-call parity for model prices. 

Madan and Yor [26] propose to take the limit of a sequence of prices ob­
tained from approximating the asset price by true martingales as the price 
for a contingent claim. This approach also restores put-call parity for model 
prices. However, one might criticize that the limit of the approximating prices 
does usually not agree with the classical price in the case that the underlying 
is a true martingale. For instance, consider an arbitrage-free, complete market 
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with corresponding risk-neutral measure Q, a standard Q-geometric Brown­
ian motion X = {Xt}t∈[0,T ] as underlying, and a contingent claim that pays 
1{XT ∈N}/qXT at maturity T where qy = Q(maxt∈[0,T ] Xt ≥ y) for all y ∈ R. 
This claim should have price zero as XT ∈/ N almost surely. However, if one 
approximates X with versions that are stopped at hitting times of integers, as 
in Madan and Yor’s approach, then one obtains a price of one for that claim. 

We here suggest to take an economic point of view based on a replicat­
ing argument and derive a pricing operator that restores put-call parity and, 
therefore, assigns model prices that correspond to observed market prices. We 
thus not only justify Lewis’ pricing operator by an economic argument but 
also generalize it to a wider class of models and contingent claims. 

The approach taken here can be interpreted as a link between classical 
pricing and pricing under Knightian uncertainty. Pricing in the classical sense 
corresponds to the choice of one probability measure under which a contin­
gent claim is superreplicated. This choice implies a strong assumption on the 
chosen nullsets, that is, by assumption a set of events is determined to be not 
relevant for computing a replicating trading strategy. If the modeler consid­
ered another probability measure, other events would be selected, leading to a 
different replicating price and strategy. Indeed, one would like that the choice 
of probability measure should not have a large impact on the price (or, more 
importantly, on the hedging strategy) or, at least, should be quantifiable. 

We remark that Delbaen and Schachermayer [7] work out the connection 
of strict local martingales and changes of numéraires. While we understand a 
change of numéraire as a combination of a change of currency and the corre­
sponding change of measure they start by looking at the change of currency 
only. Their results imply that, in an arbitrage-free model, a change of cur­
rency leads to the existence of arbitrage if the corresponding exchange rate is 
a strict local martingale under a unique risk-neutral measure. We circumvent 
the appearance of arbitrage here by associating the change of numèraire with 
the introduction of a new probability measure that is not equivalent to the old 
one. It is exactly this lack of equivalence which avoids the arbitrage after the 
change of currency. 

2 Change of measure with a nonnegative local martingale 

In this section, given a probability measure Q, we construct and discuss a new 
probability measure iQ corresponding to a density process that follows local 
martingale dynamics only and is allowed to hit zero. It is helpful to interpret 
the notation of this section in a financial context. Towards this end, we inter­
pret X as an exchange rate, for example, the price of one Euro in Dollars. Then 
Q represents the risk-neutral measure corresponding to the Dollar-numéraire 
and i eraire.Q the risk-neutral measure corresponding to the Euro-num´

The Mathematical Finance literature has utilized the techniques developed 
by Föllmer [12] and Meyer [27] to construct probability measures with a strict 
local martingale as density process; mostly in the context of arbitrage and 
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bubbles; see, for example, Delbaen and Schachermayer [6], Pal and Protter [28], 
Fernholz and Karatzas [11], Ruf [34], and, parallel to this work, Kardaras et 
al. [23]. Here, we slightly extend this literature by allowing the local martingale 
to hit zero. On the other side, true martingales, possibly hitting zero, as density 
processes have been studied by Schönbucher [39] within the area of Credit Risk. 
Schönbucher [39] terms the corresponding measure a “survival measure.” We 
extend this direction of research by allowing the change of measure being 
determined by a local martingale only. 

Throughout this section, we fix a time horizon T ∈ (0, ∞], a stochastic basis 
(Ω, FT , {Ft}t∈[0,T ], Q), and a nonnegative Q-local martingale X = {Xt}t∈[0,T ]. 
We assume that x0 := X0 > 0 is deterministic, that {Ft}t∈[0,T ] is right-
continuous, and that X(ω) has right-continuous paths for all ω ∈ Ω; see also 
Lemma 1.1 in Föllmer [12] for the construction of a right-continuous version 
if this assumption does not hold. 

Any nonnegative random variable, such as XT , is explicitly allowed to take 
values in [0, ∞]. For a nonnegative random variable Z and some set A ∈ FT , 
we will write Z1A to denote the random variable that equals Z whenever 
ω ∈ A, and otherwise is zero. For any stopping time τ we shall denote the 
stochastic process that arises from stopping a process N = {Nt}t∈[0,T ] at time 
τ by Nτ = {Nτ }t∈[0,T ]; that is, Nτ := Nt∧τ for all t ∈ [0, T ]. For any measure t t 

P on (Ω, FT ), we denote the corresponding expectation operator by EP . 
We define the stopping times 

Ri := inf{t ∈ [0, T ] : Xt > i},   
1 

Si := inf t ∈ [0, T ] : Xt < 
i

for all i ∈ N, R := limi↑∞ Ri, and S := limi↑∞ Si, with the convention that 
inf ∅ := T for some trans-finite time T > ∞; see Appendix A for details. We 
define the process Y = {Yt}t∈[0,T ] by Yt := 1/Xt1{R>t} for all t ∈ [0, T ] and 
the stopping times 

SY := inf {t ∈ [0, T ] : Yt > i} ,i 

again with inf ∅ := T. We observe that Si = SY for all i ∈ N if X(R+t)∧T = ∞i 
for all t ≥ 0. We shall assume that {Ft ∩ FR−}t∈[0,T ] is the right-continuous 
modification of a standard system; see Appendix B for notation and a discus­
sion of this assumption. 

The next theorem states the main result of this subsection; for the nonneg­
ative Q-local martingale X there exists a probability measure under which X 
serves as the numéraire. We remark that we only specify the new measure on 
(Ω, FR−) and not on (Ω, FT ). This is due to the fact that the original measure 
Q, by assumption, does not “see” any events after the stopping time R. How­
ever, a measure on (Ω, FT ) satisfying the properties of the next theorem could 
be easily constructed by arbitrarily, but consistently, extending the measure 
Qi from FR− to FT . Observe that Z1{R>τ ∧T } is FR− –measurable if Z is an 
Fτ ∧T –measurable random variable for some stopping time τ . 
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Theorem 2.1 (Change of measure with a nonnegative local martin­

gale) There exists a unique probability measure Qi on (Ω, FR−) such that 

i	 EQ [1AX
τ ]TQ (A ∩ {R > τ ∧ T }) = (2.1) 

x0 

holds for all stopping times τ and A ∈ Fτ∧T . This measure also satisfies 
Qi(Ri ∧ T < R) = 1 for all i ∈ N. Moreover, we have   

EQ   EQ (Z1{S>τ ∧T })XT
τ 

Z1{R>τ∧T } =	 (2.2) 
x0 

and      EQ Z1{S>τ∧T } = x0EQ (Z1{R>τ ∧T })YT
τ (2.3) 

for all stopping times τ and Fτ ∧T –measurable random variables Z ∈ [0, ∞]. 
The process Y satisfies 

Qi( inf {Yt} ≥ 0) = 1 
t∈[0,T ]

; furthermore, we have iQ( inf {Yt} > 0) = 1 
t∈[0,T ]

if and only if the process X is a (uniformly integrable) Q-martingale. Moreover: 

1.	 Y is a iQ-supermartingale; 
2.	 Y is a local iQ-martingale if and only if Q(S > Si ∧ T ) = 1 for all i ∈ N; 

then {SY } i
i i∈N is, under Q, a localization sequence for Y ;

3.	 Y is a iQ-martingale if and only if Q(S > T ) = 1. 

Proof Without loss of generality, assume throughout the proof that x0 = 1. 
Observe that XRi is a nonnegative martingale by Lemma A.3 in the appendix; 
thus, it generates a measure Qi on (Ω, FRi−) by dQi := XRi ∈T dQ for all i  N.
Observe that the family of probability measures {Qi}i∈N is consistent, that E 
is, Qi+j |FR − = i for all i, j ∈ , and that FR− = FRi−. Now, the 

i 
Q N i∈N 

Extension Theorem V.4.1 in Parthasarathy [29] yields the existence of a prob­
ability measure iQ on (Ω, F −) such that iR Q|FR − = Qi; see Appendix B for an 

i

argument that the necessary assumptions of that theorem hold. 
Observe that iQ	 (A ∩ {R > τ ∧ T }) = lim iQ (A ∩ {Ri > τ ∧ T }) = lim Qi (A ∩ {Ri > τ ∧ T }) 

↑∞	 ↑∞ i i 	    
= lim EQ 1A∩{Ri >τ ∧T }XT

Ri = lim EQ 1A∩{Ri>τ ∧T }XT
τ 

i↑∞	 i↑∞ 

= EQ [1AXT
τ ] 

for all A ∈ Fτ ∧T and stopping times τ . This yields (2.1). Now, with τ = Ri 

and A = Ω we obtain that Qi (R > Ri ∧ T ) = 1 for all i ∈ N. This identity 
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implies that Q(A) = Q (A  T E∩ {R > Ri ∧ }) = EQ[XR  for all  � i ∈ F T 1A]  A Ri−
and i ∈ N. Since FR− = i∈N F Ri − and i∈N F Ri− is a π-system, this yields 

uniqueness of iQ on (Ω, FR−). Then (2.2) follows from (2.1) by applying the 
monotone convergence theorem and (2.3) follows from (2.2) by using the fact 
that Q(R > T ) = 1 and formally applying (2.2) to (Z1 T })Y τ 

{R>τ ∧ T instead of 
Z, where τ and Z are as in the theorem. � 

Observe that {inf  ]{Yt} < 0} = N{inft∈[0,Ri){Yt}i∈  < 0} it∈[0,T Q-almost 

surely and conclude that Y is iQ-almost surely nonnegative by dominated con­
vergence and applying (2.1) with τ = Ri and A = {inft∈[0,Ri){Yt} < 0} for 
all i ∈ N. Next, (2.1) with τ = T and A = {inft∈[0,T ]{Yt} > 0} yields that iQ({inft∈[0,T ]{Yt} > 0}) = EQ[XT ], which shows the equivalence of the posi­

tivity of Y under iQ and the martingale property of X under Q. 
Observe that 

Q     E   [Yt1 ] = EQ
A Yt1A1{R>t} = Q (A ∩ {S > t}) ≤ Q (A  ∩ {S > s}) = EQ [Ys1A] 

                   

i i

by applying (2.3) twice with Z = 1A and τ = t the first time and τ = s the
second time for all t ∈ [0, T ], s ∈ [0, t], and A ∈ Fs. Thus, the process Y 
is a Qi -supermartingale. This implies, for all stopping times τ , that Y τ is a 
Qi -martingale if and only if Q (S > τ ∧ T ) = 1 since Q (S > τ ∧ T ) = EQ [Y τ ]T 

again by (2.3) with Z = 1. Using τ = T yields that Y is a Qi -martingale if 
and only if Q (S > T ) = 1 and using τ = SY yields that, for all i ∈ N, Y S

Y 
isi 

i 

a Qi -martingale if and only if Q (S > Si ∧ T ) = 1 since Q(SY = Si) = 1. We i 
conclude by applying (i) and the equivalence of (a.1) and (a.2) in Lemma A.3 
in the appendix. D 

It is important to note that the two measures Q and Qi are usually not 
absolutely continuous with respect to each other; in particular, it is possible 
that Qi(R ≤ T ) > 0 = Q(R ≤ T ). Furthermore, note that the indicators in 
(2.2) and (2.3) can be omitted if Z is finite or Q(S ≤ T ) = 0 or Qi(R ≤ T ) = 0, 
respectively. In general, however, the indicators are necessary as the example 
Z = 1/XS illustrates.T 

Remark 2.2 (Duality of martingale property and positivity of density processes) 
Observe that we proved the equivalence of the following statements in Theo­
rem 2.1: 

1. Y is a (uniformly integrable) iQ-martingale on [0, T ];
 
2. Q(S > T ) = 1.
 

We also proved the equivalence of the following statements:
 

1. X is a (uniformly integrable) Q-martingale on [0, T ];
 
2. iQ(R > T ) = 1. 

We emphasize the symmetry of these two equivalences. 
This duality of the martingale property of a nonnegative local martingale 

under one measure and its non-explosiveness under another measure has been 
utilized to provide conditions for the martingale property of local martingales; 
see, in particular, Cheridito et al. [3] and Ruf [35, 37]. D 
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We next derive properties of the change of measure in Theorem 2.1. In 
particular, we focus on understanding which of the martingale properties of 
stochastic processes survive the change of measure, possibly after modifying 
the processes. The discussion here involves local martingales on stochastic 
intervals. This notion generalizes the definition of local martingales; its precise 
definition can be found in Appendix A. 

Proposition 2.3 (Equivalence of (local) martingales) Assume the no­
tation of Theorem 2.1 and let τ denote a stopping time and N = {Nt}t∈[0,T ] 

a progressively measurable stochastic process taking values in [0, ∞] such that 
Nt = Nt1{R>t} for all t ∈ [0, T ]. The following statements then hold: 

(i) The process {Nτ 1{S>τ ∧t}}t∈[0,T ] is a Q-martingale if and only if Nτ Y τ ist 

a Qi -martingale. 
(ii) The process {Nt1{S>t}}t∈[0,T ] is a Q-local martingale on [0, S) (equiva­

lently, on [0, R ∧ S)) if and only if NY is a Qi -local martingale on [0, R) 
(equivalently, on [0, R ∧ S)). 

(iii) If {Nt
Si 1{S>Si∧t}}t∈[0,T ] is a Q-martingale for all i ∈ N then NY is a 

Qi -local martingale. 

The proof of Proposition 2.3 is based on an extended version of Bayes’ formula 
and can be found in Appendix C. Applying (i) to N ≡ 1 and to N = X with 
τ = T yields exactly the equivalences of Remark 2.2. Applying (ii) to N = 1 
yields that Y is a Qi -local martingale on [0, R∧S) if and only if S is announced 
under Q (for example, if X does not jump to zero under Q). The example 
X = Y ≡ 1 shows that the reverse direction in (iii) in Proposition 2.3 usually 
does not hold. 

In order to better understand the suggested change of measure in this 
section, it is instructive to study an extreme case where the measures Q and iQ are not only not absolutely continuous with respect to each other but even 
singular: 

Example 2.4 (Singular measures) Assume that T ∈ (0, ∞) and let X be de­
fined by  t∧SS 1 

Xt = 1 + √ dWu (2.4) 
0 T − u 

for all t ∈ [0, T ), where W = {Wt}t∈[0,T ] denotes a Q-Brownian motion and   
SS t √

= S the first hitting time of −1 by { 1/ T − udWu} ∈[0,T ). Since X
0 t

corresponds to a deterministically time-changed Brownian motion, we have 
Q(S < T ) = 1 and thus Q(XT = 0) = 1. 

Under the measure iQ of Theorem 2.1, note that Y = {Yt}t∈[0,T ], defined 
by Yt := 1/Xt1{R>t} for all t ∈ [0, T ], has the dynamics 

 1 
dY Q 

t = −Y 2 √t  dWt (2.5)
T − t 



  
for all t ∈ [0, R) and some iQ-Brownian motion W QQ := {Wt  }(t∈[0,R)). Thus, 

Y is just the time-change of the reciprocal of a three-dimensional iQ-Bessel 
process Z starting in one. To see this, define the processes Z = {Zu}u≥0 and 
B = {Bu}u≥0 by Zu := YT (1−exp(−u)) and  T (1−exp(−u)) 1

B Q 
u := √ dW  

v 
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0 T − v 

for all u ≥ 0. Then observe that dZu = −Z2dBu and (B)u = u for all u ≥ 0u

and conclude by applying Lévy’s theorem; see Theorem 3.3.16 in Karatzas and 
Shreve [22]. We then obtain that Yt = Zlog(T/(T −t)) and Qi(Yt > 0 for all t ∈ 

[0, T )) = 1 = Qi(YT = 0); see Section 3.3 of Karatzas and Shreve [22]. Indeed, 
note that Qi(R = T ) = limt↑T ;t<T Qi(R > t) − Qi(R > T ) = 1. 

Thus, the two measures are singular with respect to each other on FT since 
Q(R = T ) = 0 < 1 = Qi(R = T ); however, Qi is absolutely continuous with 
respect to Q on Ft for all t ∈ [0, T ) since Y is a strictly positive, strict Qi -local 
martingale; see Remark 2.2. We also note that Xt is a true Q-martingale for 
all t ∈ [0, T ), but X = XT is a strict Q-local martingale. D 

The next example is a slight modification of the example in Delbaen and 
Schachermayer [9]. It here illustrates that the equivalence of two probabil­
ity measures Q and QZ on (Ω, FT ), under which X is a nonnegative right-
continuous local martingale, does not necessarily imply the equivalence of the 
corresponding probability measures Qi and QiZ , constructed as in Theorem 2.1. 
This observation will be one reason why we shall assume complete markets 
later on. 

Example 2.5 (Lack of equivalence) Fix T ∈ (0, ∞) and let X = {Xt}t∈[0,T ] and 
Z = {Zt}t∈[0,T ] denote two independent processes with the same distribution 
as the process X in Example 2.4. Define the stopping time 

1 
τX := inf t ∈ [0, T ] : Xt < 

2 

with inf ∅ := T, and similarly, τZ . Define now the processes X := X τ X ∧τ Z 
and 

Z := ZτX ∧τ Z 
. Since the stopping time τ Z is independent from X and satisfies 

Q(τ Z < T ) = 1, the process X is a strictly positive true Q-martingale by a 
conditioning argument; and similarly, so is Z. 

Define now a new probability measure QZ by dQZ = ZT dQ and observe 
that Q and QZ are equivalent and that the process X is a strict QZ -local 
martingale since 

EQZ 1 
EQ[XT ] = EQ[XT ZT ] = XT 1{τ Z <τ X } + ZT 1{τ X <τ Z }2 

1 
= EQ XT 1{τ Z <τ X } = 1 − EQ XT 1{τ X <τ Z } = 1 − Q(τ X < τ Z )

2 
3 

= < 1,
4 
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where we used the definitions of QZ , τX , and τZ , the fact that Q(τX = τZ ) = 0 
and that X and Z have the same distribution under Q, and the martingale 
property of X under Q. 

Let Qi and QiZ now denote the probability measures of Theorem 2.1 with 
X as density process. These two measures cannot be equivalent since X is 
a strictly positive true Q-martingale, but only a strict QZ -local martingale. 
Thus, the measure Q, QZ , and Qi are all equivalent but only absolutely con­
tinuous with respect to QiZ . 

To elaborate on this, under both measures Qi and QiZ , the process 1/X is a 
martingale and follows the same dynamics as the process Y in (2.5), stopped 
at time τ := τX ∧ τZ . However, the distribution of τ varies under the two 
measures. More precisely, under Qi , the stopping time τ ≤ τZ is bounded by 
the first time that the nonnegative Qi -local martingale Z starting in 1 hits 
1/2; thus Qi(τ < T ) = 1; see also (ii) of Proposition C.3 in the appendix. 
However, both 1/X and 1/Z are QiZ -martingales and the event that neither 
of these two QiZ -martingales hits 2 has positive probability under QiZ ; thus 
QiZ (τ > T ) > 0. This yields that Qi(R ≤ T ) = 0 < QiZ (R ≤ T ), despite Q and 
QZ being equivalent. D 

3 Minimal joint replication price 

In this section, we derive and discuss a representation of a contingent claim 
price, which we define as the minimal replicating cost of the contingent claim’s 
payoff under two probability measures simulaneously; specifically the measure 
under which the underlying follows local martingale dynamics (Q$) and the 
measure that corresponds to the change of numéraire (Qe). We interpret a 
nonnegative Q$-local martingale X as the current market value of one Euro 
in Dollars, and the process Y := 1/X under the measure Qe, derived from Q$ 

via the density process X (see Theorem 2.1), as the current market value of 
one Dollar in Euros under its corresponding numèraire measure. 

Remark 3.1 (Arbitrage and strict local martingales) Modelling asset prices 
with strict local martingales usually leads to features of contingent claim prices 
that, on the first look, seem to imply simple arbitrage opportunities and do not 
reflect our economic understanding of financial markets. To elaborate on this 
issue more, we remind the reader of the standard definition of a contingent 
claim price in a complete market framework as the minimal (super-) repli­
cating cost of this contingent claim; here the replication occurs almost surely 
under the unique risk-neutral measure. 

Using such contingent claim prices then usually results in the loss of stan­
dard put-call parity in strict local martingale models; see, for example, Cox and 
Hobson [4]. Even more disturbingly, the minimal replicating price for an asset 
modelled as a strict local martingale in a complete market is below its current 
value. Yet, due to an admissibility constraint on trading strategies, these mod­
els do not yield arbitrage opportunities; see also Delbaen and Schachermayer 
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[5, 8]. For example, the strategy of shorting the asset modelled by a strict local 
martingale and replicating its payoff for a lower cost is not admissible, as it 
might lead to unbounded negative wealth before the strategy matures; more 
details on this argument are discussed in Ruf [36]. D 

Throughout this section, we again assume a time horizon T ∈ (0, ∞] and 
a filtered probability space (Ω, FT , {Ft}t∈[0,T ], Q$) that satisfies the technical 
conditions of Appendix B. We fix a nonnegative Q$-local martingale X with 
almost surely càdlàg paths (and right-continuous for all ω ∈ Ω), define the 
stopping times {Ri}i∈N, {Si}i∈N, S, and R as in Section 2, and assume that 
Q$(S > Si ∧ T ) = 1 for all i ∈ N; that is, X is assumed not to jump to zero. 
As above, we define a process Y = {Yt}t∈[0,T ] by Yt := 1/Xt1{R>t} for all 
t ∈ [0, T ]. As illustrated in Theorem 2.1, there exists a probability measure 
Qe, which corresponds to the probability measure with X as numéraire, sym­
bolically “dQe = XT dQ$”. We then extend the measure Qe, currently defined 
on (Ω, FR−), to a measure on (Ω, FT ), which we again denote, with a slightly 
misuse of notation, by Qe; see Appendix B. 

For some d ∈ N, we assume the existence of d + 1 tradable assets with 
nonnegative càdlàg price processes (right-continuous for all ω ∈ Ω), denoted 
by S$ = {S$,(i)}i=0,1,...d in Dollars and by Se = {Se,(i)}i=0,1,...d in Euros, 

$,(i) e,(i)
respectively, with S$,(i) = {St }t∈[0,T ] and Se,(i) = {St }t∈[0,T ] for all 
i = 0, 1, . . . , d. We assume that the processes S$,(i) have Q$-local martingale 
dynamics and Se,(i) have Qe-local martingale dynamics for all i = 0, 1, . . . , d. 
Moreover, we assume that these price processes denote the same assets and 

e,(i) $,(i)
are consistent; that is, we assume that S 1{R∧S>t} = S Yt1{R∧S>t} fort t 

all t ∈ [0, T ] and i = 0, 1, . . . , d. Thus, given a Dollar price process S$,(i) for 
the ith asset, the process Se,(i) denotes the price for the same asset in Euros 
for all i = 0, 1, . . . , d, as it is the dollar price multiplied by the price of one 
Dollar in Euros. This relationship holds up to time R ∧ S; any event “beyond” 
that stopping has probability zero under one of the two measures. 

By Proposition 2.3 and by Proposition A.4 in the appendix, given the 
Q$-dynamics of S$, we can always construct Qe-local martingales Se with 
$,(i) $,(i)

St 1{R∧S>t} = St Yt1{R∧S>t} for all t ∈ [0, T ] and i = 0, 1, . . . , d. More 
precisely, the equivalence in (ii) of Proposition 2.3 and our standing assumption 
that Q$(S > Si ∧ T ) = 1 for all i ∈ N first yield that S$,(i)Y is a Qe-local 
martingale on [0, R ∧ S). Secondly, since R ∧ S is foretellable under Qe, by 
Theorem 2.1, any Qe-local martingale on [0, R ∧ S) can be extended to a local 
martingale on [0, R ∧ S], and then, of course, to a local martingale on [0, T ] 
in an arbitrary manner after that time since the dynamics under one measure 
only determine the dynamics under the other measure up to the stopping time 
R ∧ S. 

We suppose that S$,(0) and Se,(1) denote the Dollar and Euro money mar­
ket account, each assumed to pay zero interest; that is, S$,(0) ≡ 1 ≡ Se,(1). 
Thus, S$,(1) = X denotes the price of one Euro in Dollars and Se,(0) = Y the 
price of one Dollar in Euros. More generally, part (iii) of Proposition 2.3 yields 
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( ,(i)
that  e

if S$, i) is a Q$-martingale for some i = 1, . . . , d then St 1{R≤t} = 0 for 
all t ∈ [0, T ]; to wit, the martingale property of S$,(i) under Q$ forces Se,(i) 

to hit zero under Qe at time R ∧ S. Vice versa, if Se,(i) is a Qe-martingale for 
$,(i)

some i = 1, . . . , d then St 1{S≤t} = 0 for all t ∈ [0, T ].
We now are ready to define a trading strategy, relying on stochastic inte­

grals with respect to the d + 1-dimensional local martingales S$ and Se. We 
refer to Sections I.4d and III.4a in Jacod and Shiryaev [20] for a discussion 
of stochastic integrals, when the filtration does not satisfy the “usual assump­
tions,” in the case of d = 1 or all price processes being continuous and to Jacod 
[19] for the general case. We denote by L(S$) and L(Se) the space of all pre­
dictable processes that are integrable with respect to S$ and Se, respectively, 
under the corresponding measures Q$ and Qe . 

Stochastic integration is used in the following definition: 

Definition 3.2 (Trading strategy) A trading strategy is an Rd+1-valued 
process η ∈ L(S$) ∩ L(Se) such that 

$,η–	 its corresponding Dollar wealth process V $,η = {Vt }t∈[0,T ] and Euro 

= {V e,ηwealth process V e,η }t∈[0,T ], defined by t 

d	 dd	 d 
$,η (i) $,(i) 

V e,η (i) e,(i)
V := η S	 and := η St t t t t t 

i=0 i=0 

for all t ∈ [0, T ], stay nonnegative almost surely under the corresponding 
measure Q$ and Qe, respectively, and 

–	 the self-financing condition holds, that is, 

d	 dd	 d 
$,η (i) $,(i) 

dV e,η (i) e,(i)
dV = η dS , and = η dSt t t t t t 

i=0 i=0 

for all t ∈ [0, T ], where the dynamics are computed under the corresponding 
measure Q$ and Qe, respectively. 

We shall say that η is a trading strategy for initial capital v ∈ [0, ∞) expressed 
in Dollars if 

dd 
$,η (i) $,(i)

v = V = η S0 0 0 
i=0 

holds; and similarly for initial capital v expressed in Euros. D 

Thus, at any time t ∈ [0, T ], each component of ηt determines the current 
number of shares of each asset held at that point of time. Note that 

V e,η $,η 
t 1{R∧S>t} = Vt Yt1{R∧S>t} (3.1) 

for all t ∈ [0, T ]. Thus, the nonnegativity condition on V $,η implies the one 
on V e,η , but only up to the stopping time R. Moreover, a simple application 
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of Itô’s rule yields that the self-financing condition under Q$ implies the one 
under Qe, but again only up to the stopping time R; see also Geman et al. [14]. 

We call any pair of nonnegative FT –measurable random variables (D$, De) 
a contingent claim if De1{R∧S>T } = D$YT 1{R∧S>T }. The random variable D$ 

(De) corresponds to the Dollar (Euro) price of a contingent claim, as seen by 
the Dollar (Euro) investor. We remind the reader that the event {S ≤ T } has 
zero Qe-probability, but might have positive Q$-probability, and the converse 
statement holds for the event {R ≤ T }. 

We represent a contingent claim as a pair of random variables in order to 
be able to exactly express its payoff both in Dollars and in Euros including in 
the event of X hitting infinity. For example, the contingent claim (XT , 1) pays 
off one Euro at maturity, the contingent claim (XT , 1{R>T }) pays off one Euro 
if the price of one Euro in Dollars did not explode. For some K ∈ R, the claims 

C,$ P,$D := ((XT − K)+ , (1 − KYT )
+) and D := ((K − XT )

+ , (KYT − 1)+)K K 
are called call and put, respectively, on one Euro with strike K and maturity 
T . Equivalently, by exchanging the first with the second component and XT 

with YT , we define calls and puts on one Dollar and denote them by DC,e andK 

DP,e. In Foreign Exchange markets, self-quantoed calls are traded, defined as K
 
SQC,$ C,$
D := XT D = (XT (XT − K)+ , (XT − K)+) for some K ∈ R.K K 

We shall assume that the market is complete both for the Dollar investor 
and for the Euro investor; that is, for any contingent claim (D$, De) with 
D$, De ∈ [0, ∞) there exist trading strategies η$ and ηe such that 

$,η$ 

V e,η
e 

Q$ V = D$ = 1 = Qe = De 
T T 

and such that V $,η
$ 
is a Q$-martingale and V e,η

e 
is a Qe-martingale. The 

replicability of any contingent claim under Q$ does not necessarily imply that 
any contingent claim can be replicated under Qe since, in general, the two 
measures are not equivalent. 

Remark 3.3 (A seeming paradox) Let the exchange rate X be a strict Q$-local 
martingale hitting zero with positive probability. Then, Y is a strict Qe-local 
martingale and we have the following paradox. Under the Dollar measure, one 
can replicate the payoff of one Euro for less than one Euro; simultaneously, 
under the Euro measure, one can replicate the payoff of one Dollar for less 
than one Dollar. To conclude, the exchange rate reflects an overly-high price 
(compared to their replicating cost) both for the Dollar and for the Euro; thus 
being at the same time too high and too low for the Dollar. This paradox 
can be explained by reminding oneself that the two measures Q$ and Qe are 
not equivalent; and therefore the investors are concerned with different events 
when replicating a Euro or a Dollar, respectively. D 

The next theorem constitutes the core result of this section; we recall our 
standing assumption that Q$(S > Si ∧ T ) = 1 for all i ∈ N: 
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Theorem 3.4 (Minimal joint replicating price) Define the Dollar and 
Euro pricing operators as 

p $(D) = EQ$ 

D$ + x0EQe 

De1{R≤T } , (3.2) 

1 
EQ$ p$(D)

De 

x0 x0 
p e(D) = EQe 

+ D$1{S≤T } = (3.3) 

for a contingent claim D = (D$, De). Whenever D is non-negative, the mini­
mal joint Q$- and Qe-replicating price expressed in Dollars (Euros) is p$ (pe). 
More precisely, there exists some trading strategy η for initial capital p$(D) 
(expressed in Dollars) such that 

$,η V e,ηQ$ V = D$ = 1 = Qe = De ; (3.4)T T 

and there exists no p < pS $(D) and no trading strategy ηS for initial capital pS
(expressed in Dollars) such that (3.4) holds with η replaced by ηS. 
Proof The second equality in (3.3) follows directly from Theorem 2.1. Since 
the market is assumed to be complete there exist trading strategies ν for 

(1)initial capital p := EQ$ 
[D$] (expressed in Dollars) and θ for initial capital 

(2)p := EQe 
[De1{R≤T }] (expressed in Euros) such that V $,ν is a Q$-martingale, 

V e,θ a Qe-martingale, and 

$,ν V e,θQ$ V = D$ = 1 = Qe 
T = De1{R≤T } .T 

In order to show (3.4), we now prove that the trading stategy η := ν + θ 
replicates D$ under Q$ and De under Qe; the initial cost for the strategy η is, 

$ (1)expressed in Dollars, exactly p = p + x0p
(2). Moreover, note the identities 

$,η $,ν $,θ = V e,ν + V e,θV = V + V and V e,η . Therefore, in order to prove that T T T T T T
 
$,θ
η is a trading strategy, it is sufficient to prove that (a) Q$(V > 0) = 0 and T 

(b) Qe(V e,ν 1{R≤T } > 0) = 0. T
 
$,θ
For (a), note that {V 1{S>t}}t≥0 is a Q$-local martingale by (i) in Propo­t
 

$,θ
sition 2.3 with N = {V 1{R>t}}t≥0 and τ = Ri for all i ∈ N. By taking differ-t 
$,θ $,θences, so is {V 1{S≤t}}t≥0, which implies that Q$({V > 0}∩{S ≤ T }) = 0. t T 

Observe next that 

$,θQ$({VT > 0} ∩ {S ∧ Ri > T }) = x0EQe 

[1{V $,θ >0}∩{Ri>T }YT ] = 0 
T 

by (2.3) and (3.1) for all i ∈ N, which yields (a). 
For (b), it is sufficient to show that {V e,ν 1{R≤t}}t∈[0,T ] is a (nonnegative) t 

Qe-local martingale. Since V e,ν is one, it only remains to show, by (3.1), that 
$,νNY with N := {V 1{R>t}}t∈[0,T ] is also a Qe-local martingale. However, t 

this follows directly from (iii) in Proposition 2.3 since N was assumed to be a 
Q$-martingale. 
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Next, we show that η corresponds to the cheapest trading strategy. To­
wards this end, let pS ∈ [0, ∞) and ηS be a trading strategy for initial capital 
pS (expressed in Dollars) that superreplicates D$ under Q$ and De under Qe . 
Then, pS = M0 + N0, where M and N are the martingale and strict local 

ηmartingale part of the Riesz decomposition V $,S = M + N under Q$ with 
EQ$ $,ηS $,ηSQ$(NT = 0) = 1; to wit, Mt = [V |F0] and Nt := V − Mt for all T t t 

t ∈ [0, T ]; see Theorem 2.3 of Föllmer [13] for the case of a not completed 
filtration. 

= V $,S = V $, SNote that M ν and N θ for some trading strategies νS and θSwith 
ηS= νS+θS. Since νS superreplicates D$ under Q$ we obtain M0 ≥ EQ$ 

[D$]. As in n 
(b) in the first part of the proof, we have Qe({MT > 0} {R ≤ T }) = 0. Thus, 
θS superreplicates De under Qe . This implies that N0 ≥ x0EQe 

[De1{R≤T }], 
which yields that pS= M0 + N0 ≥ p$(D). D 

The last theorem yields the smallest amount of Dollars (Euros) needed to 
superreplicate a claim D under both measures Q$ and Qe. The corresponding 
replicating strategy is, as the proof illustrates, a sum of two components. The 
first component is the standard strategy that replicates the claim under one of 
the two measures; the second component replicates the claim under the events 
that only the other measure can “see.” 

The next few corollaries are direct implications of the last theorem. We 
$usually formulate them only in terms of the Dollar pricing operator p but 

esymmetrically they also hold for the Euro pricing operator p . 

$Corollary 3.5 (Linearity of pricing operator) The pricing operator p
of (3.2) is linear on its domain: for any claims D1 = (D$, De) and D2 = 1 1 

$(D$, De) and any a ∈ R such that D1 and D2 are both in the domain of p ,2 2 
we have 

p $(D1 + aD2) = p $(D1) + ap $(D2), 

where D1 + aD2 := (D1
$ + aD$, De + aD2 

e).2 1 

Proof The statement follows directly from the linearity of expectations. D 

Corollary 3.6 (Martingale property of wealth process) The wealth pro­
cess V $,η of Theorem 3.4 is a Q$-local martingale and, thus, does not introduce 
an arbitrage opportunity. It is a strict Q$-local martingale if and only if the 
Q$-local martingale X is a strict Q$-local martingale and  

Qe {De > 0} {R ≤ T } > 0. 

Similarly, the wealth process V e,η is a Qe-local martingale. It is a strict Qe­
local martingale if and only if the Qe-local martingale Y is a strict Qe-local 
martingale and  

Q$ {D$ > 0} {S ≤ T } > 0. 



 

 

 

� � � �
� � � �

16 Peter Carr et al. 

Proof The local martingale property of the wealth processes under the corre­
sponding measures follows directly from their definition. The lack of martingale 
property follows from checking when p$(D) and pe(D) in (3.2) and (3.3) sat­
isfy p$(D) > EQ$ 

[D$] and pe(D) > EQe 
[De], respectively. D 

Corollary 3.7 (Price of a Euro) The minimal joint Q$- and Qe-super­
replicating price of (XT , 1) is x0 (expressed in Dollars) or 1 (expressed in 
Euros). 

Proof Recall (2.2), which implies the identity x0Qe(R ≤ T ) = x0 − EQ$ 
[XT ]. 

D 

The corresponding replicating strategy is the buy-and-hold strategy of one 
Euro. 

Corollary 3.8 (Put-call parity) The prices of puts and calls simplify under 
$the pricing operator p to 

P,$ p $(D ) = EQ$ 

[(K − XT )
+];K 

C,$ p $(D ) = EQ$ 

[(XT − K)+] + x0Qe(R ≤ T ); (3.5)K 

moreover, the put-call parity 

C,$ P,$ p $(D ) + K = p $(D ) + x0 (3.6)K K 

C,$ P,$holds, where K ∈ R denotes the strike of the call D and put DK K . 

Proof The statement follows directly from (3.2) and the linearity of expecta­
tion. D 

We refer to Madan and Yor [26] for alternative representations of the call price 
in (3.5). 

Giddy [15] introduces the notion of international put-call equivalence which 
relates the price of a call in one currency with the price of a put in the other 
currency; see also Grabbe [16]. 

Corollary 3.9 (International put-call equivalence) The pricing opera­
$ etors p and p satisfy international put-call equivalence: 

$ C,$ P,e p D = x0Kpe D 1 ;K 
K 

$ P,$ C,e p D = x0Kpe D 1K 
K 

for all K > 0. 
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Proof We obtain � �  � � � � +   
e P,e e Q 1

x Kp D = x K E − 
e

Y 1 + EQ 1 
0 1 0 T {R>T } 1{R≤T }

K K K �
 E

e 
 � �  �

Q + 
= x0 (XT − K) 1{R>T } YT + Qe (R ≤ T ) 

 
$ Q   

 +  Qe= E (XT −K) 1 + x (R ≤ T ) � � {S>T } 0

 $ C,$ = p DK ,

where we have used the identities of Corollary 3.8 and (2.3). The second equiv­
alence follows in the same way or from the put-call parity for model prices in 
(3.6). D 

The next remark discusses how our result motivates and generalizes Lewis’ 
Generalized Pricing Formulas. 

Remark 3.10 (Lewis’ Generalized Pricing Formulas) Within Markovian stochas­
tic volatiliy models, Lewis [25] derives call and put prices which exactly corre-

C,$ P,$spond to (3.2) when applied to the call payoff D or put payoff D . Lewis K K 
starts from the postulate that put-call-parity holds and then shows that the 
correction term that is added to the expected payoff under Q$ corresponds 
to the probability of some process exploding under another measure (corre­
sponding here to Qe). We here start from an economic argument by defining 
the price as the minimal superreplicating cost for a contingent claim under 
two, possibly non-equivalent measures that arise from a change of numéraire. 
We then show that this directly implies put-call parity for model prices. This 
approach also yields a generalization of Lewis’ pricing formula to arbitrary, 
possibly path-dependent contingent claims. D 

Example 3.11 (Singular measures (continued)) We continue here our discus­
sion of Example 2.4 with Q$ = Q and Qe = Qi . Although the exchange rate X 
is a Q$-local martingale, from the classical point of view of a Dollar investor 
the minimal superreplicating price of one Euro at time T is zero because under 
Q$ there are only paths under which this contingent claim becomes worthless. 
However, by means of the correction term, (3.2) yields a price p$((XT , 1)) = x0, 
when considering the minimal joint Q$- and Qe-superreplicating price of one 

SQC,$Euro. For the self-quantoed call D , the classical price would be again K 
zero; however, considering also the paths that the Euro investor under Qe can 

$(DSQC,$see, Theorem 3.4 suggests a price p ) = ∞ since EQe 
[(XT −K)+] = ∞.K 

D 

In many applications, however, the measures Q$ and Qe do not become sin­
gular. Often, one measure is absolutely continuous with respect to the other 
measure. In this case, the formulas for computing p$(D) and pe(D) simplify: 
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Corollary 3.12 (Absolutely continuous measures) If Q$(S > T ) = 1, 
ethat is, if Y is Qe-martingale,, then p can be computed as 

p e((D$, De)) = EQe 

[De]. 

If Qe(R > T ) = 1, that is, if X is Q$-martingale, then 

p $((D$, De)) = EQ$ 

[D$]. 

Proof Assume that Q$(S > T ) = 1. Then, Remark 2.2 implies that Q$ is ab­
solutely continuous with respect to Qe. Thus, if a trading strategy superrepli­
cates De Qe-almost surely for an Euro investor, then it also superreplicates 
D$ Q$-almost surely for a Dollar investor. The second statement can be shown 
analogously. D 

Example 3.13 (Reciprocal of the three-dimensional Bessel process) We set d = 
T = 1 and let X denote a nonnegative Q$-local martingale identically dis­
tributed as the reciprocal of a three-dimensional Bessel process starting in 1; 
in particular, there exists a Brownian motion W = {Wt}t∈[0,T ] such that 

t 

Xt = 1 + X2dWuu
0 

for all t ∈ [0, T ]. It is well-known that X is strictly positive and that Y is a 
Qe-Brownian motion stopped when it hits zero; see for example Delbaen and 
Schachermayer [6]. Since X is strictly positive, the discussion in Remark 2.2 
yields that Q$ is absolutely continuous with respect to Qe; thus, Corollary 3.12 
applies. 

SQC,$Let us study the self-quantoed call D . Since Brownian motion hits K 
0 in any time interval with positive probability we obtain that X hits ∞ 
with positive Qe-probability. This yields directly a minimal joint Q$- and Qe-

SQC,$superreplicating price p$(D ) = ∞. It is interesting to note that, as in K 
Example 3.11, the classical price is finite: 

EQ$ 

[XT (XT − K)+] ≤ EQ$ 

[XT 
2 ] = EQe 

[XT 1{R>T }] 
∞1 1 (y − 1)2 (y + 1)2 

= √ exp − − exp − dy
2πT 0 y 2T 2T 

< ∞ 

for all K ≥ 0, where we have plugged in the density of killed Brownian motion; 
see Exercise III.1.15 in Revuz and Yor [32]. D 

We remark that, as a corollary of Remark 2.2, in our setup there are only 
positive “bubbles” under the corresponding measure. A bubble is usually de­
fined as the difference of the current price and the expectation of the terminal 
value of an asset; that is, x0 − EQ$ 

[XT ] and 1/x0 − EQe 
[YT ], respectively. It 

is possible, that both bubbles are strictly positive; however, negative bubbles 

http:III.1.15
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cannot occur by the supermartingale property of the asset price processes un­
der the corresponding measure. This contrasts Jarrow and Protter [21], where 
negative bubbles are discussed, however only when considering the Dollar mea­
sure Q$, which is not the risk-neutral measure of a Euro investor. 

In the next section, we provide an interpretation of a bubble (lack of the 
martingale property of the exchange rate) as the possibility of a hyperinflation 
under some dominating “real-world” measure P. If for both currencies such 
hyperinflations have positive P-probability, then X and Y both have a positive 
bubble. 

4 A physical measure 

In this section, we start by specifying a physical probability measure P instead 
of a risk-neutral probability measure Q$ . We again assume a time horizon 
T ∈ (0, ∞] and a filtered probability space (Ω, FT , {Ft}t∈[0,T ], P) that satisfies 
the technical conditions of Appendix B. Let X = {Xt}t∈[0,T ] denote a process 
taking values in [0, ∞] with right-continuous paths for all ω ∈ Ω. Define the 
stopping times {Ri}i∈N, {Si}i∈N, S, and R as in Section 2 and assume that 
P(Si ∧ T < S) = 1 for all i ∈ N, X(R+t)∧T = ∞ if R ≤ T and X(S+t)∧T = 0 if 
S ≤ T for all t ≥ 0. In particular, this assumption implies that no oscillations 
can occur; that is, the events H$ := {R ≤ T } and He := {S ≤ T } are disjoint. 
Suppose that P(H$) < 1 and P(He) < 1. Define again Y = {Yt}t∈[0,T ] by 
Yt := 1/Xt1{R>t} for all t ∈ [0, T ]. 

Under the physical probability measure P the events H$ and He may both 
have positive probability. We interpret these events as the complete devalua­
tion (hyperinflation) of the Dollar or Euro currency with respect to the other. 
Such hyperinflations have been observed; for example, the exchange rate be­
tween the American and German currencies changed by a factor of 1010 from 
January 1922 to December 1923, as described in Sargent [38]. During a hyper­
inflation, the interest rate of the inflating currency tends to become very large, 
and so far, we have assumed zero interest rates. We may reinterpret XT as 
the forward exchange rate of Dollars per Euro at time T , as opposed to a spot 
exchange rate. This is consistent with various interest rate assumptions, in­
cluding the possibility that the Dollar (respectively Euro) interest rate should 
explode when the Dollar (respectively Euro) experiences a hyperinflation. 

If P(H$) > 0 and P(He) > 0, then no risk-neutral measure equivalent 
to P can exist such that either X or Y follow local martingale dynamics. 
Nevertheless, pricing and hedging of contingent claims still might be possible. 
Towards this end, let us introduce the two artificial measures 

P$(·) := P(·|H$C 

) = P(·|R > T ); 

Pe(·) := P(·|He
C 

) = P(·|S > T ), 

where we have conditioned the physical measure P on the events H$C 
and 

He
C 

that no hyperinflation occurs. Note that both measures P$ and Pe are 
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absolutely continuous with respect to P and that P is absolutely continuous 
with respect to their average (P$ + Pe)/2. 

As in Section 3, for some d ∈ N, we assume the existence of d + 1 tradable 
assets with nonnegative price processes, denoted by S$ = {S$,(i)}i=0,1,...d in 
Dollars and by Se = {Se,(i)}i=0,1,...d in Euros, respectively; as before, with 

S$,(i) $,(i)	 e,(i)
= {S }t∈[0,T ] and Se,(i) = {S }t∈[0,T ] for all i = 0, 1, . . . , d. We t t
 

e,(i) $,(i)

also assume that St 1{R∧S>t} = St Yt1{R∧S>t} for all t ∈ [0, T ] and 
i = 0, 1, . . . , d and that S$,(1) = X and Se,(0) = Y . Moreover, we assume that 
S$ and Se have càdlàg paths P$ and Pe-almost surely, respectively. 

Suppose that there exists exactly one probability measure Q$ (Qe) that 
is equivalent to P$ (Pe) and under which the processes S$ (Se) are local 
martingales. Consider the condition of no obvious hyperinflations (NOH): 

(NOH) The probability measures P$ and Pe are equivalent on F(Ri∧Sj )− for all 
i, j ∈ N. 

This condition corresponds to an environment in which, at no time, one knows 
that a certain hyperinflation will occur P-almost surely; that is, hyperinflations 
occur as a surprise. To see this, assume that the condition (NOH) does not 
hold. Then there exist i, j ∈ N and a set A ∈ F(Ri∧Sj )− such that, for example, 
P$(A) = 0 and Pe(A) > 0, which implies A ⊂ H$ (modulo P). Thus, for some 
paths one knows that a hyperinflation will occur before it occurs. As the 
next lemma shows, the condition (NOH) brings us back to the framework of 
Theorems 2.1 and 3.4: 

Lemma 4.1 ((NOH) and change of numéraire) The following two con­
ditions are equivalent: 

(i) The condition (NOH) holds. 
(ii) The equality in	 (2.1) of Theorem 2.1 holds for all stopping times τ and 

A ∈ Fτ∧T with iQ replaced by Qe and Q replaced by Q$ . 

The proof of this equivalence is based on the assumption that Qe is the unique 
probability measure equivalent to Pe such that Se are Qe-local martingales. 
It is contained in Appendix D. 

The next proposition yields that the minimal cost (expressed in Dollars) 
for replicating a contingent claim D = (D$, De) -almost surely is given by P
(3.2) in Theorem 3.4 if condition (NOH) holds. More precisely, one can find a 
trading strategy η, in the sense of Definition 3.2, such that the corresponding 

$,η Pe(V e,ηterminal wealth satisfies P$(V = D$) = 1 = = De). Since P andT	 T 
(P$ + Pe)/2 are equivalent, we interpret η as a replication strategy under the 
physical measure P. 

Proposition 4.2 (Minimal replication cost under P) Assume that con­
dition (NOH) holds. Then the minimal replicating cost for a contingent claim 
D = (D$, De) under P is exactly the one computed in Theorem 3.4. 

Proof Theorem 3.4 yields the minimal joint replicating cost of a claim under 
Q$ and under any extension of the corresponding measure after a change of 
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numéraire. However, Lemma 4.1 shows that Qe is exactly such an extension 
if (NOH) holds. This yields the assertion since Q$ and Qe are equivalent to 
P$ and Pe, respectively. D 

We also obtain an interpretation of the lack of martingale property of X 
under the risk-neutral measure Q$ as the possibility of an explosion under the 
physical measure P: 

Corollary 4.3 (Interpretation of the lack of the martingale property) 
Assuming the condition (NOH), we have P(H$) > 0 if and only if X is a strict 
Q$-local martingale; equivalently, we have P(He) > 0 if and only if Y is a strict 
Qe-local martingale. 

Proof Note that P(H$) > 0 if and only if Pe(H$) > 0, which is equivalent to 
Qe(H$) > 0. Lemma 4.1 and Remark 2.2 then yield the first equivalence of 
the assertion. The second equivalence follows in the same manner. D 

If the condition (NOH) does not hold then Theorem 3.4 still provides an 
upper bound for the minimal replicating cost of a contingent claim. However, 
as the next example shows, the expression in (3.2) usually does not give the 
smallest minimal replicating cost under P. 

Example 4.4 (Condition (NOH) not satisfied) We fix d = 1 and T = 1. Let 
U denote an F0–measurable random variable, taking values in {−1, 1} with 
P(U = 1) ∈ (0, 1). Furthermore, define X = {Xt}t∈[0,T ] by Xt := (Zt)

U for all 
t ∈ [0, 1], where Z = {Zt}t∈[0,T ] has the same distribution as the process in 
(2.4). Thus, H$ = {U = −1} and He = {U = 1} and the condition (NOH) is 
not satisfied. 

Consider the contingent claim D = (1, 1), which pays either one Dollar if 
the Dollar does not hyperinflate or otherwise one Euro. Then, (3.2) yields the 
price (in Dollars) p$(D) = 1 + 1 = 2. However, at time zero, it is already well-
known which of the two currencies defaults, as U is F0–measurable. Thus, the 
trading strategy η = (1{U=1}, 1{U=−1}), holding one unit of the corresponding 
currency, perfectly replicates the contingent claim at an initial cost of only one 
Dollar. D 

5 Conclusion 

Based on a replication argument, we introduced a novel pricing operator for 
contingent claims that restores put-call parity and international put-call equiv­
alence for model prices. If the underlying is a true martingale, our pricing oper­
ator is just the classical replication price. Furthermore, we interpreted the lack 
of martingale property of an underlying price process under the risk-neutral 
probability as the positive probability of an explosion (hyperinflation) under 
some dominating physical measure. 

Two directions of future research arise. First, we focused on the case of two 
currencies, corresponding to one exchange rate, only. It would be interesting to 



22 Peter Carr et al. 

extend the results of this paper to multiple currencies and to find a consistent 
way to describe devaluations of currencies with respect to several other cur­
rencies. The numéraire-free approach taken in Yan [41] might be very useful. 
Second, throughout this paper we relied on the assumption that markets are 
complete. Again, it would be interesting to consider incomplete markets and 
to develop a theory of joint superreplication in such markets. 
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A Local martingales on stochastic intervals 

In this appendix, we provide some technical results for stochastic processes
 
that satisfy the local martingale property up to a stopping time. Such stochas­
tic processes appear throughout this paper.
 � 

Similar to Perkowski and Ruf [30], we consider the time set T := [0, ∞] {T}, 
where T represents a time “beyond horizon;” the natural ordering is extended 
to T by t < T for all t ∈ [0, ∞]. For any t ∈ T and for any sequence {ti}i∈N with 
ti ∈ T for all i ∈ N we write limi↑∞ ti = t if either (a) t = T and infi≥j {ti} = T 
for some j ∈ N or if (b) t < T, supi≥j {ti} < T, and limi↑∞;i≥j ti = t for some 
j ∈ N. 

Throughout this appendix, we fix a time horizon T ∈ (0, ∞], an arbitrary 
stochastic basis (Ω, FT , {Ft}t∈[0,T ], P), and a process N = {Nt}t∈[0,T ] taking 
values in [−∞, ∞]. For a T -valued random variable τ we define the stochastic 
process Nτ = {Nτ 

t }t∈[0,T ] := {Nt∧τ }t∈[0,T ]. Throughout this appendix, we 
shall fix a stopping time τ , which is a map τ : Ω → T such that {τ ≤ t} ∈ Ft 

for all t ∈ [0, T ]. If not specified further, all (in)equalities are interpreted in 
the P-almost sure sense. 

We start with a definition: 

Definition A.1 (Local martingale on stochastic interval) We call N 

(1)	 a local martingale on [0, τ ] if there exists a non-decreasing sequence of stop­
ping times {τ ∈N with limi↑∞ τi > τ  T such that Nτi∧τ 

i}i ∧ is a martingale 
for all i ∈ N; 

(2)	 a local martingale on [0, τ) if there exists a non-decreasing sequence of 
stopping times {τi}i∈N with lim ↑∞ τi = τ such that Nτi 

i is a martingale 
for all i ∈ N. D  

In particular, if T = τ = ∞, then a local martingale on [0, τ ) corresponds 
exactly to the usual notion of a local martingale. Observe that if N is a local 
martingale on [0, τ ] then it is a local martingale on [0, τ ). If the definition of 
local martingale on [0, τ) required additional the assumption that τi < τ for 
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��  � �  ��

all i ∈ N (something that Definition A.1 does not require), this implication 
would in general not hold true; consider for example a compensated Poisson 
process and τ the time of its first jump. Observe also that if τS is a stopping 
time with τS∧ T < E ∨ τ for all E > 0 then any local martingale on [0, τ) is also 
a local martingale on [0, τS]. 

In the following, we repeatedly will use the fact that 

Nη1∨η2 = Nη1 + Nη2 − Nη1∧η2 

is a (local) martingale if Nη1 and Nη2 are (local) martingales for some stopping 
times η1 and η2. The next lemma is useful in several of the proofs in this paper: 

Lemma A.2 (Localization sequence for a local martingale on a stochas­
tic interval) The following two statements are equivalent: 

(a.1) N is a local martingale on [0, τ ]. 
(a.2) There exists a non-decreasing sequence of stopping times {τi}i∈N such that 

limi↑∞ τi > τ ∧ T and that N is a local martingale on [0, τi ∧ τ ] for all 
i ∈ N. 

The following three statements are equivalent: 

(b.1) N is a local martingale on [0, τ ). 
(b.2) There exists a non-decreasing sequence of stopping times {τi}i∈N such that 

limi↑∞ τi = τ and that N is a local martingale on [0, τi] for all i ∈ N. 
(b.3) There exists a non-decreasing sequence of stopping times {τi}i∈N such that 

limi↑∞ τi = τ and that N is a local martingale on [0, τi) for all i ∈ N. 

Proof For the first part, we only need to show the implication from (a.2) to 
(a.1). Thus, assume (a.2), which yields that there exists a stopping time ηi 
with P(ηi ≤ τi ∧ τ ∧ T ) ≤ 2−i such that Nηi∧τi∧τ is a martingale for all i ∈ N. 

τi∧τDefine τSi = maxj∈{1,...,i}{ηj ∧ τj } for all i ∈ N and observe that N S is a 
martingale for all i ∈ N and that limi↑∞ τSi > τ ∧ T . This shows that (a.1) 
holds. 

For the second part, we only need to show the implication from (b.3) 
to (b.1). Assume now (b.3). Then there exists a non-decreasing sequence of 
stopping times {ηi}i∈N such that 

 

≤ 2−iP {τi i i i i 

and Nηi is a martingale for all i ∈ N. Define τSi := maxj∈{1,...,i}{ηi} ∧ τ and 
 that  Sobserve Nτi is a martingale for all i ∈ N and that limi↑∞ τSi = τ , which 

yields (b.1).  D 

For the next lemma, observe that the random times 

ρj := inf {t ∈   τ [0, T ]|Nt > j} (A.1) � 
with inf ∅ := T for all j ∈ N take values in [0, τ ∧T ] T and are stopping times 
if the underlying filtration {Ft}t∈[0,T ] is right-continuous and N(ω) is a right-
continuous path for all ω ∈ Ω; see, for example, Problem 1.2.6 in Karatzas 
and Shreve [22]. 

= T} {η < T} {τ < T} {η < (τ − 2−i) ∧ i} 



��  � �  ��

��  � �  ��
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Lemma A.3 (Localization sequence for nonnegative local martin­
gale) Assume that the underlying filtration {Ft}t∈[0,T ] is right-continuous and 
N(ω) is a right-continuous path taking values in [0, ∞] for all ω ∈ Ω. Define 
the stopping times {ρj }j∈N as in (A.1) and ρ := limj↑∞ ρj . Then the following 
statements hold: 

(i) If	 Nρj ∧τ is a supermartingale for all j ∈ N (in particular, if Nτ is a 
supermartingale) then ρ = T. 

 

(ii) If 
(j)

Nρj ∧τi is a supermartingale for all i, j ∈ N for some non-decreasing 
sequences of stopping (j)	 (j)

times {τ }i i∈N with limi↑∞ τ ∈i = τ for all j  N 
then ρ ≥ τ . 

The following statements are equivalent: 

(a.1)	 N is a local martingale on [0, τ ]; 
(a.2)	 Nρj ∧τ is a uniformly integrable martingale for all j ∈ N; 
(a.3)	 Nρj is a local martingale on [0, τ ] for all j ∈ N. 

The following statements are equivalent: 

(b.1)	 N is a local martingale on [0, τ ); 
(b.2)	 Nρj ∧τi is a uniformly integrable martingale for all i, j ∈ N for some non­

decreasing sequence of stopping times {τi}i∈N with limi↑∞ τi = τ ; 
(b.3)	 Nρj is a local martingale on [0, τ) for all j ∈ N. 

Proof Assume that Nρj ∧τ is a nonnegative supermartingale and observe that 
ρj ∧τ

N ≥ j if ρj ≤ τ ∧T ; thus, P(ρj ≤ τ ∧ T ) ≤ N0/j for all j ∈ N, which yields T 
(j)

(i). Next, assume that there exist sequences of stopping times {τ }i∈N such i 

that Nρj ∧τ (j) 

is a supermartingale for all i, j ∈ N. Fix a sequence {ij }j∈N soi 

that 

 
(j)	 (j)P {τ = T} {τ < T} {τ < T} {τ < (τ − 2−j ) ∧ j} ≤ 2−j .ij	 ij 

ρj ∧τ (j) 
ij (j)

Then we have N0 ≥ E[NT ] ≥ jP(ρj ≤ τij 
∧ T ) and thus 

 N0P {τ = T} {ρj < T} {τ < T} {ρj < (τ − 2−j ) ∧ j} ≤ +2−j 

j 

for all j ∈ N, which yields (ii). 
ρj ∧τ ρj ∧τ

Now, assume (a.1) and observe that supt∈[0,T ]{N } ≤ j + N andt T 
ρj ∧τ

that N is integrable for all j ∈ N since Nτ is a supermartingale. This T 
observation in conjunction with dominated convergence shows (a.2). Next, 
assume (a.3) and observe that Nρj is a supermartingale on [0, τ ] for all j ∈ N, 
and thus, ρ = T by (i). The first part of Lemma A.2 then yields (a.1). 

Now, assume (b.1), which gives the existence of a non-decreasing sequence 
of stopping times {τi}i∈N with limi↑∞ τi = τ such that N is a local martingale 
on [0, τi] for all i ∈ N. Using the implication of (a.1) to (a.2) with τ replaced 
by τi for all i ∈ N, we observe that (b.2) holds. Next, assume (b.3). Then (ii) 
yields that ρ ≥ τ and the second part of Lemma A.2 then yields (b.1). D 
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Note that the implication of (b.3) to (b.1) in Lemma A.3 with T = τ = ∞ 
yields that any nonnegative right-continuous process N is automatically a local 
martingale (on [0, ∞)) if Nρj is a local martingale (on [0, ∞)) for all j ∈ N. 
Furthermore, by (ii), Nρj is a supermartingale for all j ∈ N if and only if N 
is a supermartingale. 

We call the stopping time τ foretellable if there exists a non-decreasing 
sequence of stopping times {τi}i∈N such that limi↑∞ τi = τ (in particular, 
there exists some i(ω) ∈ N with τi(ω)(ω) = T if τ(ω) = T) and τi ∧ T < τ ∨ E 
for all i ∈ N and E > 0. We then call {τi}i∈N an announcing sequence of τ . 

The following result illustrates that a nonnegative local martingale on a 
half-open stochastic interval (with respect to a foretellable stopping time) 
can be extended to one on a closed interval. For example, if N is defined 
by Nt := 1{t<τ} for all t ∈ [0, T ], then N can be extended to a process 
M = {Mt}t∈[0,T ] with Mt := 1 for all t ∈ [0, T ], representing a local martingale 
on [0, T ]. 

Proposition A.4 (Extension of local martingales on a stochastic in­
terval) Suppose that the assumptions of Lemma A.3 hold and assume that 
τ is foretellable and that N is a local martingale on [0, τ). Then, there ex­
ists a unique local martingale M = {Mt}t∈[0,T ] on [0, T ] such that we have 
M = Mτ , {Mt1{t<τ}}t∈[0,T ] = {Nt1{t<τ}}t∈[0,T ], M0 = N0, and, moreover, 
lims↑τ (ω) Ms(ω) = Mt(ω) for all ω ∈ Ω with τ(ω) / The process M∈ {0, T}. 
has nonnegative and right-continuous paths. 

Proof The uniqueness of M follows directly from its left-continuity at time 
τ . Let {τi}i∈N denote an announcing sequence of τ and let {τSi}i∈N denote a 

τinon-decreasing sequence of stopping times such that N S is a martingale for all 
i ∈ N and limi↑∞ τSi = τ . We assume, without loss of generality, that τi = τi ∧τSi 
for all i ∈ N. Observe that Nτi is a nonnegative supermartingale for all i ∈ N. 
By imitating the proof of Theorem 1.3.15 in Karatzas and Shreve [22] based 
on Doob’s up- and downcrossing inequalities (replace therein n by τn for all 
n ∈ N and ∞ by τ) we obtain that Mt := limi↑∞ N

τi for all t ∈ [0, T ] exists. t 
We need to show that M , defined in this way, is a local martingale on 

[0, T ]. By Lemma A.3, it is sufficient to show that MρSj is a martingale for all 
j ∈ N, where ρSj := inf{t ∈ [0, T ]|Mt > j} with inf ∅ := T. Fix an arbitrary 
j ∈ N and observe that, by dominated and monotone convergence, 

ρSj ρSj ρSj ∧τiE M = E lim Nτi 1{τi<ρSj } + E lim N 1{τi≥ρSj } = lim E NT T T T
i↑∞ i↑∞ i↑∞ 

= N0 = M0, 

which yields the statement since, by Fatou’s lemma, MρSj is a supermartingale. 
D 

We warn the reader that usually Mτ  Nτ , even if N= is a martingale T T 
on [0, τ ] since N needs not be left-continuous at τ . We also refer the reader 
to the related Exercise IV.1.48 in Revuz and Yor [32], where the case of not 
necessarily nonnegative local martingales is treated. 
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B Conditions on the filtration in Sections 2, 3, and 4 

In this appendix, we discuss the technical assumptions on the underlying fil­
tration that are necessary for the results in Sections 2, 3, and 4. Throughout 
this appendix, we fix a time horizon T ∈ (0, ∞] and denote a set of states by 
Ω = ∅ and a filtration by {Ft}t∈[0,T ]. 

We refer to Appendix A for the definition of a stopping time. For any 
stopping time τ , we define 

Fτ := {A ∈ FT |A ∩ {τ ≤ t} ∈ Ft for all t ∈ [0, T ]} 

and 

 
Fτ − := σ {A ∩ {τ > t}|A ∈ Ft for some t ∈ [0, T ]} F0

0 

if {Ft}t∈[0,T ] is the right-continuous modification of a filtration {F0}t∈[0,T ];t 
see page 156 in Föllmer [12]. 

In Section 2, we are constructing a probability measure on (Ω, FR−) for a 
certain stopping time R := limi↑∞ i i i∈N
creasing stopping times, defined in Section 2. This construction is based on an 
extension theorem; more precisely, on Theorem V.4.1 in Parthasarathy [29], 
and thus, requires certain technical assumptions on the filtration {F}t∈[0,T ]. 
Specifically, we shall require in Sections 2, 3, and 4 that 

(i)	 {Ft}t∈[0,T ] is the right-continuous modification of a filtration {F0
t }t∈[0,T ] 

and 
(ii)	 {FRi−}i∈N is a standard system, as defined in Section 6 of Föllmer [12]. 

Furthermore, in Section 3, we shall require that 

(iii)	 any probability measure P on (Ω, FR−) can be extended to a probability 
measure SP on (Ω, FT ). 

A sufficient condition for requirement (ii) is that 

 R , where {R }  is a sequence of nonde­

{Fit}t∈[0,T ] := {Ft ∩ FR− }t∈[0,T ] 

is the right-continuous modification of a standard system (RCMSS ); see Re-imark 6.1.1 in Föllmer [12], applied to the filtration {Gt}t≥0 with Gt := F1/(1−t)−1, i	 iif T = ∞, and Gt := FtT , otherwise, for all t ∈ [0, 1] and Gt = FT for all t > 1. 
We remark that {Fit}t∈[0,T ] then does usually not satisfy the “usual condi­
tions” as it is not completed under some probability measure. Observe that if 
{Ft 

0}t∈[0,T ] is a standard system then so is {Ft 
0 ∩ FR− }t∈[0,T ]. 

In the following, we provide a canonical example for Ω and for a filtration 
{Ft}t∈[0,T ], such that {Ft ∩ FR−}t∈[0,T ] is RCMSS. This example provides a 
sufficiently rich structure so that one might as well assume, throughout this 
paper, that the underlying filtered measurable space is of that form. 

Towards this end, let E denote any locally compact space with countable 
base (for instance, E = Rn for some n ∈ N) and let Ω denote the space of 
right-continuous paths ω : [0, T ] → [0, ∞] × E whose first component ω(1) of ω 
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satisfies ω(1)(R(ω)+t) = ∞ for all t ≥ 0, and that have left limits on (0, R(ω)), 
where R(ω) denotes the first time that ω(1) = ∞. Let {F0}t∈[0,T ] denote the t 
filtration generated by the paths and {Ft}t∈[0,T ] its right-continuous modifica­
tion. Then it follows, as in Dellacherie [10], Meyer [27], and Example 6.3.2 of 
Föllmer [12], that {Ft ∩FR−}t∈[0,T ] is RCMSS. We identify the process X(ω), 
which appears in Section 2, with the first coordinate of ω. 

Observe that in the canonical setup of the last paragraph, the extension of 
requirement (iii) always exists. To see this, define PS(A) := P(ωR− ∈ A) for all 
A ∈ FT , where ωR− ∈ Ω is given, for all ω ∈ Ω, by 

ωR−(t) := ω(t)1t<R(ω) + (∞× e)1t≥R(ω) 

for some e ∈ E for all t ∈ [0, T ]. This specific construction then yields one 
extension PS on (Ω, FT ). 

C Proof of Proposition 2.3 and further statements concerning the 
change of measure in Section 2 

In this appendix, we provide additional statements on the change of measure 
suggested in Section 2 and the proof of Proposition 2.3. We refer to Appendix A 
for the definition of a stopping time. 

Below, we shall rely on the next lemma: 

Lemma C.1 (Convergence of stopping times) Assume the setup of The­
orem 2.1 and fix a stopping time τ . Then we have Q(S > τ ) = 0 if and only 
if Qi(R > τ ) = 0. 

Proof Without loss of generality, we set x0 = 1. Then (2.1) yields that 

Qi(R > τ ) = Qi ({τ ≤ T } ∩ {R > τ ∧ T }) = EQ 1{τ ≤T }X
τ ≤ EQ 1{S>τ }X

τ ,T T 

which yields one direction of the statement. The other direction follows from 
(2.3) in the same manner. D 

Next, we formulate a generalized version of Bayes’ formula. If X is a Q-
martingale, this formula has been well-known; see for example Lemma 3.5.3 
in Karatzas and Shreve [22]. If X is a strictly positive continuous Q-local 
martingale, Bayes’ formula has been derived in Ruf [33]. 

Proposition C.2 (Bayes’ formula) Assume the setup of Theorem 2.1 and 
fix two stopping times ρ, τ with ρ ≤ τ Q- and Qi -almost surely and a Fτ ∧T – 
measurable random variables Z ∈ [0, ∞]. Then we have the Bayes’ formula 

EQ  
Z1{R>τ ∧T }

 
YT

τ   Fρ 1{S>ρ∧T } = EQ Z1{S>τ ∧T }  Fρ 1{R>ρ∧T }YT
ρ 

(C.1) 
= EQ Z1{S>τ ∧T }

  Fρ 1{R>ρ∧T }YT
ρ1{S>ρ∧T }

 
. 

This equality holds Q- and Qi -almost surely. 
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Proof Without loss of generality, assume that x0 = 1. Then, (C.1) holds Qi ­
almost surely since Qi(S > ρ ∧ T ) = 1 and 

EQ 1A Z1{R>τ ∧T } YT
τ = EQ 1A Z1{S>τ∧T } = EQ 1AEQ[Z1{S>τ ∧T }|Fρ] 

ρ = EQ 1AEQ[Z1{S>τ∧T }|Fρ]1{R>ρ∧T }YT 

for all A ∈ Fρ. Moreoever, (C.1) holds Q-almost surely since Q(R > ρ∧T ) = 1 
and 

ρ ρEQ 1A Z1{S>τ ∧T } YT = EQ 1A(Z1{R>τ ∧T })YT YT
τ
 

ρ
 = EQ 1AEQ (Z1{R>τ∧T })YT
τ Fρ YT 

= EQ 1AEQ (Z1{R>τ∧T })YT
τ Fρ 1{S>ρ∧T } 

for all A ∈ Fρ. D 

Bayes’s formula yields a simple proof of Proposition 2.3: 

Proof (of Proposition 2.3) The statement in (i) is a corollary of Proposition C.2 
if we replace τ by τ ∧ t and use Z = Nτ and ρ = τ ∧ s in (C.1) for all t ∈ [0, T ]t 
and s ∈ [0, t]. 

Assume now that {Nt1{S>t}}t∈[0,T ] is a Q-local martingale on [0, S). Then 
there exists a non-decreasing sequence of stopping times {τi}i∈N such that 
Q(limi↑∞ τi = S) = 1 and that {Nτt 1{S>τi∧t}}t∈[0,T ] is a Q-martingale for 

all i ∈ N. Now, (i) implies that Nτi Y τi is a Qi -martingale. An application of 
Lemma C.1 with τ := limi↑∞ τi yields that NY is a Qi -local martingale on 
[0, R). The reverse direction follows in the same manner. This yields (ii). 

SY 
iAssume next that {Nt

Si 1{S>Si∧t}}t∈[0,T ], and, thus, {Nt 1{S>SY ∧t}}t∈[0,T ]
i 

are Q-martingales for all i ∈ N. Then the statement in (iii) follows from (i) 
and the fact that Qi(limi↑∞ S

Y > T ) = 1 by (i) in Lemma A.3. Di 

We conclude this appendix by providing a Girsanov-type result. Towards 
this end, let us denote the quadratic covariation process of two Q-semimartingales 
N (1) and N (2) with càdlàg paths by [N (1), N (2)] = {[N (1), N (2)]t}t∈[0,T ]. If X 
has càdlàg paths, the process NSi is a Q-semimartingale with càdlàg paths, 
and [N, X]Si := [NSi , X] has Q-integrable variation for all i ∈ N, then the 
quadratic covariation process [N, X] has a compensator “up to time S,” that 
is, there exists a process (N, X) = {(N, X)t}t∈[0,T ] such that (N, X)Si is the 
compensator of [N, X]Si for all i ∈ N; see also Theorem III.3.11 of Jacod and 
Shiryaev [20]. For any càdlàg stochastic process Z = {Zt}t∈[0,T ], we define 
Zt− := lims↑t Zs for all t ∈ (0, T ) and Z0− := Z0. 

Proposition C.3 (Girsanov-type theorem) Assume the setup of Theo­
rem 2.1 and let N = {Nt}t∈[0,T ] denote a progressively measurable stochastic 
process taking values in [−∞, ∞] such that Nt = Nt1{R>t} for all t ∈ [0, T ] 
and such that NSi is a Q-semimartingale with càdlàg paths for all i ∈ N. 
Suppose that X has càdlàg paths. We then have the following statements: 
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(i) The process NRi is a Q-semimartingale with càdlàg paths for all i ∈ N. 
(ii) If N is a Q-local martingale on [0, S) (equivalently, on [0, R ∧ S)) and if 

[N, X]Si has Q-integrable variation for all i ∈ N, then NS = {NSt}t∈[0,T ], 
defined by  t 

NSt := Nt − Ys−d(N, X)s 
0 

i

for all t ∈ [0, T ], is a Qi -local martingale on [0, R) (equivalently, on the 
interval [0, R ∧ S)). 

(iii) If N is a Q-local martingale [0, S) (equivalently, on [0, R ∧ S)) and if we 
have Q(S > Si ∧ T ) = 1 for all i ∈ N, then Ni = {Nit}t∈[0,T ], defined by 

t∧S iNt := Nt − Ysd[N, X]s 
0 

for all t ∈ [0, T ], is a Qi -local martingale on [0, R) (equivalently, on the 
interval [0, R ∧ S)). 

Proof The proof is based on a simple localization argument. Observe that 
dQi |FRi ∩FR− = XRi dQ|FRi ∩FR− ; to wit, Qi is absolutely continuous with re-T 
spect to Q on FRi ∩ FR− for all i ∈ N. Thus, (i) corresponds directly to 
Theorem III.3.13 in Jacod and Shiryaev [20]. By Theorems III.3.11 in Jacod 
and Shiryaev [20], the process NSRi is a Qi -local martingale; thus NS is a Qi -local 
martingale on [0, Ri) for all i ∈ N. Lemma A.2 then yields (ii). Similar reason­
ing yields that Ni is a Qi -local martingale on [0, R) by applying Theorem 3 in 
Lenglart [24] after observing that the proof therein also works for probability 
spaces that do not satisfy the usual assumptions. D 

Remark C.4 (Lack of martingale property in Proposition C.3) One might won­
der whether (ii) or (iii) of Proposition C.3 can be strengthened by replacing 
each “local martingale” by “martingale.” Example 2.5 illustrates that such a 
statement would be false, even in the case of X being a strictly positive, true 
Q-martingale. To see this, replace Qi by QZ and the processes N by X and X 
by Z in Proposition C.3. Then N is a true Q-martingale but NS = Ni = N is 
only a strict QZ -local martingale. D 

D Proof of Lemma 4.1 

In this appendix, we will provide the proof of Lemma 4.1: 

Proof (of Lemma 4.1) The fact that (ii) implies (i) follows directly from (2.2) 
and (2.3) with Z = 1A and τ = Ri ∧ Sj for all A ∈ FRi∧Sj and i, j ∈ N since 
Qe(R > Ri ∧ T ) = 1 = Q$(S > Sj ∧ T ). 

For the reverse direction, fix a stopping time τ and note that it is sufficient 
to show (2.1) for such events A ∈ Fτ ∧T that satisfy 

A = A ∩ {R > τ ∧ T } ∩ {S > τ ∧ T } 
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since Qe(S ≤ T ) = 0 as Y is a Qe-local martingale and, thus, cannot explode. 
Therefore, we may assume, without loss of generality, that A ∈ F(R∧S)−. 

Q$$Let denote the unique probability measure on (Ω, FR−) that was con­
structed in Theorem 2.1 with Q replaced by Q$. We need to show the identity 

Q$$|F(R∧S)− 
= Qe|F(R∧S)− 

. � 
Since i,j∈N F(Ri∧Sj )− is a π-system that generates F(R∧S)− it is sufficient 

to show that Q$$|F(Ri∧Sj 
)− = Qe|F(Ri∧Sj )− 

for all i, j ∈ N. Next, fix i, j ∈ N and 

note that, by (i), Q$$ and Qe are equivalent on F(Ri∧Sj )−. Therefore, the Qe­
martingale Z = {Zt}t∈[0,T ] with Zt := dQ$$/dQe|Ft∩F(Ri∧Sj )− 

for all t ∈ [0, T ] 

is well-defined. We need to show that ZT = 1. Observe that the measure Q€e , 
defined by d Q€e/dQe = ZT is also equivalent to Pe and the processes Se are €Qe-local martingales; see also Proposition 2.3. Since Qe was assumed to be 
unique among these measures, we may conclude. D 
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