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Abstract

Variance swaps now trade actively over-the-counter (OTC) on both stocks and stock indices. Also
trading OTC are variations on variance swaps which localize the payoff in time, in the underlying
asset price, or both. Given that the price of the underlying asset evolves continuously over time, it is
well known that there exists a semi-robust hedge for these localized variance contracts. Remarkably,
the hedge succeeds even though the stochastic process describing the instantaneous variance is never
specified. In this paper, we present a generalization of these results to the case of two or more
underlying assets.

1. We would like to acknowledge helpful comments from two referees, Bruno Dupire, Dilip Madan, and Tai-Ho Wang. Some
of this work was completed while the second author was a visiting scholar at the Courant Institute.



Multi-asset Stochastic Local Variance

1 Introduction

Variance swaps now trade actively over-the-counter (OTC) on both stocks and stock indices. In this
contract, one party agrees to pay the other the realized variance of returns of a specified underlying asset
over a specified future period. In return, the party providing this positive payoff receives a fixed positive
amount at expiry. As with any swap, the fixed positive amount is agreed upon at inception and chosen so
that the swap is costless to enter.

Under certain conditions, the payoff to a variance swap can be replicated by either counterparty. The
now standard approach requires assuming that the underlying asset price is positive and evolves continu-
ously over time. Further assuming continuous path monitoring, deterministic interest rates and dividend
yields, and the availability of European options with a continuum of positive strikes, the replicating strat-
egy combines a static position in these options with dynamic trading in the underlying asset. Remarkably,
this hedge succeeds even though the stochastic process describing the instantaneous variance is never spec-
ified. This recipe for replicating the payoff to variance swaps has become so well known that the definition
of the VIX was revised in 2003 to emulate it.

Following upon the successful introduction of variance swaps into the marketplace, several institutions
have offered variations on variance swaps whose payoffs are attuned to increasingly sophisticated views.
For example, forward variance swaps have been offered to investors who wish to speculate or hedge on the
variance realized over a period that both starts and ends at a future date. Similarly, corridor and conditional
variance swaps have been offered to investors who wish to speculate or hedge on the variance realized while
the underlying asset is inside or outside some corridor. These localizations of the variance swap payoff in
time and space can also be combined, resulting in a contract that pays the realized variance while the space
time process is in some region. As first shown in Dupire (1996), the payoffs to these localized variance
contracts can be robustly replicated under the same conditions that lead to the replication of variance
swaps.

So far these variations on variance swaps have all referenced a single underlying asset in defining



their payoff. However, it is not hard to imagine yet further extensions which reference multiple assets in
specifying their payoff. Indeed, the liquid market in basket options presently available over the counter
suggests a healthy appetite on the part of investors for products which allow them to trade the variance of
a portfolio of assets. The recognition of this appetite has lead to the introduction of a plethora of exotic
equity derivatives written on the price path of several underlying assets. Nowadays, one sees products such
as Napoleons, Himalaya options, and correlation swaps stocking the portfolios of sophisticated investors
who wish to either speculate on or lay off the risk that arises when options are written on portfolios of
assets.

Lost in the rush to market of these multi-asset path-dependent products seems to be any notion of a
robust hedging strategy or pricing model for these sophisticated products. While one can always combine
a particular valuation model with Monte Carlo to provide the necessary numbers, one has to wonder if
there does not exist a generalization of the single asset robust hedges to the case of multiple underlying
assets. If it exists, such a generalization should be of interest both to traders charged with the challenging
task of mitigating fluctuations in P&L without complete knowledge of the underlying stochastic processes
involved, and to risk managers charged with the daunting task of objectively marking a structured product,
without an outright market for the asset in question.

In this paper, we propose a generalization of Dupire’s univariate results on local variance to the case
of multiple underlying assets. The generalization arises from a re-interpretation of the assumptions on
dynamics that are made in the univariate case. Recall that the replication of local variance contracts
assumes that the underlying price process is a positive continuous stochastic process. No arbitrage further
implies that the forward price of the underlying asset is a martingale under forward measure. Using the
well known result of Dambis (1965), Dubins, and Schwarz (1965), it can be shown that the class of processes
with these properties can be obtained by running a driftless geometric Brownian motion (GBM) on an
unspecified stochastic clock.

In the multi-asset case, no arbitrage requires that the vector forward price process Fy = (Fi, Foy, - - ., Fit)
be a martingale under forward measure. Extending our interpretation of the univariate results, we assume

that each element of the vector process is obtained by running a scalar driftless GBM on an unspecified



stochastic clock. As usual, the diffusion coefficient of each scalar GBM will depend on the asset. However,
the stochastic clock that each GBM runs on is assumed to be common to all n assets. The presumption
that business time is common to all assets causes asset volatilities to rise and fall in tandem, while still
permitting volatility levels to differ across assets.

In this multi-asset setting, we will show how to price and replicate local variance claims while never
specifying the business time process. The variance in question is that of a specified portfolio of two or
more assets. The localization again requires specifying a region in space-time for the space-time process.
So long as the space-time process is in the specified region, the long side of the local variance claim receives
the squared return of the specified portfolio. This paper determines the arbitrage-free premium that such
an investor should initially pay in return for this stream of positive cash flows which terminate at a fixed
maturity.

In order to replicate this stream of cash flows, we assume that the common stochastic clock is absolutely
continuous w.r.t. calendar time and hence the composite vector process can never jump. Just as the
univariate results employ a continuum of standard options in the hedge, our multi-variate results employ
a continuum of basket options in the hedge. As the region in which payoffs are received is allowed to be
arbitrary, the replication requires holdings in multiple basket options which differ by the fixed weights in
the underlying assets.

We show that the assumed continuity of asset prices over time permits a decomposition of the desired
payoff into the sum of a path-independent component and a stochastic integral with respect to a vector
martingale. The integrand just depends on the observed asset price vector and hence the stochastic integral
can be created at zero cost. Using Radon transforms, we show how the path-independent component can
be created out of a static position in basket options. This latter replication is completely model-free and
hence of interest in its own right. It represents a generalization to n assets of of the well known single asset
result of Breeden and Litzenberger (1978) (henceforth BL).

To summarize, there are two major sets of new results in this paper. The first set of results involve
extending the insights of BL to the multi-asset case. For these results, price continuity is not needed, i.e.

the only assumption is frictionless markets in a wide variety of options. A straightforward application of



BL’s results to basket calls implies that the second strike derivative of the forward price of a European
basket call is just the risk-neutral probability density function (RNPDF) of the terminal level of the
underlying basket. Now suppose that one can observe forward prices of all basket calls on n assets. Then
we show that one can also obtain the joint RNPDF of the n underlying asset prices from this information.
In fact, working with n = 2, Lipton (2001) observes that the second strike derivative of the forward price
of a basket call is just the Radon transform of the joint RNPDF of the two underlying asset prices. In
this paper, we show that these observations extend without change to the n > 2 asset case, where n is
an arbitrary positive integer. This finding has two related implications. First, by inverting the Radon
transform of the RNPDF, the joint RNPDF of the n terminal asset prices can be extracted from the initial
prices of basket calls. Second, one can determine the static position in basket calls needed to replicate the
terminal payoff to any claim written on (just) the final level of the n underlying asset prices. Although
the results mentioned above are new, they are a straightforward extension of Lipton’s work.

The second set of results is more novel. We introduce contingent claims that naturally generalize
corridor variance swaps to 2 or more assets. These claims pay out the realized variance of a fixed portfolio
while the prices of the underlying assets are in a specified region. We show how to price the payoffs of
these claims relative to the given prices of basket options. We obtain a unique price despite the fact that
the process describing the stochastic clock is unspecified. Our results require obtaining quotes on basket
options for many underlying baskets and strikes. Fortunately, all major banks stand ready to provide
over-the-counter quotes on customized baskets.

From a mathematical perspective, our second set of results highlight the importance of fundamental
solutions of second order elliptic partial differential equations (PDE’s) for pricing local variance in n > 1
dimensions, when the underlying asset price paths are continuous over time. As is well known, fundamental
solutions of parabolic PDE’s play an important role in both probability and continuous time finance.
Elliptic PDE’s have also been used for pricing perpetual claims or claims that mature at an exponentially
distributed random time. However, to our knowledge, no one has proposed using fundamental solutions
of elliptic PDE’s as the basis for pricing claims on local variance that mature at a fixed time. Our use of

fundamental solutions to elliptic PDE’s in extending the univariate results to the n-asset case is the main



contribution of this paper.

An outline of this paper is as follows. Section 2 presents an extension of the BL (1978) univariate
result to n > 2 underlying assets. The following section reviews the Dupire (1996) univariate result and
its extension to the case of multiple underlying assets. In this section, we first consider the simpler case
of a time-changed Bachelier process and then consider the more complicated time-changed Black Scholes
model, in order to enforce the reality of positive asset prices. The final section summarizes the paper and

suggests directions for future research. Several appendices are devoted to the proofs of key results.

2 Static Option Replication

In this section, we review and extend an important result due to BL (1978) on replicating path-independent
payoffs. As the replicating strategy always just involves taking a static position in the appropriate options,
the replication is robust in comparison to most work on derivative security valuation. In particular,

volatilities and correlations are unrestricted and asset prices can jump.

2.1 Multi-Asset Extension of BL

In this subsection, we generalize the original work of Lipton (2001), who proposed that static positions
in a set of European options on baskets of two stocks could be used to replicate the payoff from any
European style-claim written on the terminal prices of the two underlying assets. Lipton (2001) observes
that the second strike derivative of the forward price of a basket call is just the Radon transform of the
joint RNPDF of the two underlying asset prices.

Definition and inversion of the Radon transform

We now define the Radon transform of a real-valued function f of n real variables for n > 2. Let
x = (x1,...,2,) € R" dx = dxq,...,dx,, f(x) = f(z1,...,2,) and let W be a unit vector in R". Two
good sources for the following mathematical results are Helgason (1980) and Deans (1983). The Radon

transform of a function f(x) is given by:

RIfI(%, k) = / FOO(W - x — )dx.



Notice that the delta function is only nonzero on the set w - x = k. This is the equation of a hyperplane
in R". The distance from the hyperplane to the origin is exactly k. For fixed (W, k), the Radon transform
of f is the integral of f on the hyperplane defined by w - x = k. As we vary w and k, we define the Radon
transform of f.

The function f is recovered from its Radon transform R[f](W, k), using the inverse Radon transform

as:

(2.1) fE) = h(w.wx)dw,

|w|=1
where the definition of the function h depends on whether n is odd or even. If n is odd, then:

(2.2) h(w,t) = 2((%;_1 aa;__lR[f](\Tv,t).

If n is even, then:

(2.3 w0 = 3o | Rl )

where H[g(p)](t) denotes the Hilbert transform of the function g(p):

o),

(2.4) Mol = P

1
T —x

where the integral is a Cauchy principle value. As a consequence, the discounted joint RNPDF can be

determined from the prices of basket calls, as explained below.

Application to Basket Calls

To apply the above mathematical results to financial markets, we assume price transparency and
liquidity in basket options, which are European-style options written on a basket of stocks. While both
puts and calls trade liquidly over-the-counter, put call parity implies that we need only use basket calls.

Recall that the payoff I(S) for S = (Sy,...,5,) and w = (wy, ..., w,), of a basket call is given by

I(S) = (w-S — K)*,

W

where is the scalar product.



To apply Radon transform technology to basket call prices, we first scale the weight vector w so that

it lies on the unit sphere. Let w = @—| and K = £, Assuming that the risk-neutral joint distribution of

Iwl*

the assets St at time 7" permits a density function f(S,7T), the time 0 price of a basket call with maturity
T and strike K is:

C(K,T) = B(T) (S-w — K)* f(S,T)dS, ...dS,

~\ t+
(2.5) — |w|B(T) (s-v-v—K) £(S,T)dS; ...dS,, weS"
SeR?

where B(T) is the time 0 price of a zero coupon bond maturing at time 7" and where S"! is the boundary
of the unit sphere in R™. In (2.5), each dS; in dS; ...dS,, denotes a non-random integrator.

Differentiating twice with respect to K:

88—1;(0(|w|f(, 7)) = |w|B(T) 6(S-w—K)f(S,T)dS;...5,
(2.6) = |w|B(T)R[f](W, K).
Thus, solving for the Radon transform, and using -2 = |w|?22, we have:
(2.7) R[f] (IX_IIVKJ - %gg (K, T).
which can be rewritten as
Rl w.0) = DL S (e T

Given the market prices of basket calls of all strikes and all weights, (2.7) implies that one can recover

the risk-neutral density f using the inverse Radon transform (2.1):

25) P ) =R (s ST )

where R™! is the inverse Radon transform described by the two step process starting with (2.3) or (2.2)

and ending with (2.1). Note the x is the transform variable, as explained by formula (2.1) and is related
tot by t = W-x, so that %(‘WH, T) in (2.8) above may be expressed as %(w -x,T). While the market
for exchange-traded basket options is too thin to permit the right hand side of (2.8) to be observed, most

major banks stand ready to quote on over-the-counter basket options with any set of weights and strikes.

As a result, one can in principle determine the multi-asset risk-neutral density function f.

7



3 Allowing Semi-Static Stock Trading

While the work of BL is completely robust to the dynamics of the underlying asset, its scope is limited to the
replication of path-independent payoffs. This is due to the fact that the replicating strategy is restricted
to only hold static positions in options. When one can furthermore dynamically trade the underlying
asset, then certain path-dependent claims can be replicated (See Carr, Lewis, and Madan (2000) for
a characterization). For example, in the univariate case, one can create a claim paying the quadratic
variation of the price by combining a static position in options with dynamic trading in the underlying,
even though jumps in price are allowed. By furthermore requiring that the price of the underlying asset
evolves continuously over time, the set of attainable payoffs grows larger yet. For example, in the univariate
case, a claim paying the quadratic variation of the log price becomes attainable if one assumes that the
price is strictly positive and continuous over time.

In this section, we first review Dupire’s result which assumes that there is a single underlying asset
whose price evolves continuously over time. We then extend his results to two or more assets. We first cover
the case of time-changed Bachelier dynamics for simplicity and then we consider the more complicated but
more realistic case of time-changed Black Scholes dynamics. As is well known, the Bachelier and Black
Scholes model both assume that the underlying asset prices follow time homogeneous diffusions. The
Bachelier model is characterized by constant coefficients for the risk-neutral forward price process, while

the Black Scholes model is characterized by constant coefficients for the risk-neutral log price process.

3.1 Review of Dupire

The heuristic presentation below follows Dupire’s ideas in his 1996 paper (1996). We present it here for
the reader’s convenience because that paper is hard to obtain and because it is the starting point for our
generalizations in later sections. Also, rigorous proofs in the multi-variate case follow from appropriate
variations and extensions of his argument that will be presented later. For a more mathematically rigorous
exposition of the treatment in the single asset case, see the paper by Klebaner (2002, 2003). We assume
that the underlying’s spot price process is continuous over time and that the value of a straddle Vy(K,T')

is at least once differentiable in 7. While not necessary, we also assume zero interest rates and dividends



for simplicity!. Under measure Q, the spot price process can be written as:
(3.1) dSy = [rdW,

where [3; is the stochastic (normal) volatility process. This latter process can depend on the paths of S or
W up to t, but need not be determined by them. A sufficient condition for the stochastic integral implicit

in (3.1) to be well-defined is that
t

(3.2) EY  Bds < co.
0

The dynamics assumed in (3.1) imply that the stock price is a Q local martingale:
(3.3) E2dS, =0, te[0,T],
and that quadratic variation increases continuously over time:
(3.4) d(S), = B2dt, t<0,T).

Dupire showed that the local variance E¢[32|Sr € dK] can be determined at time 0 from the initial market
prices of straddles struck around K and maturing around 7. To obtain his result, note that the Tanaka

Meyer formula implies that:

T T
(3.5) |St— K| =S — K|+ sgn(S; — K)dS; + §(S; — K)Bidt.
0 0

Taking risk-neutral expectations, (3.5) implies that:

T
(3.6) Vo(K,T) =[Sy — K|+  EJs(S, — K)p2dt
0

from (3.3) and Fubini. Differentiating w.r.t. 7', the fundamental theorem of calculus implies that:

(3.7) V(K. T) = EZ[3(Sr — K)B3).

Multiplying and dividing by EZ6(Sy — K):

0 1 02
— Qrp2
8_TVO(K’ T) = 58[(2%([{’ T)Eg [Br|St € dK],
IThe results easily extend to deterministic interest rates and dividend yields, where the latter can be paid continuously
and/or discretely.




from (3.6) and the definition of conditional expectation. Solving for the desired conditional expectation:

2.2 VoK, T)

V(K T)

EQ[32|S7 € dK] =

In words, the initial expectation of the terminal local variance given that Sy = K is just twice the ratio
of a calendar spread to a butterfly spread. Remarkably, the only assumption made on the nature of the
stochastic process governing instantaneous volatility in this (not completely rigorous) argument is the
technical condition (3.2). In particular, this volatility can depend on much more than the underlying
asset price and time, and it can jump. The rigorous proof requires additional technical assumptions on f;.
Sufficient conditions in the continuous case are given in Theorem 4 in Klebaner (2002).

Dupire’s results also imply that one can robustly price and hedge any payoff of the form fOT BEf(S, t)dt
for any f(-) without further assumptions. Gamma swaps, variance swaps, forward variance swaps, and

corridor variance swaps are special cases that have arisen in practice.

4 The Extension of Dupire’s Results to Higher Dimension

4.1 The Analytic Backdrop For Such a Generalization

Consideration of the results outlined in the previous section suggests that the principle ingredient in
Dupire’s heuristic derivation of formula (3.7) is the Tanaka-Meyer formula. Dupire did not attempt to
give a rigorous proof of formula (3.7). A proof was achieved later by Klebaner (2002, 2003). Again,
the principle ingredient is the Tanaka-Meyer formula. Therefore, a natural question that arises when
attempting to extend Dupire’s formula to n assets is, in turn, the identification of the key ingredient in
the proof of the Tanaka-Meyer formula (3.5). In our view, this key ingredient in the univariate case is
the following formula, to be understood in the sense of the theory of distributions (see Laurent Schwartz

(1966)), for every K € R:

1 0?

(4.1) S5alS — K| =8(5 - K).

In words, when the 1D Laplacian acts on one half of the absolute value of S — K, then the result is a delta

function with support at K. From the theory of partial differential equations (see Garabedian (1998)), we
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know that (4.1) can be reformulated as the following statement: The fundamental solution f(S, K) of the
1-D elliptic operator %aa_; is |S — K. The fundamental solution has the property that the elliptic operator
applied to it, localizes the outcome to an idealized point mass, of unit weight, at K.

To generalize such a localization property to n > 2 dimensions, it is natural to replace the 1D Laplacian

with a second order linear differential operator in n variables, of the form:

1 0? 0
4.2 L=—-aj———+ pi—,
(42) 2"95,08, " 188,
where we have used the Einstein convention of summation over repeated indices, and where we assume

that the matrix a;;,1 < 7,5 < n is positive-definite. A fundamental solution f associated to the elliptic

differential operator (4.2) is a function depending on 2n variables (Si, ..., S, &1, ..., &,) with the sifting

property:
(4.3) —Lyf(x1, 22, 20, 155 60) = 0(21 — §1)0(22 — &) ... 0 (0 — &n).

The minus sign in front of the elliptic operator is there for convenience and clearly, by linearity the
solution of Lxu = 0(xy — &)0(xy — &) ... 0(x,, — &) is simply —f, where f solves (4.3). In the sequel,
whenever possible, for economy of notation, we will use vector notation and let x = (z1,2z9,...,2,),
£ = (&,&,...,&,). The difference between the one dimensional case and the multi-dimensional case is
intimately connected with the following fact: unlike the one dimensional case, the fundamental solution
in the higher dimensional case is unbounded. More precisely the fundamental solution in dimension 2 has
a pole when x = £ and behaves at the pole like log(|x — &€|). Likewise, the fundamental solution of order
n has a pole of order |x — &]>7". The difference between the univariate and the multivariate case is not
a technical difference, but rather a fundamental difference. It explains why there is no straightforward
generalization of local time to higher dimension. In Stroock and Varadhan (2006), page 117, Stroock and
Varadhan express the matter thus: “Although it is somewhat obscure in the present proof, what underlies®
the existence of a local time for a 1-dimensional 1t6 process is the fact that points have a positive capacity
in one dimension. The way in which this fact is used here is hidden in the boundedness at its pole of the

. 2
fundamental solution for %dd?.”

2The italics are ours.
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In generalizing Dupire’s argument to n dimensions, we therefore must deal with the unboundedness of
the fundamental solution. It makes no sense financially to have an unbounded payoff function f(S,€), so
our procedure below will be to re-define f close to the pole, in such a way that it is sufficiently regular
for us to apply Itd’s formula in n dimensions in a manner analogous to that in which Dupire uses the
Tanaka-Meyer formula. As a consequence, we will show that we are able to price local variance contracts
when the underlying asset prices are in certain subsets of R". What we cannot do in n > 2 dimensions is

to consider a region localized at a point, whereas this was possible in one dimension.

4.2 The Financial Motivation for Generalizing Local Variance to Multiple
Assets

A multi-asset local variance contract is a contract that gives its holder the possibility of obtaining the real-
ized variance of an index, when the underlying stocks in the index are in certain target zones (“pockets”).
The monitoring of the stock price paths can either begin the day the contract is signed or there can be a
forward start. To our knowledge, such contracts are not yet sold on today’s financial markets. However,
just as corridor variance swaps did not trade when they were first proposed and yet were later introduced,
one could envision the future introduction of multi-asset local variance contracts.

There are several reasons why an investor might have an interest in such a contract. For example, an
investor might wish to receive the realized variance of a portfolio if and only if all of the assets in the
portfolio drop by more than a fixed percentage amount relative to their current levels, as they would in a
crash. This contract amounts to a multi-asset generalization of a protective put. A similar example arises
just after a takeover is announced, but before the deal is consummated. Suppose that an investor believes
that the stock prices of the acquirer and the target would both fall if the deal fails, and that this event
is more likely than the market is reflecting in prices. Then a structure that pays realized variance if and
only if both prices fall would be attractive to such an investor.

One can also imagine local variance contracts which pay out the realized variance of a portfolio when all
of the constituents rise in price rather than fall. For example, an investor may wish to generate premium
income by selling realized variance paid if and only if all assets in the portfolio rise by more than a fixed

percentage amount. This contract amounts to a multi-asset generalization of a buy-write strategy.
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Given the current interest in correlation swaps and dispersion trading, one can also imagine local
variance structures that are tuned to proxies for correlation. For example, suppose that an investor is
concerned only about the realized variance of a portfolio of two assets if and only if the correlation between
the two assets’ returns is very positive. This could be captured by specifying two regions in which variance
is received. The first region would be where both assets are up by more than a fixed percentage and the
second would be where both assets are down by more than a fixed percentage. One can also extend this
line of thinking to three or more assets. For all of these examples, the investor might specify that the date

at which they start receiving variance is in the future.

4.3 Multi—asset Stochastic Local Variance: Normal Dynamics

This subsection is divided into two parts. The first sub-subsection presents a localized multi-dimensional
analog of Dupire’s results. The second sub-subsection presents a multi-dimensional generalization of a

corridor variance swap (see Carr and Lewis (1994)).
4.3.1 The localized claims

In this subsection, we present an n—dimensional extension of Dupire’s local results (3.7) in the setting
of assets driven by n correlated Brownian motions. We assume zero interest rates and dividends® over
the time interval [0, 7] for simplicity. We also assume a stochastic multi-variate spot price process S; =
{S1ty..., St : t € [0,T]}. We assume a continuous stochastic process for the spot prices S; under the

statistical measure P, and assume the existence of a risk-neutral measure under which the stock dynamics

is given by
t
(4.4) Sit = S+ 0B dWi, t€[0,1],
0
where Sjo, i = 1,...,n are the initial values, 0;,7 = 1,...,n are constants, {W; : t € [0,T]} are standard

Brownian motions, with constant correlation coefficients p;; i.e.:

< VVia W] >t= ngt>

30nce again, our results easily generalize to deterministic interest rates and dividend yields.
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and where f3; is a stochastic process assumed independent of the filtration generated by (Wi, ..., Wyy).
Under the dynamics of this section, spot prices can go negative, which means that our analysis should not
be applied to limited liability assets. We deal with the complications induced by non-negative prices in
section 4.4. Note that the normal volatility of stock 7 is the product of a constant idiosyncratic component
0; and a stochastic systematic component 3;, for i = 1,...,n. The assumption that the idiosyncratic
component is constant is restrictive since it implies that volatility ratios are constant. It also implies that
the slope coefficient of a regression of one stock on any index is constant.

Returning to the stochastic differential equations (4.4)
(45) dszt = /Gtaithai =1,... » 1,

the instantaneous variance of > w;S; at time ¢ is 6t2wiwjaiajpijdt and it will be useful below to separate

out the idiosyncratic part of this instantaneous variance:
(46) ‘/[ = W;W;0;0;0;5-

Our objective is to synthesize an approximating version of multi-variate local variance 32Vidtd(St — K),

where §(-) is the multi-variate Dirac delta function, whose payoff is zero unless, for each i = 1,...,n,
n

Sit € dK; and in this event, ﬁ%Vldt is the increment in the quadratic variation of ) w;S;. Consider a
i=1

function ¢(S) which solves the following canonical version of the n-dimensional constant coefficient elliptic

equation:

1
(47) —§aingiSj = ‘/:r(s(S — K)

where? a = {aij}Zj:1 and where a;; = 0,0;p;;. Such a function is called a fundamental solution. When
n = 1, a solution of (4.7) is a straddle payoff, which Dupire used to observe the conditional mean of the
terminal variance rate of the underlying asset. A natural conjecture is that solutions of (4.7) for n > 2
produce a payoff which allow one to observe the conditional mean of the terminal variance rate of the

underlying basket.

4For an intuitive motivation and discussion of how this equation arises naturally in our setting. See the discussion below.
In a nutshell, it is the payoff which makes equation (4.10) hold true, after the singular g is replaced by the finite g°.
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To pursue this conjecture, first note that for n > 1, the function ¢ is known to be analytic everywhere

except at the point S = K and a solution to (4.7) is known to be Vi F,,, where (see Shimakura (2002)):

(4.8) Fy(2,6) = ———n 1 ’
T A 2
'21 Ay — &) (2 — &)
1,j=
for n = 2, and:
(4.9) Fu(r,€) = - =
On1VA 'il Aij(x; — &) (x5 — gk)]

for n > 2, where A = {A,-j};szl is the inverse of the matrix a, A is the determinant of a, and where
On—1 = (n — 2)w,, where w, is the area of the unit sphere in R". Note that both F; and F,, are positive
when |x — &] is small.

We intend to use g in a way analogous to that in which Dupire used the straddle payoff in the last
section. Thus, we need to apply an appropriate generalization of It6’s formula and of the Meyer-Tanaka
formula to the function g(S). Unfortunately, to our knowledge, there is no such generalization which can
handle the singularity of g at S = K. It makes no sense financially to design a derivative security with
an unbounded payoff at a point that can be reached, since the short party could face unbounded losses on
his position. Also, on the mathematical side, the singularity of g becomes compounded when we use it in
conjunction with Itd’s rule, since differentiating the function g increases the order of the pole at K. Thus,
in lieu of Dupire’s straddle function, we propose to design a family of derivatives whose payoffs g¢(S) are
such that:

T
(4.10) 9°(S0. &) — E%[g*(Sr, £)] = VIE? Bils,ce 0dt
0
where £(K, ¢€) is the ellipsoid of “radius” e around the point K, i.e. the set {x: (x — K)'A(x — K) < ¢}.

In order to motivate our main results, we first illustrate the main idea by proceeding at a heuristic

level. Were it legitimate to apply It6’s formula to the process Gy defined by Gy = g(Sis, Sat, - - - Snt, €), we
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would get:

_ . dg9(S:§) g(S, €)
(4'11) g(ST>€) - g(So, E) + ; 0 85 dSzt 2 Z 0i0;Pij aS aS dt.
Since g satisfies (4.7), the last term in (4.11) simplifies and re-arranging implies:
4 - dg(S,
(4.12) Vi BRO(Si— Ky)dt = g(So,€) — g(Sr. &) + > %d&t
0 i=1 0 !

Although the above formula for g fails to hold, due to the pole of g and of ¢g’s partial derivatives, we
show below that after taking expectations, it does hold for the strongly localizing payoffs g¢ mentioned

above. Indeed, for these payoffs, the following version of (4.12) will be shown to hold:

Theorem 1 : Suppose that B;,t € [0,T), has continuous sample paths, is independent of the filtration gen-
erated by the Brownian motions driving Si;,t € [0,T], and verifies the integrability condition EQ| fOT B2ds| <
co. Suppose that S, satisfies the SDE’s (4.4). Let £& = {S : A,(S,€) := (S — €)'A(S — &) < €}, where
A =a ! and let A,(S,&) denote the quadratic form associated to the n x n matriz A. Define a family of

functions g¢(x, &) as follows.

In E5:
As(S f)‘l‘ ~(1—In(e ), forn=2
€ — 7T\/_6
(4'13) I (S’S) B { VI T iﬁ n (S 5) W’ forn > 2,
and in R™\ €%, let:
(4.14) 9°(S,€) = ViF,(S,€),

where Fy is defined in (4.8), and F,,n > 3 in (4.9). In this formula, /\ denotes the determinant of matriz

a. Then, g¢ satisfies the equation:

V T
(4.15) WEQ ) ﬂflstesﬁdt = g°(S0,€) —E® [g°(S1. )],
where b,, = —% for n =2 and b,, = —% for n > 3.

Proof: The full proof of this theorem is given in Appendix 6.1.2.
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Remark 2: The payoff ¢¢ can be replicated using our results related to Radon transforms, which allow
us to back out the joint probability distribution. Given the joint probability distribution, we can trivially
price any known payoff such as ¢g¢ written on the asset’s spot price Sy at time 7.

Having established (4.15), we next show that it is possible to establish a differentiated form. More

precisely, we have:

Theorem 2 : Under the same conditions and with the same notation as in Theorem (1), we have for

almost any to € (0,T) and for n > 2 that:

V 9 Qe
(4.16) WE@[ﬁzl%egg = =5, B2l (S, €)]
Proof:
Clearly:
T T

I B21g cesds <EP[  [lds].
0 0

By Fubini’s theorem since, E9| fOT B2dt] < 400, we have:

1 t 1!
E°[  p%dsl =

—_ E9[3%1
t—t(] t Sseé‘f] t—to . [/68

Sse&t ds

0
and that s — E%[321g ce¢] is integrable for almost every s € [0,T]. Therefore, since the integral of an

integrable function of one variable is absolutely continuous, we have:

1
lim

t
Q 2 _ Qa2
Jim — toE [ . ok lsseeﬁds] =-F [ﬂtolstoegﬁ]v a.e. to € (0,7).

Thus, as a byproduct, we have also demonstrated that the function ¢t — E[g¢(S;, £)] is differentiable
almost everywhere and the theorem follows.

Remark 3: Since the derivative of the expectation of g can be approximated by a difference quotient,
we see that, we can effectively go long/short the left hand side of (4.16), by going long/short a calendar

spread of contracts on g°.
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Remark 4 (Conditional version): Instead of (4.16), we can derive a conditional form, using:
B Vi EY [ﬂgolstoeeﬁ}
b(n)v/De @ (Sto € 5?)
_ _%EQ [ge(sta 6)] |t=t0
@ (St() S gg)
Note that using the results in Section II on backing out the risk-neutral probability density Q from call

Vi
1  EQ[p2|S 13
b(n)v/Aer Bl 181 € &¢]

option prices with all weights and strikes, we can then determine the denominator Q (Sto € 5§) in the

above expression.

4.3.2 Multi-asset Corridor Variance Swaps

In this section, we introduce multi-asset corridor variance swaps. A multi-asset corridor variance

swap is a payoff g¢(S) with the following property:

T

1
(4.17) E? [¢9(St)] = 9 (So) — inEQ Bileam)(Sydt
0

where C'(A,B), the n—dimensional corridor, is defined by:
C(A,B) = {Al S S1 S Bl,...,An S Sn S Bn}

This means that the contract ¢©’s expected value is the time integrated local variance of the index option
whose local variance at time ¢ is V7/32. To construct the claim g“, we solve the following Poisson equation

instead of (4.7):

1

_§aijggisj = Vi 1ca,B)(S).

As is well known, the solution of the inhomogeneous equation (4.18) is obtained by convolution with
the fundamental solution F},, which was defined earlier (see (4.8) and (4.9)). Thus, noting that F, (S, &) =
F,(S — ), we have:

g°(S) = Vi 1lemam)(s)F(S—s)ds, SeR}

]Rn
=V F.(S —s)ds
seC(A,B)
bn brn—1 b1 _
(4.18) =V e F.(S —s)dsidssy . . .ds,.
Qn an—1 al
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As a consequence, we have the following theorem:

Theorem 3 : Suppose that the process (i, t € [0,T] has continuous sample paths, is independent of the
filtration generated by the Brownian motions driving Sy, t € [0,T], and verifies the integrability condition

EQ[IOT B2ds] < co. Let g¢ be an e-approzimating payoff, defined for all dimensions n > 2 by (4.18). Then

we have:
T
(4.19) EC[g°(S))] = ¢°(S0) ~E Vi lomm(Sidt .
0
Localizing in time, this result has the form:
9 Qr,e Q 2
(420) aE [g (St)] |t=t0 =-E [‘/}ﬂtolc(AJ?')(Sto)} s fOT a.e t(] S [O,T)

Proof: Since the right hand side of the Poisson equation (4.18) is in L>*(R"), by well known results (see
Gilbarg and Trudinger (1983)), Sections, 9.4 and 9.5), we have that the solution ¢¢ is in W?2P(R"), for
all p > 1. The solution of the Poisson equation, when restricted to the set R’} is not unique, since we
can add any solution of the homogeneous equation on that set. The representation (4.18), which uses
the fundamental solution F, (see (4.8) and (4.9)) picks out a particular solution of the inhomogeneous
equation. The standard Calderon-Zygmund potential estimates cited above then imply that the solution
is in the required space. Since g¢is in W?2? for all p > 1, we can repeat verbatim the argument used in the
proof of Theorem 1 (see Proposition 2 in Appendix 6.2) to conclude that (4.19) holds. Then, to establish

(4.20), we proceed exactly as in Theorem 2, Section 4.3.1.

4.4 Multi-Asset Stochastic Local Variance: Lognormal Dynamics

In this subsection, we present the more realistic but more complicated version of the previous results,
when the idiosyncratic component of the assets’ price behavior is captured by a multi-variate geometric

Brownian motion.
4.4.1 Local Results

In the previous section, the spot prices could go negative, which is an undesirable property if the assets

have limited liability. In this subsection, we present the lognormal version of the asset dynamics, which

19


http:concludethat(4.19
http:equation(4.18

have the property that all spot prices are always positive. Natural logarithms of prices will have the same
martingale component as in the last section, but the usual convexity correction forces the complications of
nonzero drift upon us. The fundamental solution is different as a result of this drift and is more complicated
than in the last section. However, it is still explicit and equally useful.

In this subsection, we suppose that there are n > 2 correlated stock prices S; = Sy, ..., Su whose

risk-neutral dynamics are governed by the following stochastic differential equations®:
(421) dszt = Sitﬁtaidm/,-t 1= ]., oo, ny

where W;; are independent standard Brownian motions and 3; is a common stochastic factor assumed
independent of the filtration generated by the underlying Brownian motions. The stochastic process

[ induces macro-economic shocks to all of the assets’ volatilities and allows dependence on sources of

uncertainty not captured by the filtration associated to the Brownian motions. The 0,7 =1,...,n, j =
1,...,n appearing in (4.21) are assumed to be constant.
n
Let v; = =) 0'2-2]- /2,1 =1,...,n be the constant idiosyncratic component of the convexity correction
i=1

of x; =In S; and let:
(4.22) Vit = ooy

be the constant component of the instantaneous variance of the sum of the log returns »_ In.S;. Similarly,
i=1
let:

(423) ‘/In = pijUinSiSj

be the instantaneous normal variance of the basket. Ideally, our objective is again to synthesize the multi-
asset local variance B2Vdtd(Sir — Ky, ..., Sur — K,,) = B2VEdtd (v — In Ky, ..., 2y — In K,,), where
a = In ora = n. Once again, this payoff is zero unless (Sir,...,Syr) € d(Kq,...K,) and in this event,
B2VAdt is the increment in the quadratic variation of S; + ...+ S, for a =n, and InS; + ...+ 1In S, for

a = In. Alternative definitions for V/* would allow us to synthesize the increment of quadratic variation of

5Here and below we use the Einstein summation convention to sum over repeated indices.
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other processes f(Si, ..., Su), which are also of interest in finance. For instance, if n = 2 and f(.S1,S2) =
wy In(Sy) + wy In(Sy), where w;, i = 1,2 are fixed weights, then we let V; = wio? + 20109pwiwy + c3ws3.

Consider the elliptic partial differential equation:

1
(424) iaijumimj + Villy, = _‘/ICV(S(X — k), a="NnNoroa = ln,
where x = In(S), k = In(K) and where the diffusion matrix ¥ = {a;;}},_, is given by oo’. Fori=1,...,n,
v, = —62—? is the idiosyncratic component of the drift in z; and V* was defined above. We will suppose

throughout that the rank of the matrix o is n. This implies that the rank of oo' is also n and so our
matrix a is positive and invertible. The left hand side of (4.24) equation is an elliptic counterpart of the
n—dimensional Black-Scholes equation in log price coordinates. A fundamental solution can be found in

explicit form. As shown in Appendix 6.2, it is given by V/F ¢, where:

Fri(x,y, k) )
v Q 2 ex _lle X — n x — Kk)TA(x —
125) = <2W ¢<X_k>TA<X_k>> b~ A=K Ky [QVx - RTAG - K,

where A again denotes the determinant of the variance-covariance matrix ¥ with a;; = p;;0;0;, and U

equals twice the vector of drifts:

21/1
21/2
(4.26)

A
Il

2u,
the matrix A = X! is the inverse of ¥, K, /2—1 is the modified Bessel function of the second kind and
degree zero (either fractional or integer order, depending on whether n is odd or even), and where @ is the

constant vVZTAD. Hence, the argument of the modified Bessel function is proportional to:
(4.27) (x—Kk)TA(x-k) = a(z; — k) (zv; — k).

For instance, when n = 2, this argument may be expressed in the familiar form:

2

—2p
01 01 02 02

1’1—]{51 Il—klxg—k2+ 1’2—]{72 2

(4.28)
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Notice that the function ¢g has a singularity at (z1,...,2,) = (k1,...,k,). Once again, we introduce a
family of functions, ¢¢ parametrized by e, with the property that, if an investor believes that the multi-
asset dynamics are lognormal and wishes to purchase or sell protection against the level of volatility of
an index written on these assets, when the assets are in an e neighborhood of a target level (for instance

at-the-money), then the derivatives with payoff ¢¢ allow him to do so.

Theorem 4 : Let (Sy,...,Su) be a solution of (4.21), x;, = (InSy,...,InSy), where we assume that

{Bs,0 < s < T} has continuous sample paths, and is independent of the filtration generated by

(Wis, ..., Whs),0 < s < t and satisfies the condition EQUOT B2ds] < +oo. Let po* = \/(x — k)TA(x — k)

and given €, let g¢ be defined biP:
n—2
2 Y, X X
(429)  g(x k)= 7z (5%%) * exp [-30T A - K)] Ky [QFK] Jor gk
‘/[ [CLl(E) (p137k)2 + a2(6):| exp [—%ﬂTA(X _ k):| fOT px,k <e

where A\ denotes the determinant of the variance-covariance matriz ¥ = oo (of the logarithms of the

returns), A =371 and where the coefficients ay(€), as(e) have the property that:

¢

221 =2
(4.30) a(e) = wa n=d
(2—n)(i§)}n, n>2, n even
| B2(135.(n—4))(2)* T L n>5 mnodd
and

as(€) = 5 a;(€)
Then we have the identity:
(431) vrlme T 000 = g0w) ~ B0yt
for e=o(1),

where, in formula (4.31), d, is defined by d,, = €"a1(e) = O(1).

®Note that if n = 1 there is no need for a cutoff for |x — k| small. A solution generalizing (4.1), can be easily obtained for
all z, .
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Proof: Note that when compared with (4.15), the main difference is the extra term O(e) as € tends to
zero. Again, we refer to Appendix 6.2.3 for construction of the family ¢g¢ and to the end of that section for

the conclusion of the proof of Theorem 4.

Theorem 5 : Under the same conditions as those in Theorem 4, we have, for any ty € [0,7T):

0
EC [ Ly, eendt] + 0(6) = 2B [g°(0)] iy

2
o 2000

En
Proof: The proof is the same as that of Theorem 2 in the preceding section.
4.4.2 Corridor Multi-asset Variance Swaps

In this section, we present the analog of the results in section 4.3.2 for the lognormal case. As the reader

may expect by now, we again solve a Poisson equation, namely:

§aijum$j + Vil = _Vlalc(A,B)(X)‘

This is an inhomogeneous linear elliptic equation with constant coefficients. A particular solution is once
again given by convolution with the fundamental solution F,¢ (see (4.25)) , u(x) = V/*F* * 1ca,B)- By
elliptic regularity theory, we again have that the solution is in W%?(R"), for p > 1 and therefore, with the

same argument as in the proof of Theorem 3, we can establish the following theorem:

Theorem 6 : Under the same conditions as those in Theorem 3, but assuming now that S, satisfies (4.21),

we have (4.19) and (4.20).

4.5 Illustration: Multi-asset Stochastic Volatility Model
with Common Stochastic Factor

In the previous sections of this paper, we have not specified the process driving the systematic component
of the volatility. While we regard the generality of these results to be of interest, we also think that it

may be of interest to apply these results in a familiar, albeit restricted, context. As a consequence, in this
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section, we suppose that the model is specified as follows:

dFy, = Ul\/aFltdWht
dFy = 02\/5F2tdW2t

(432) d’Ut = L(e — 'U)dt + a\/Ftdet, FlO = Flo, F20 = F’20, Vg = 170
where Fj,i = 1,2 are the forward prices of the stocks and where we assume that:

EQ [dWy,, dWyy] = pdt

EQ [dW;,, dWs] =0, i=1,2,

and Wy, 1 = 1,2, 3 are standard Brownian motions. Note that this model is a special case of the family of
models introduced in Section 4.4.1, the “Lognormal dynamics” case. Indeed, for the model considered in
this section, we take n = 2, in (4.21) and still in the notation of that section, the independent stochastic
process fs, s € [0,T7], is given here by /v, s € [0,T]. We recall from Section 4.4.1 and 4.4.2 that in the
construction of the family of payoffs ¢¢, the process driving the stochastic factor §; does not play a role.
This is because the construction of g¢ is based only on the idiosyncratic part of the process driving the

asset, i.e. ¢ is constructed with reference to the operator:

1 2 1 2 1 2 1 2
Lu=— §Ulu9ﬂ1$1 + PO102UL, 2, + §U2urzmz - §Ulurl - §U2uw2

For our € approximating claim ¢¢ defined by (4.29), we set n = 2. Since in the present setting, the
dynamics of 3, (here /1) are specified by (4.32), we can make formula (4.16) more explicit. For this, let
By = f(f v2ds and let p;(B) denote the probability transition density for the time average of the squared v
process, ie, p;(B) = Prob(B; € (B —dB, B+ dB)). Suppose we are trying to synthesize the local variance
a.e. of a basket option with payoff (F} + F, — K)*. In that case, letting F = (F}, F,), and recalling (4.22)
and (4.23), let V;*, V}™ denote respectively the instantaneous variance at F = ¢ of the basket and that of
the log returns, where V" = 0282 + 20109p61 & + 03€2, and Vi = 0? + 20109p + 05. In these formulas
0,1 = 1,2 are the idiosyncratic part of the coefficients in the Fj; dynamics. Also, conditional on a path of

vy, the distribution of (Fi, Fy) is lognormal, i.e. (Fi4, Fy) can be expressed in the form (e*'t, e*?*), where
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(214, T5) is normally distributed AJo 245 (A, M) with mean vector ( (—30? [ 12, —102 [ v?)and covariance

fo 2ds 0109p fo Vs 2ds
109p fo vids fo vids
g (F, &) defined in (4.29), in Wthh we take n = 2. Then we have, recalling that the process By, t € [0,T]

matrix A = . Also, we use the definition of the ¢ approximating payoff

is independent of Fy,t € [0, T

Vi
Qr 2
by Ortereee]
0
_ Q
= — = (B (R, )]} s
0o oo oo (mlflogﬁ?+a%5/2)2 (1'1 log F9402 B/2)(xg—log FY03B/2) (zg-—log FY+03B/2)?
:,E v g (71, 72 5)@7 207 B c102B - 203 B

ot 2no102v/ (1 — p2)B
0 —oc0 —o0

Pt(B)dmdwde) lt=T

o oo oo L (=1— logF1+alB/2)2 (1'1 log F{+03B/2)(vg—log FQ+03B/2) (wg—log F9+03B/2)?
P 2 B 2
— _ ge(etl,emz,f)e 2(7'1}3 T192 205 B
2no109V/ (1 — p?)B
0 — — oo
Opt (B
weB)| vy dusdB

ot

5 Summary and Future Research

We have shown how to extend the fundamental results of Breeden and Litzenberger (1978) and Dupire
(1996) to the multi-asset case. In particular, the joint risk-neutral PDF of asset prices can be extracted
from basket option prices using Radon transforms, as first pointed out by Lipton[27] for the two asset
case. Assuming only that price processes are continuous, the conditional expectation of the variance of
a basket can also be extracted from basket option prices. The recipe for constructing this conditional
expectation depends on the nature of the idiosyncratic component of each asset’s variance. We explicitly
displayed the construction when this idiosyncratic component displayed constant normal volatility and
constant lognormal volatility. One can also consider the general case where the idiosyncratic component
of the volatilities depends on the assets’ prices, which leads to elliptic equations with variable coefficients.

These can be tackled using a method of Hadamard (see Shimakura (1992)).
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In the single asset case, Dupire’s work has been extended by adding jumps or by replicating payoffs
which are a nonlinear function of the total variance. It follows that one could consider these extensions in

the multi-asset case. In the interests of brevity, these extensions are best left for future research.
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6 Appendix

6.1 The n-D Normal Case

In this section, we show how to construct the family of functions ¢ in the n-D normal case. The calculations
in all other multi-dimensional cases have many points in common with this case, but are more involved.

We begin with its construction.
6.1.1 The construction of the e family ¢°

In this section, we show how to modify the fundamental solution (4.7) in a neighborhood of the pole £ so
that the modified solution u(x, £) is analytic except at the point & and C! for all x € R", and so that the
partial derivatives 0,0, uc(w,&) are all locally bounded in a neighborhood” of x = €.
Let:
An(x,§) = Aij(ms — &) (w5 — &)
ij=1

For € > 0 and &, consider the ellipsoids defined by:

We have:

— 1 In(Ay(x,€)) forn =2
o ™A o
(6.1) Falx, &) = 2__An? (x,&) forn > 2.

i
5

The first order partials are:

1 -1 B
(6.2) Op, Fo(x,€) = VN A7 0y, Ag, forn =2

_2-n_ A-n/2
on_1VA An axLAna forn > 2.

To define a continuation into the interior of the ellipsoid G¢, we make an ansatz of the following form:

i _ ] M%) + by, forn=2
(6.3) 9(x,§) = { LA, (x,€)+ by, forn>2. "7

"The second order partial derivatives taken in the sense of distributions are then globally bounded functions, since u
vanishes at infinity.
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where the coefficients a,,,b,,n > 2 will be determined in such a way that the fundamental solution along
with all its first partial derivatives match along the boundary of £, those of the function g. The construction
also guarantees that all second order partial derivatives of § are bounded in &,.

For the continuity of the first partial derivatives, we need:

1 1 a2 —
_m 2 aszg |x€8€ 2 a:(:2142 |x685§ forn =2

o 17/—671 O, Ap |m€8€ ana A |x685€§ forn > 2.
From this, we read off the coefficients:
1
6.4 o = —
(6.4) =
9 _
(6.5) Qp = L n forn > 2.

O-n—l\/g

Next, we determine b;,7 = 1,2 from the requirement that the function itself be continuous. This leads

to:
S S
—ﬂ\/zln(e)— A + by (€)
2z — 2on €7 4 by (e)
O-n—l\/K O-n—l\/Z ! ’
so that:
1 2
(6.6) b (€) A (1 —1In(e%))
(6.7) bo(e) = — — ™,

O-n—l\/g

In summary, we have that:

(x €) + (1—1n( %)) forn =2

(6.8) 7(x, ) = W .
On— 1\/_"

and therefore, switching to the S variable as in Section 4.3.1, define

v o [ VIFL(S.6) for Se (£
(6.9) 9(5’5)—{ Vi3(S.6) for Seé&l,

where V; was defined in (4.6) as the idiosyncratic component of the instantaneous normal variance of

> w;S; at S = € and F,, was defined in (6.1).

i=1
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6.1.2 Justification of Ito’s formula applied to the family ¢°

In this section, we complete the proof of Theorem 1, by establishing formula (4.15). The formula is
a straightforward but not direct consequence of known extensions of Itd’s formula that appear in the
literature, for instance in Bensoussan and Lions (1982), Krylov (1980) , and Foellmer and Protter (2000).
It is not direct in that we need to apply an [to type formula in a context where the stochastic factor 3, enters
only “path-by path” in the definition of the elliptic operator A, appearing in the statement of Proposition
(1). The reason for this distinction can be traced back to the basic setting of the assumed stochastic
dynamics for the asset S;; (see (4.4)), wherein we do not constrain s by imposing any dynamics on it or
any conditions other than the integrability condition and the continuity and independence condition. The
way we intend to use the generalized It6’s lemma is to apply it to S; dynamics conditional on a realization
of the path {f,s € [0,T]}. When we condition of such a realization, S; becomes a Gaussian process with
time-dependent variance. In addition our function ¢¢ is C%! (all first order partial derivatives are Lipschitz
functions) and vanishes at infinity. Therefore g¢ belongs to the Sobolev class W*? for every p > 1, and
we have enough regularity to apply the Bensoussan-Lions version (see below) of It6’s formula. The last
step in the proof is to take expectations over all possible realizations of the process 3;. We now give exact
statements and proofs.

The following lemma is established in Bensoussan-Lions (1980), on page 183, and its proof relies on
properties of the generator stated on page 156 of that treatise. Their version is more general than the one
we need here, since they consider a bounded domain and processes, stopped prior to exiting the domain.
We state only the simpler version that suffices for our purposes:

Proposition 1 Let y(t) € R™ be a solution of the system

t t

yi(t) = y;(0) + ) hi(y(s),s)ds + ) 0ij(y(s),s)dWs;, i=1,...,n

with infinitesimal generator A(t) = Trace(300"D*u) + h - Du. Let ®(z,t) be a continuous function on

Q =R" x [0,T], such that (Z — A(t))® € LP(0,T; LP(R™))® , p > 2 + 1, and assume that the transition

probability (fundamental solution) p(x,t1,§,ts) satisfies the estimate

p

8As Bensoussan and Lions point out, LP(0,T; LY

large ball.

(R™)) suffices, provided we stop the process when it exits a sufficiently
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(6.10) p(x,t1, €, ty) < M(ty —t;) ™ exp 220

for some positive constant «c. Then, for 0 < 0 < 60 < T we have that

(6.11) E® [2(9)] = E [9(6)] + E° (02— AW0)B(y(s), s

Note that in our setting g¢ = ® does not depend explicitly on ¢. To apply the proposition, the operator

A®(t) we will consider, for each fized w, is:

o2
A“(t) = P e TTr
( ) ﬁt(w>ajasiasj

Note that, since g° does not depend explicitly on ¢ we have (& — A“(t))g(S) = ﬁt(w)aij#;sjgﬁ =

Cstf(w). Since [, is for each w a continuous function of ¢, g¢(S) verifies the conditions required by ®
in Proposition 3. The exact form of the constant (“Cst”, above) on the right hand side of the equation
for g¢ is given in the sequel (see equation (6.14)). Since, by construction ¢¢ is in C''(R™), it verifies all
the conditions that ® must verify in the theorem®. In addition, for fixed w, the operators A“(t) trivially
verify the estimate (6.10), since the transition probability matrix associated to the generator A“(t) is
()

2 * where

S S
CHREDIOIRE

50 - { Ot@z(w)ds} a

Proposition 2 (Conclusion of the proof of Theorem 1) Let S; = (S, ..., Su),t € [0, T] be a stock
process that follows the process (4.5) (multi-variate version) and assume in addition that By, t € [0,T] is a
stochastic factor, with continuous sample paths, and is independent of the filtration generated by Sy, with
the property EQ[IOT [2ds| < +oo. Let g°(S, &) be defined by (6.9), then Dynkin’s formula holds for g¢(Sy, £)

1.€.

T
32 Trace(aD?g%)dt .
0

E® [9°(Sr,€)] = g°(So, &) — E®

N —

9Bensoussan and Lions’ statement also assumes that ® is C ie. vanishes on the boundary of the domain, but this is not
necessary in our setting, since we work on all of R™
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Proof: Conditional on a path of the independent stochastic process ;, Sy = (S, ..., Sn) is a Gaussian
process with variance-covariance matrix whose (7, j) entry is given by 0,0;p;; fot (32, provided we define
pij = 1 for i = j. Denote this Gaussian process by St{ﬁs’sgt}.

Next, take expectations over the distribution of the paths of the process {s}o<s<t, which was assumed
independent of the filtration F; generated by the Brownian motions Wy, ..., W,,. Note that it is permis-

sible to do so, because by assumption, EQ] fOT (%ds] < +00 and since aD?¢¢ is everywhere bounded (given

our construction of g), so that 32(aD?f) < Cst 2. Thus:

T
(612) 0=E% ¢'(S.6)~ f(S0.6) ~5  (iTrace(aD?y" )it |
0

as desired. Using the definition (6.9) of the latter and (6.3) and using formulas (6.5) for the coefficients,

we find:
ViD3F, for(Si,..,S,) € Rt \ &
(6.13) D2(g°(S,€)) ={ —razViA for n=2 €&
_%A for n>3 €&,

where we recall that A is the inverse matrix of a. Since a and A are inverse matrices aA = I, Trace(I) = n

and since F,,n > 2 is a fundamental solution outside the ellipsoid, we have

0, €eRF\& n>2
(6.14) Trace(aD3(g(S,€) ={  —~vka for n=3 €&,

_ 2n(n=2)V; 13
P~ for n>3 €&:.

Now insert these values into (6.12) to obtain (4.15). Taking expectations we get:

S — — VAa [f @21 sdt] n=2
€ € us € St ge 3

(615) g ( 05 €) E[g (Sta E)] - ‘2,1 n\(/nZ—;) 0 , €

on-1VAen \/AsnE [fo G 1St6(€§dti| ,n > 3.
Special Case: 7, =1

Note that:

T

(6.16) g, cecdt = [t €[0,T]: (Sit(w),...,Sn(w)) € E(n)].
0

We know that the transition probability density of the process S; is given by:

1

(6.17) P (S0, 0,8, ) = (2mt) 2(A) /22 (S1=80) A(Si=S0)

Y
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so we have:

T T
(6.18) E g edt =(A)7 (2rt) 2 e m(SimS)'AS=So) g, L gy
0

S:e&t

where we have used the Fubini theorem to interchange the order of integration. Letting C'C’" be the
Cholesky factorization of a = A~!, and noting that C’AC = I, we see that by making the change of
variables S; — Sy = C'y, the right hand side of (6.18) becomes:

T T
(6.19) (2mt) /2 e 5wy b dt = E1p,epie_sooldt.

0 0
yEB(S_SOﬁ)

Now, returning to (6.15) and taking V; = 1, we see that:

o T
(6.20) Bl (Sr. ) = (50,8 - "2 ElLmcne-sld

Although local time does not exist for n > 1, a comparison of the last expression with that used in
approximating local time in the one-dimensional setting suggests that the second term on the right hand
side of (6.20) can be thought of (up to a constant) as the occupation time that the standard n-dimensional

Brownian motion By (starting at the origin) spends in a neighborhood of the point & — Sy.

6.2 The Lognormal Case
Suppose that the stock price processes follow the lognormal dynamics,
dSZ't = /GtSitO-idejta t e [O, T],’l = 1, .o, N

Recall from section 4.4 that if we set z;; = In Sj;, then:

n
Bt

dry = - afjdt + B ;dWiy.
i=1
Consider the constant coefficient PDE:
(6.21) Uijla,e; + Vitle, = —20(z — k),
where 7; = — iafj. We again conjecture that any solution of this PDE is a payoff which allows one to

observe the conditional mean of the terminal variance rate of the underlying basket.
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6.2.1 A Fundamental Solution of the Elliptic PDE in the Lognormal Case

The approach that we take in this section is the method of reduction as described for instance in Garabedian
(1998). However, we have found no source in which all details are carried out and where it is shown that
the final result can be put in the precise form (6.29), needed in Theorem 3. This precise form of the
solution and the derived final form in (4.29) are needed to establish formula (4.31), ie. to show that the
remainder is of order O(e) there. For this reason, we provide details in the present section.

To begin, since a is a symmetric matrix, it can be diagonalized by letting:
(6.22) x —k = Cy,

where the columns of C' are the eigenvectors of the matrix a. In the new coordinates, our equation (6.21)

becomes:
0?V ov
where \;,i =1,...,n are the eigenvalues of a (possibly with multiplicity) and where C.; is the i-th column

of the matrix C, i.e., the i-th eigenvector of the matrix a. Changing scale:
(621 wi= i/
this becomes:
(6.25) Av + 0TCA™Y2 Yy = —25(CAV?y),
where:

A =diag(Ag, ..., A\n)

and \;,2 = 1,...,n are the eigenvalues of the matrix a, possibly with multiplicity. From the change of

variables formula for multiple integrals for distributions (see for instance Kanwal (2004), we easily see that:

1

A1/2~ —
HCATY) = Je(car

Note that /det(A)det(C) = y/det(a) = VA.

6(y).
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Therefore, (6.25) can be expressed as:

2
Av + PTCAV2Vy = ——5(¥).
7x (¥)

For brevity, let:
b" = vTCATY2,

Next, we make the additional change of variables:

Then the equation can be re-written as:

Ly 2 1. .
Aw 4|b\ w = \/Zé(y)exp 2by

Hence we obtain:
If we introduce:

then:

(6.26) AW — g = —25(3).

Setting () = %, we see that we are seeking a fundamental solution for the Helmholtz equation:
(6.27) AW — Q*W = —25(3).

We will show how to obtain such a solution below. Denote this solution by Fy, where:

1
o

Qﬁ

(6.28) Fg 2m~) 2 Knpa-1(Qr),

(
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and K, /o1 is a modified Bessel function of the second kind, of integer order when n is even and of fractional

order when n is odd. Retracing our steps, we find that:

1 1
u(x) = ﬁFQ [|A_1/2C'T(x — k)] exp —§bT CA V% (x — k)

1 1
= — — T — __~T -1 T _
\/ZFQ |:\/X k)TA(x k] exp —5U CA™C(x—k)
1 1.
(6.29) = ﬁFQ |:\/X —k)TA(x — k] exp —§I/TA(X - k) ,
where:
I U
@ =y
— ~TCA_1/2A_1/2CTﬂ
= 7"CATICTD
(6.30) =T AD.

6.2.2 The Solution of the Helmholtz Equation

This section recalls known results concerning the method of solution of the Helmholtz equation and de-
duces the asymptotic behaviour of the fundamental solution (an ingredient in determining the asymptotic
behaviour of the family ¢¢) from the known asymptotic behaviour of fractional order Bessel functions that
are used to define these solutions. In the two dimensional case, the solution of the Helmholtz equation

(6.27) is given by:
1
_KO(QT)>
s

where r = |y| and Kj(z) is the modified Bessel function of the second kind of order zero. The known
asymptotic behaviour of Ij(z) as z — 0 is (see Abramowitz and Stegun (1972), page 375) Iy(z) ~ lasz — 0,

so that:
Ky(z) ~ —In(z) z — 0.
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Also in the case n = 3, we have the well-known solution to the Helmholtz equation

e—Q@r

2mp

Here we say a few words about how the solution for all n can be derived. In spherical coordinates, the

Helmholtz equation (6.27) can be written in the form:

d n—ldW 2 n—1 __
dp(p dp) Q" =0.

By making the substitution v = Wp'~2, we obtain:

d  dv v n
—(p—) — —(1 — =)2 = Q%*pv = 0.
dp(pdp) p( 2) Q7 pv

This is Bessel’s equation of order § — 1 and parameter —@?. The solution is known to be:

3 1 Q (n—2)/2

(6.31) FQ(P> —Qz) T % Kn/2—1(QP),

where K, /51 is a modified Bessel function of fractional order when n is odd and integer order when n is
even (see Abramowitz and Stegun, page 375 when n is even and page 443, when n is odd). Given the way
our fundamental solution is normalized (26 on RHS), we see that we recover (6.28). The exact expressions
for the K, /,_; are not needed for our purposes in the next section so we refer the interested reader to
the above reference. But we will need the known asymptotic behaviour for these functions given in the
above reference, from which we then easily derive the following asymptotic behaviour for the solution of
the original elliptic PDE (4.24).
We get:

—=Inz, for n=2 as z—0

(6.32) Fo ~ 7, for n=3 as z—0

—, forn>4 neven as z—0

()2 [1:3-5...(n—4)] =, forn>5 nodd as z—0
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6.2.3 Construction of an Approximating Sequence

Recall from (6.28) and (6.29) that our fundamental solution F'#* 0 in the original x variables can be

expressed as:

1
VA
_ 1 Q
VA 2m/(x—K)TA(x — k)

X exp —%I/TA(X —k)

Fom = F, [\/(x “K)TA(x — k)] exp —%VTA(X _X)

(n—2)/2
Kot |QV(x—K)TAx— K]

Let:

19%
W\/Z27T‘

Since we will be matching derivatives only on the boundary of the ellipsoid &, note that A;;(x;—k;))(z;—k;)

E=

is constant there, so we simplify notation below and let :

(6.33) p=+Vx-kTA(x-k),

and consequently p = € on d€.. Then the fundamental solution takes the more compact form:

1 Q (n—2)/2
/A 27p

The approach is the same as in Appendix 6.1, i.e. we match the first order partial derivatives on the

1
Kot [Q0) % exp —51"AGx— )

boundary of the ellipsoid p = e. We make the following ansatz for the continuation of the fundamental

solution into the interior of the ellipsoid:
(6.34) o = [1(©7*(x) + ax(e)] exp (~PTA(x ~ k)

The work now consist in determining the right form for a(e) and as(€), so that if we paste this solution
on the boundary of the ellipsoid to the fundamental solution of the elliptic equation (4.24), the result is

globally C1t. However, prior to the “pasting step”, given at the end of this section, we derive the exact

10 Note that our right hand side is —24 rather than —¢& to accommodate the origin of our second order terms in the Ito
calculus.
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form for the result of applying the original elliptic operator to any expression of the form (6.34), since this

will be needed when we insert ¢g¢ into It6’s formula. We claim

(635) aijg;mj + ﬂigexi = f(X — k)

The exact form of f(x) is most easily arrived at by the following argument. Via the same changes of
independent variables as before (see equations (6.22) and (6.24)), i.e., setting ¥ = A~/2CT(x — k), we

have with v(¥) = ¢¢(x) and b7 = DTCA~V/2:

Agv+ 0TV = F(CVAY).

T

Making the change of dependent variable v(¥) = w(¥) exp(—3b"¥), we have w(y) = (a1(€)p*y) + as(e))

and (6.35) can be written as:

n

> b

Aap* + az) — Z:Z (arp+ as) = f(CTVAY) eXP(%bTS’)-

It is clear that the dependence on p on the y variable is on the modulus of y (by design), so that the last

equation holds iff

n

> b
i= _ - 1 .
2nay — = —(ap’ + az) = f(CTVAF) exp(5b'F).

so that:

Fx—K) = 2nay — ”Tfﬁ@ _ ﬂTf’;alf exp(—%ﬂTA(x 1K)

= 2na; — I;Tfﬁag (1+7"A(x— k) + O(|x — k|*)) — DTfDalpz exp(—%DTA(x -k))
636) = 20— 270 (1+0(x— k).

Having successfully determined the function f, we now turn to the final step in our analysis, to choose

a1(€) and as(€) so that ¢¢ pastes smoothly to the fundamental solution of the elliptic equation for p = e.
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For convenience, we simplify the notation by introducing the notation ¢(n),n > 2 for the coefficients in

the asymptotic expansion given earlier (6.32), e.g., let

(6.37) ¢(n) = nogy

% Zn—2)

1 2
(£)*7 [1-3-5...(n—4)], forn > 5,nodd .

n >4, neven

Calculating the first order partial derivatives at p = e:

1. _
Goilpme = oD =T A=) |p=c (a2() + ax(e))

x;

(6.38) + exp —%ﬁTA(x——k) 2¢ar(€)(5)a,

p=€)

and for the fundamental solution, using the notation above and the behaviour summarized (6.32), we get:

a log
oz,

1
~  exp —§ﬁTA(X - k) |p=c Cn

1. Cn _
(6.39) + exp —§VTA(X —k) |p=c (2— n)?pxibze.

Now, notice that an appropriate choice of a;(€) makes the second term in (6.38) match the second term
in (6.39). Then an appropriate choice of ay(€) makes the first terms in (6.38) and (6.39) identical. The
right choices for a;(€) and ay(€) are:

(2—n)cy,
2¢2
n

as(e) = 5Cn-

aj(e) =

Using these formulas now in (6.36), we see that the leading order term comes from a;(€) as claimed.

Conclusion of the proof of Theorem 4:

Since the preceding section established the required asymptotic behaviour of the family ¢¢, all that
remains to be proved is that it is justifiable to apply [t6’s lemma to this family. Since the constructed
family ¢¢ is C!, we can use the exact same extension of It6’s lemma that was used in the normal case,

see Proposition 2, Section 6.1.2.
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