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Abstract
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In some options markets (e.g. commodities), options are listed with only a single maturity for each

Y

underlying. In others, (e.g. equities, currencies), options are listed with multiple maturities. In this

X

E paper, we analyze a special class of pure jump Markov martingale models and provide an algorithm for
calibrating such model to match the market prices of European options of multiple strikes and maturities.
This algorithm matches option prices exactly and only requires solving several one-dimensional root-search
problems and applying elementary functions. We show how to construct a time-homogeneous process which

meets a single smile, and a piecewise time-homogeneous process which can meet multiple smiles.

"'We are very grateful for comments from Laurent Cousot, Bruno Dupire, David Eliezer, Travis Fisher, Bjorn Flesaker,
Alexey Polishchuk, Serge Tchikanda, Arun Verma, Jan Obléj, and Liuren Wu. We also thank the anonymous referee for
valuable remarks and suggestions which helped us improve the paper significantly. We are responsible for any remaining
errors.


http:q-fin.PR

I Introduction

Why is there always so much month left at the end of the money? — Sarah Lloyd

The very earliest literature on option pricing imposed a process on the underlying asset price and
derived unique option prices as a consequence of the dynamical assumptions and no arbitrage. We may
characterize this literature as going “From Process to Prices”. However, once the notion of implied volatility
was introduced, the inverse problem of going “From Prices to Process” was established. The term that
practitioners favor for this inverse problem is calibration - the practice of determining the required inputs
to a model so that they are consistent with a specified set of market prices. Implied volatility is just the
simplest example of this calibration procedure, wherein a single option price is given and the volatility

input to the Black Scholes model is determined so as to gain exact consistency with this one market price.

When the number of calibration instruments is expanded to several options of different maturities,
the Black Scholes model can be readily adapted to be consistent with this information set. One simply
assumes that the instantaneous variance is a piecewise constant function of time, which jumps at each
option maturity. The staircase levels are chosen so that the time-averaged cumulative variance matches the
implied variance at each maturity. So long as the given option prices are arbitrage-free, this deterministic
volatility version of the Black Scholes model is capable of achieving exact consistency with any given term
structure of market option prices. As a bonus, the ability to have closed form solutions for European

option prices is retained.

Unfortunately, when the number of calibration instruments is instead expanded to several co-terminal
options of different strikes, there is no unique simple extension of the Black Scholes model which is capable
of meeting this information set. Whenever the implied volatility at a single term is a non-constant function
of the strike price, there are, instead, many ways to gain exact consistency with the associated option prices.
The earliest work on this problem seems to be Rubinstein[I8] in his presidential address. Working in a
discrete time setting, he assumed that the price of the underlying asset is a Markov chain evolving on a

binomial lattice. Assuming that the terminal nodes of the lattice fell on option strikes, he was able to find



the nodes and the transition probabilities that determine this lattice. A continuous time and state version
of the Rubinstein result can be found in Carr and Madan[5]. Other methods of calibrating to a single
smile are presented in Cox, Hobson and Obt6j[7], [9], [17], and to multiple smiles, in Madan and Yor[16].
However, all these works assume the availability of continuous smiles, i.e. option prices for a continuum

of strikes.

In this paper, we present a new way to go from a given set of option prices to a Markovian martingale
in a continuous time setting. This calibration method can be successfully applied to continuous smiles,
as well as a finite family of option prices with multiple strikes and maturities. In order to implement our
algorithm, one only needs to solve several one-dimensional root-search problems and apply the elementary
functions. To the authors’ knowledge, this is the first example of explicit exact calibration to a finite set of
option prices with multiple strikes and maturities, such that the calibrated (continuous time) process has
continuous distribution at all times. In addition, if the given market options are co-terminal, the calibrated

process becomes time-homogeneous.

Suppose that the risk-neutral process for the (forward) price of an asset, underlying a set of European
options, is a driftless time-homogeneous diffusion running on an independent and unbiased Gamma process.
We christen this model “Local Variance Gamma” (LVG), since it combines ideas from both the Local
Variance model of Dupire[§] and the Variance Gamma model of Madan and Seneta[l5]. Since the diffusion
is time-homogeneous and the subordinating Gamma process is Lévy, their independence implies that the
spot price process is also Markov and time-homogeneous. Since the subordinator is a pure jump process,
the LVG process governing the underlying spot price is also pure jump. In addition, the forward and
backward equations governing options prices in the LVG model turn into much simpler partial differential
difference equations (PDDE’s). The existence of these PDDE’s permits both explicit calibration of the
LVG model and fast numerical valuation of contingent claims. As a result of the forward PDDE holding,
the diffusion coefficient can be explicitly represented (calibrated) in terms of a single (continuous) smile.
The backward PDDE, then, allows for efficient valuation of other contingent claims, by successively solving

a finite sequence of second order linear ordinary differential equations (ODE’s) in the spatial variable.



While the single smile results are relevant for commodity option markets, they are not as relevant for
market makers in equity and currency options markets where multiple option maturities trade simulta-
neously. In order to be consistent with multiple smiles, we also present an extension of the LVG model
that results in a piecewise time-homogeneous process for the underlying asset price. The calibration pro-
cedure remains explicit in the case of multiple smiles: in particular, it does not require application of any

optimization methods.

The above results allow us to calibrate LVG model, or its extension, to continuous arbitrage-free
smiles, implying, in particular, that option prices for a continuum of strikes must be observed in the
market. To get rid of this unrealistic assumption, we show how to use the PDDE’s associated with
the LVG model to construct continuous arbitrage-free smiles from a finite family of option prices, for
multiple strikes and maturities. To the authors’ knowledge, this is the first construction of a continuously
differentiable arbitrage-free interpolation of implied volatility across strikes, that only requires solutions to

one-dimensional root-search problems and application of elementary functions.

This paper is structured as follows. In the next section, we present the basic assumptions and construct
the LVG process, i.e. a driftless time-homogeneous diffusion subordinated to an unbiased gamma process.
In the following section, we derive the forward and backward PDDE’s that govern option prices. In the
penultimate section, we discuss calibration strategies. To meet multiple smiles, we construct a piecewise
time-homogeneous extension of the LVG process and develop the corresponding forward and backward
PDDE’s. The algorithm for constructing continuous smiles from a finite set of option prices, along with
the corresponding theorem and numerical results, is presented in Subsection [V — C| The final section

summarizes the paper and makes some suggestions for future research.



II Local Variance Gamma Process

II-A  Model Assumptions

In this subsection, we lay out the general financial and mathematical assumptions used throughout the
paper. For simplicity, we assume zero carrying costs for all assets. As a result, we have zero interest
rates, dividend yields, etc. It is straightforward to extend our results to the case when these quantities
are deterministic functions of time (the associated numerical issues are discussed in Remark [19). We also
assume frictionless markets and no arbitrage. Motivated by the fundamental theorem of asset pricing, we
assume that there exists a probability measure @Q such that market prices of all assets are Q-martingales.

Following standard terminology, we will refer to Q as a risk-neutral probability measure.

We assume that the market includes a family of European call options written on a common underlying
asset whose prices process we denote by S. We assume that the initial spot price Sy is known. Throughout
this paper, we denote by (L,U), with —oo < L < U < oo, the spatial interval on which the S process
lives. The boundary points L and U may or may not be attainable. If a boundary point is attainable,
we assume that the process is absorbed at that point. If a boundary point is infinite, we assume it is not
attainable. Since we interpret S as the price process, for simplicity, one can think of L and U as 0 and oo,

respectively.

In the following subsections, we consider several specific classes of the underlying processes and use
them as building blocks to construct the Local Variance Gamma process. Namely, the desired pure-jump

process arises by subordinating a driftless diffusion to an unbiased gamma process.

II-B Driftless Diffusion

To elaborate on this additional structure, let W be a standard Brownian motion. We define D as a driftless

time-homogeneous diffusion with the generator a?(D)d%,
dDg = a(Ds)dWs, s € 10,¢], (1)
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and with the initial value z € (L,U). The stopping time ¢ denotes the first time the diffusion exits
the interval (L,U). The process is stopped (absorbed) at (. We assume that the diffusion coefficient
a:(L,U) — (0,00) is a piecewise continuous function, with a finite number of discontinuities of the first
order (i.e. the left and right limits exist at each point), bounded uniformly from above and away from
zero, and having finite limits at those boundary points that are finite. Under these assumptions, for any
initial condition = € (L,U), the SDE has a weak solution which is unique in the sense of probability
law (cf. Theorem 5.7, on p. 335, in [11]). It is easy to see that, under these assumptions, a boundary
point, L or U, is accessible if and only if it is finite. Note also that one can extend the set of initial
conditions to the entire real line by assuming that the solution to remains at z, for any x € R\ (L, U).
The collection of distributions of the weak solutions to , for all z € R, forms a Markov family, in the
sense of Definition 2.5.11, on p. 74, in [I1]. More precisely, on the canonical space of continuous paths
OP = C ([0, 0)), equipped with the Borel sigma algebra B (C ([0, 0))), we consider a family of probability
measures {QD ’x}, for x € R, such that every QP is the distribution of a weak solution to , with initial
condition x. As follows, for example, from Theorem 5.4.20 and Remark 5.4.21, on p. 322, in [I1], {QD”’C}
and the canonical process D : w +— (w(t), t > 0) form a Markov family. Due to the growth restrictions on

a, D is a true martingale, with respect to its natural filtration, under any measure Q”*.

It is worth mentioning that there is a reason why we construct D in this particular way, introducing
the family {QD x} Namely, in order to carry out the constructions in Subsections and, in turn, ,
we need to consider the diffusion process D as a function of its initial condition z. In particular, we use
certain properties of its distribution Q”**, such as the measurability of the mapping z ~ QP**, which

follows from the definition of a Markov family (cf. Definition 2.5.11, on p. 74, in [I1]).

We can compute prices of Furopean options in a model where the risk-neutral dynamics of the un-
derlying are given by the above driftless diffusion. Namely, given a Borel measurable and exponentially
bounded payoff function ¢, we recall the time ¢ price of the associated European type claim, with the time
of maturity T

V2UT) =B (6(Dr)| ) = B ((Dr—1))l,—p, »



which holds for all x € R and ¢ € [0,7]. In the above, we denote by E* the expectation with respect to
QP and by FP the filtration generated by D. The last equality is due to Markov property. Thus, in a
driftless diffusion model, the price of a European type option, at any time, can be computed via the price
function:

VP, ) = E7 (6(Dy)). (2)
Throughout the paper, 7 is used as an auxiliary variables, which, often, has a meaning of the time to
maturity: T =T —t. In addition, we differentiate prices, as random variables, from the price functions by
adding a subscript (typically, “¢”). The option price function in a driftless diffusion model is expected to

satisfy the Black-Scholes equation in (7, x):
1
0,V P07, 2) = ()0, VP (r,@),  VPO(0,7) = é(). (3)

Notice, however, that the coefficient in the above equation can be discontinuous, therefore, we can only

expect the value function to satisfy this equation in a weak sense.

Theorem 1. Assume that ¢ : (L,U) — R is exponentially bounded and continuously differentiable, and that
@' is absolutely continuous, with a square integrable derivative. Then, VP9 (defined in (@) 15 the unique
weak solution to (@, in the sense that: VP is continuous, its weak derivatives 0,VP® and 02, VP? are

square integrable in (0,T) x (L,U), for any fived T > 0, and VP9 satisfies @

The proof of Theorem [I]is given in Appendix A. For a special class of contingent claims, we can derive
an additional parabolic PDE; satisfied by the option prices. Recall that, in a driftless diffusion model, the

price of a call option with strike K and maturity 7T is given by:
CP(T,K)=E* (Dr—K)"|FP =CP(T —t,K,Dy),
for all z € R and ¢ € [0,7]. In the above, we denote by CP the call price function, which is defined as
CP(r,K,z) =E" (D, — K)" . (4)
The call price function satisfies another parabolic PDE; in (7, K'), known as the Dupire’s equation:

0.CP(r, K, z) — %ﬁ(f{)a;mcD(T, K, z). (5)



Due to the possible discontinuity of a, we can only establish this equation in a weak sense.

Theorem 2. For any © € (L,U), the call price function CP(r, K,x) (defined in ({{])) is absolutely con-
tinuous as a function of K € [L,U]. Its partial derivative OxCP (7, ., x) has a unique nondecreasing and
right continuous modification, which defines a probability measure on [L,U] (choosing OxCP(7,U,z) = 0).

Moreover, for any bounded Borel function ¢, with a compact support in (L,U), we have

U U T U
/LC'D(T,K,x)gb(K)dK:/L (m—K)*gb(K)dKJr%/o /L a(K)p(K)d 0xCP(u,K,S) du, (6)

for all >0 and all x € (L,U).
The proof of Theorem [2|is given in Appendix A.

II-C  Gamma Process

Let {T'4(t*, ), > 0} be an independent gamma process with parameters t* > 0 and a > 0. As is well

known, a gamma process is an increasing Lévy process whose Lévy density is given by:

kr(t) = t>0, (7)

with parameters t* > 0 and « > 0. Intuitively, jumps whose size lies in the interval [t,t + dt] occur as
a Poisson process with intensity kr(t)dt. The fraction 1/t* controls the rate of jump arrivals, while 1/«
controls the mean jump size, given that a jump has occurred. One can also get direct intuition on ¢* and
«, rather than their reciprocals. Since a gamma process has infinite activity, the number of jumps over
any finite time interval is infinite for small jumps and finite for large jumps. If we ignore the small jumps,
then the larger is t*, the longer one must wait on average for a fixed number of large jumps to occur.
Furthermore, the larger is «, the longer it takes the running sum of these large jumps to reach a fixed
positive level. For an introduction to gamma processes, and Lévy processes more generally, see Bertoin[2],
Sato[19], or Applebaum[I]. For their application in a financial context, see Schoutens[20] or Cont and

Tankov|[0].



The marginal distribution of a gamma process at time ¢t > 0 is a gamma distribution:

altlt

T(t/t")

QI e ds} = s lemes g, s>0,t>0, (8)

for parameters a > 0 and t* > 0. For ¢t < t*, this PDF has a singularity at s = 0, while for ¢ > t*, the
PDF vanishes at s = 0. At t = t*, the PDF is exponential with mean é As a result, we henceforth refer
to the parameter t* > 0 as the characteristic time of the Gamma process. The characteristic time t* of a

Gamma process I' is the unique deterministic waiting time ¢ until the distribution of I'; is exponential.
Recall that the mean of I'; is given by:

E°r, =

t
9
at*’ 9)

for all t > 0. If we set the parameter a = 1/t*, then the gamma process becomes unbiased, i.e. E°T; =t

for all t > 0. In general, the variance of I'; is:

t
—_ t > 0. 10
o?t* (10)
As a result, the standard deviation of an unbiased gamma process I'; is just the geometric mean of ¢ and
t*. Setting a = 1/t* in , we obtain the unbiased Gamma process. The distribution of the unbiased

gamma process [ at time ¢t > 0 is:

st/ —1g=s/t

R A O U]

ds, s >0, (11)

When t = t*, this PDF is exponential, and the fact that the gamma process is unbiased implies that the

mean and the standard deviation of I';« are both ¢*.

Remark 3. The choice of a = 1/t* in the above construction is motivated merely by the desire to have a
Gamma process which is unbiased: its expectation at time t is equal to t. We consider this as a natural
property, since, in what follows, we use Gamma process as a time change. However, it is not at all
necessary for the Gamma process to be unbiased. In fact, the results of the subsequent sections will hold

for any o > 0. In particular, if the unbiased Gamma process produces unrealistic paths (e.g. having a lot



of very small jumps and very few extremely large ones), one may change the parameter « to obtain more

realistic dynamicsf]

II-D Construction of the Local Variance Gamma Process

We assume that the risk-neutral process of the underlying spot price S is obtained by subordinating
the driftless diffusion D to an independent unbiased gamma process I'. Recall that D is constructed as
the canonical process on the space of continuous paths QP = C ([0, 00)), equipped with the Borel sigma
algebra B (C ([0, 00))), and with the probability measures Q”%, for x € R. On a different probability space

QO F&' | with a probability measure QU, we construct an unbiased gamma process I', with parameter ¢*.
Finally, on the product space QP x QY B(C ([0,0))) ® F'' we define the risk-neutral dynamics of the

underlying, for every (wy,ws) € QF x QF as follows:
St(wlv('“)?) = DFt(w2)(w1)> t>0. (12)

It can be shown easily, by conditioning, that S inherits the martingale property of D, with respect to its

natural filtration, under any measure

@ =Q”* x Q" (13)

Remark 4. Considered as a function of the forward spatial variable, the PDF of S; (when it exists) may
possess some unusual properties for t small but not infinitesimal. For example, when a is constant, it is
easy to see that the PDF is infinite at x, for timest < t*/2. As a result, for short term options, the graph
of value against strike will be C*, but not C*. Similarly, gamma will not exist for short term ATM options.
For a piecewise continuous a, we conjecture that the PDF of Sy has a jump at every point of discontinuity

of a. Then, at every such point, the call price is C, but not C?, viewed as a function of strike.

As a diffusion time changed with an independent Lévy clock, the process S, along with {Q"} (defined

in ), for x € R, form a Markov family. The following proposition makes this statement rigorous and,

2We thank Jan Obléj for pointing out that the simulated paths of the unbiased Gamma process may look unrealistic, for
certain values of t*



in addition, shows how to reduce the computation of option prices in LVG model to the case of driftless
diffusion. Recall that, in a model where the risk-neutral dynamics of underlying are given by .S, with initial
value Sy = x, the time ¢ price of a European type option with payoff function ¢ and maturity 7" is given
by

VAT) =B ¢(Sp)| F (14)
where F° is the filtration generated by S, and, with a slight abuse of notation, we denote by E? the

expectation with respect to Q*. The following proposition, in particular, shows that option prices in a

LVG model are determined by the price function, defined as
Ve(r,x) = E*¢(S,), (15)

Proposition 5. The process S and the family of measures {Q%}, g form a Markov family (cf. Definition
2.5.11n [11)]). In particular, for any Borel measurable and exponentially bounded function ¢, the following

holds, for all T > 0 and x € R:

VAT) = V(T —t,S)), Ve(r,z) = VP (u, z)du, (16)

o (E)I(r/t)

where Vt‘z’, V?, and VP? are given by , , and (@, respectively.

Proof. According to Definition 2.5.11 and Proposition 2.5.13 in [I1], in order to prove that S and {Q*},
form a Markov family, we need to show two properties. First, for any F' € B (C ([0, 00)))®F', the mapping
v Q¥F) = QP*x QY (F) is universally measurable. This property can be deduced easily from the
universal measurability of the mapping x — QP (F), for any F € B (C ([0,00))), via the monotone class

theorem. Secondly, we need to verify that, for any B € B(R) and any u,t > 0,

Q" Sutt € B’}f = QY (S, € B)|

y:Su

The latter is done easily by conditioning on I" and using the Markov property of D. Similarly, one obtains

the second equation in . The first equation in follows from the Markov property. O

10



Suppose that time to maturity 7 is equal to the characteristic time ¢* of the gamma process. Then ((16])

yields
e’ efu/t*

VO(t*, x) = VP2 (u, x)du. (17)

0 t

In particular, for the call options, we obtain:
C(T,K)=E" (Sq—K)" F° =C(T-t,K,S,),

where C(7, K, x) is the call price function in LVG model, satisfying

0o uT/t*—le—u/t*
o (t)/D(r/t)
with CP given by (). When 7 = t*, we have

C(r,K,z) = CP(u, K, z)du, (18)

_ *
o o u/t

0 t*

C(t",K,x) = CP(u, K, z)du. (19)

The next section shows how the above representations can be used to generate new equations that govern

option prices.

II1 PDDE’s for Option Prices

In this section, we show that the additional structure imposed on S in Subsection [[I-D] causes the equa-
tions presented in the previous section to reduce to much simpler partial differential difference equations
(PDDE’s). The new equations can be used for a faster computation of option prices, as well as for exact
calibration of the model to market prices of call options. In this section and the next, we will assume that
the local variance rate function a?(D) of the diffusion and the characteristic time t* of the gamma process
are somehow known. In the following section, we will discuss various ways in which this positive function

and this positive constant can be identified from market data.

III-A Black-Scholes PDDE for option prices

Consider a European type contingent claim, which pays out ¢(Sr) at the time of maturity 7. Recall the

price function of this claim in a LVG model, V?, defined in . Equation implies that this price

11



function is just a Laplace-Carson [| transform of the price function in diffusion model, where the transform

argument is evaluated at 1/t*. Integrating both sides of the Black-Scholes equation , and observing that

lim V(7. 2) = 6(a),

we, heuristically, derive the Black-Scholes PDDE for the price function in LVG model. Recall that the
Black-Scholes PDE is understood in a weak sense, due to the possible discontinuities of the coefficient
2

a”. The following theorem addresses this, as well as some other, difficulties, and makes the derivations

rigorous.

Theorem 6. Assume that ¢(x) is once continuously differentiable in x € (L,U) and that it has zero limits

at Ly and U_. Assume, in addition, that ¢' is absolutely continuous and has a square integrable derivative.

Then, the following holds.

1. For any 7 > t*, the function V?(r,-) (defined in ) possesses the same properties as ¢: it has
zero limits at the boundary, it is once continuously differentiable, with absolutely continuous first

derwative, and its second derivative is square integrable.

2. In addition, for all x € (L,U), except the points of discontinuity of a, V®(t*,x) is twice continuously

differentiable in x and satisfies

%a2(x)8§xv¢(t*,x) _ tl VO(t',z) — dz) =0 (20)

The properties 1-2 determine function V(t*,-) uniquely.
The proof of Theorem []is given in Appendix A. Note that the value of a contingent claim with maturity

T > t*, at an arbitrary future time t € (0,7 — t*], Vf), can be viewed as a payoff of another claim, with

maturity ¢ and the payoff function V(T —t,-). Indeed, Theorem [f] states that function V(T — t,)

3The Laplace-Carson transform of a suitable function f(t) is defined as f(f e M f(t)dt, where A, in general, is a complex
number whose real part is positive.

12



possesses the same properties as ¢. Therefore, if the current time to maturity is ¢* 4+ 7, with 7 > ¢*, the

price function has to satisfy equation , with V¢(7,-) in lieu of ¢:
Ly 2 1r¢ (4 Lo P
5@ ()0, Vet +1,2) — . Vet +r,x2) = Ver,z) =0 (21)

The PDDE (21)) can be used to compute numerically the price function at all 7 = nt*, forn =1,2,..., by
solving a sequence of one-dimensional ODE’s, as opposed to a parabolic PDE (compare to (3)). Namely,

the price function can be propagated forward in 7, starting from the initial condition:
V¢(07 .%‘) = ¢(x)7

and solving recursively, to obtain the values at each next 7. In fact, we will show that, if a is chosen

to be piecewise constant, the above ODE can be solved in a closed form.

Furthermore, one can approximate the option value at an arbitrary time to maturity 7 > 0. For 7 = t*,
one can compute option prices via the ODE (20). For 7 € (0,t*) U (t*,2t*), the price function V?(r, z)
can be approximated by Monte Carlo methods, or analytically, by computing a numerical solution to ({3))
and integrating it with the density of I'.. Having done this, one can use to propagate the price values

forward in 7, as described above.

III-B Dupire’s PDDE for Call Prices

In this subsection we focus on call options. We will derive equations that, although looking similar to
the Black-Scholes equations, are of a very different nature, and are specific to the call (or put) payoff
function. As before, we, first, use equation to conclude that the price function of a European call in a
LVG model is a Laplace-Carson transform of its price function in a diffusion model. Then, similar to the
heuristic derivation of , we integrate both sides of the Dupire’s equation and, heuristically, derive

the Dupire’s PDDE for call prices in the LVG model:

%&(K)@fwca*, K.z)— tl Ol K.2) — (z — K)© =0 (22)

13



One of the main obstacles in making the above derivation rigorous is that, as stated in Theorem [2], the
Dupire’s equation can only be understood in a very weak sense. Let us show how to overcome this

obstacle and prove that the call prices in LVG model do, indeed, satisfy equation ([22]).

Lemma 7. For any x € (L,U), the call price function C(t*, K,x) (given by (19)) is continuously differ-
entiable, as a function of K € (L,U), and its derivative is absolutely continuous. Moreover, the second

order deriative 0% - C(t*, ., x) is the density of Sy on (L,U).

The proof of Lemma [7] is given in Appendix A. Using this result, it is not hard to derive the desired

equation.

Theorem 8. For any x € (L,U), the call price function C(t*, K, x) (given by (19)) satisfies the boundary
conditions:

lim C(t*,K,z) — (z — K)" =1lm C(t", K,z) =0 (23)

KIL KU

In addition, the partial derivative of the call price function, OxC(t*, K,x), is absolutely continuous, and
its second derivative, 0%, C(t*, K, x), is square integrable in K € (L,U). Moreover, everywhere except
the points of discontinuity of a, 0%, C(t*,-,x) is continuous and satisfies (@ The call price function

C(t*, -, x) is determined uniquely by these properties.

It is shown in the next section how the PDDE (22 can be used for exact calibration of the LVG model
to market prices of call options with a single maturity. In order to handle the case of multiple maturities,
we need a mild generalization of . Note that can be interpreted as a no arbitrage constraint

holding at ¢ = 0 between the value of a discrete calendar spread,

Ct+t",K,x)—C(t,K,x)

t* ’
and the value of a limiting butterfly spread,
0? . . Ct+t"K+AK,z) =20t +t",K,2)+ C(t+t*, K — AK,x)

14



This no arbitrage constraint would hold at all prior times 7 < 0 and starting at any spot price level x.

Furthermore, due to the time homogeneity of the S* process, we may write:

a*(K) 0*
2 0K?

1
C(T—I—t*,K,ZL‘)—t—*(C(T—I—t*,K,I)—C(T,K,w)):0. (24)

Theorem 9. For any 7 > 0 and x € (L,U), the call price function C(T + t*,-,x) (given by (18)) is the
unique function that satisfies the boundary conditions , has an absolutely continuous first derivative
and a square integrable second derivative, and such that, everywhere except the points of discontinuity of

a, its second derivative is continuous and satisfies .

A rigorous proof of Theorem [9]is given in Appendix A.

Remark 10. We note that European put prices also satisfy the PDDE . This follows easily from the

put-call parity.

One can differentiate , to obtain, formally, a PDDE for deltas, gammas, and higher order spatial
derivatives of option prices. We, however, do not provide a rigorous derivation of such equations in this
paper. As in the case of Black-Scholes PDDE , equation can be used to compute numerically
the price function at all 7 = nt*, for n = 1,2,..., by solving a sequence of one-dimensional ODE’s .
Having an approximation of C(7, K, x), for 7 € (0,%*), one can, similarly, compute the price values for all

7> 0.

In the next section, we show that, if a is chosen to be piecewise constant, the PDDE can be solved
in a closed form. We also show how this equation can be used to calibrate the model to market prices of

call options of multiple strikes and maturities.

IV Calibration

In the previous sections, we assumed that the local variance function a?(x) and the characteristic time

t* are somehow known. In this section, we first discuss how one can deduce a and t* from a family of
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observed call prices, for a single maturity and continuum of strikes. We, then, show how a mild extension
of the LVG model can be calibrated to a finite number of price curves (or, implied smiles), for different
maturities, and, still, continuum of strikes. Finally, we consider a more realistic setting and show how
these continuous price curves (or, implied volatility curves) can be reconstructed from a finite number
of option prices, by means of a LVG model with piecewise constant diffusion coefficient. The resulting
calibration algorithm only requires solution to a single linear feasibility problem and a finite number of
one-dimensional root-search problems. It allows for exact calibration to an arbitrary (finite) number of

strikes and maturities!

IV-A Calibrating LVG model to a Continuous Smile

Suppose that we are given current prices of a family of call options, C(K) , for a single time to maturity
7% and all strikes K changing in the interval (L, U). We can also observe the current level of underlying
x € (L,U). Of course, we can, equivalently, assume the availability of implied smile and the current level

of underlying. We assume that:

1. limKiL C(K)—($—K)+ :thTUC_’(K):O,

2. C" is strictly positive and continuous everywhere in [L, U], except a finite number of discontinuities

of the first order;

3. C(K)—(x—K)" /C"(K) is bounded from above and away from zero, uniformly over K € (L,U).

Then, we can set t* = 7" and
C(K) — (z— K)*
C’”(K)

It is easy to see, that, under the above assumptions, C” is square integrable. Then, Theorem |§I implies

2

that the LVG model with the above parameters reproduces the market call prices C(K) .

The method presented here is an example of an explicit exact calibration of a time-homogeneous

martingale model to a continuous smile of an arbitrary (single) maturity. A more general construction,
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which, however, may lead to time-inhomogeneous dynamics, is described in [7].

To motivate the above conditions 1-3, recall that our standing assumptions include zero carrying costs
and the existence of a martingale measure @Q which produces prices of all contingent claims as the ex-
pectations of respective payoffs (cf. Subsection . It is, then, natural to require that the observed
market prices are consistent with this assumption: i.e. they are given by expectations of respective payoffs
in some martingale model. In this case, the market call prices have to satisfy condition 1 above, along
with C”(K) > 0 and C(K) — (x — K)* > 0. Thus, the above conditions 1-3 can be viewed as a stronger
version of the no-arbitrage assumption. A more realistic setting, with only a finite number of traded op-
tions, is considered in Subsection [[V-C| where slightly less restrictive assumptions on the market data are

introduced.

Now suppose that we plan to recalibrate the model on a daily basis. In the single smile setting, we
may distinguish two types of options markets. The first type is a fixed term market, where the time to
maturity of the single observable smile remains constant as calibration time moves forward. An example
of a fixed term options market is the OTC FX options market for an EM currency, where only one term is
liquid. The other type of options market that we may distinguish is a fixed expiry market, where the time
to maturity of the single observable smile declines linearly toward zero as calibration time moves forward.

An example of a fixed expiry options market is the market for options on commodity futuresﬁ

In a fixed term options market, the t* parameter would remain constant as calibration time moves
forward. In particular, if the result of the first calibration is (a,t*), then, it is possible (albeit it unlikely)
that the output of all subsequent calibrations will be the same: for example, if the true dynamics of the
underlying are, indeed, given by an LVG model with these parameters. Now consider a fixed expiry options
market. If we calibrate to one day options on a daily basis, there is no issue. However, if we calibrate
to longer dated options on a daily basis, then the t* parameter would drop through calibration time as
we near maturity. Hence in this case, calibrating an LVG model, we know a priori that the result of the

next calibration will always be different from the current one. In particular, even if the underlying truly

4These options are American-style but are rarely exercised early.
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follows an LVG model with the parameters captured by the initial calibration, (a,t*), each subsequent
recalibration of the model will lead to different parameter values. In this case, the LVG model can be used
as a tool for arbitrage-free interpolation of option prices, but one cannot have much faith in the model

itself.

IV-B Calibrating to Multiple Continuous Smiles

For many types of underlying, options of multiple maturities and strikes trade liquidly. For OTC currency
options, the maturity dates at which there is price transparency move through calendar time, so that the
time to maturity for each liquid option remains constant as calendar time evolves. In contrast, for listed
stock options, the maturity dates at which there is price transparency are fixed calendar times. Hence, the
time to maturity of each listed stock option shortens as calendar time evolves. In this section, we address
the issue of calibrating to multiple smiles. In order to do this, we, first, develop a non-homogeneous

extension of LVG model.

Recall that, if one wishes to match market-given quotes at a single strike and multiple discrete ma-
turities, then one can extend the constant volatility Black-Scholes model by assuming that the square of
volatility is a piecewise constant function of time. Analogously, in order to match market-given smiles
at several discrete maturities, we extend the LVG model so that the local variance function a? and the

parameter t* are piecewise constant functions of time. Consider a finite collection of LVG families,

M
S"AQ" eer s

M
m=1’

with the parameters {a,, t*, Ly, Uy} respectively. Recall that we extend the definition of each LVG

process to all initial conditions € R by assuming that Q™" (S;" =z, for all t > 0) = 1, for any x € R\
(L, Up). Form =1,..., M, we denote by Q;" the marginal distribution of S;" under Q*. We assume that
QM = QM*. We also introduce a sequence of times {T}, ,f‘fiol via T, = >0 t5, Ty = 0, and Thy4q = 0.

Finally, we define the non-homogeneous LVG process S, with parameters {am,tt,, L, Um}%zl, as

a non-homogeneous Markov process, whose transition kernel is defined, for all ¢ € [T}, T;y1) and T €
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Titj, Tipjr), with t <T,0 <4 <M, and 0 < j < M — i, as follows:

i+7+1,2 45 i+7,Ti 45— i+2,2; i+1,
plt,o: T, B) = R R o R lT—jTi-ij 7(B) lTi-ijz—ﬂH;—l (dwigy) - QZT:L:—EH (dxi+2)nglit(dxi+l)’

where B C R is an arbitrary Borel set. Notice that the above integral is well defined, since every mapping
x — Q" is universally measurable (cf. Definition 2.5.11, on p. 74, in [I1]). Using the above transition
kernel, for any fixed initial condition x € R, it is a standard exercise to construct a candidate family of
finite-dimensional distributions of S, so that it is consistent. Then, due to the Kolmogorov’s existence
theorem, there exists a unique probability measure Q”, on the space of paths, that reproduces these
finite-dimensional distributions. For every initial condition x € R, the LVG process S is constructed as a

canonical process on the space of paths, under the measure Q<.

Intuitively, the process S evolves as S™! between the times T}, and Tni1, with the initial condition
being the left limit of the process S at the end of the previous interval, [Trn—1,Tm| . However, making
such definition rigorous is not straightforward, since it requires certain properties of the processes S™
as functions of the initial condition x € R (e.g. the measurability in z). Recall that, due to potential
discontinuity of a, we had to construct each LVG process S™ using the weak, rather than strong, solutions
to equation . This, in particular, makes it rather hard to analyze the dependence of S™ on the initial
condition z in the almost sure sense. This is why we introduced the family of measures QP | and,
in turn, {Q*}, and established the measurability of these families as functions of x. However, once the
distribution of S is constructed, we no longer need to keep track of its dependence on the initial condition.
In particular, it is not necessary to construct the process S on a canonical space (which supports all
measures @x) one can construct S for every different value of the initial condition x separately, possibly,
on a different probability space. We chose to construct the process S as shown above, only in order to be

consistent with the constructions made in preceding sections.

Let us compute the call prices in a model where the risk-neutral dynamics of the underlying are given
by S and the market filtration, FS , is generated by the process. Recall that S is a non-homogeneous

Markov process. In particular, for 7,, <t < T < T),,1, we can compute the time ¢ price of a European
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call option with strike K and maturity 7" as follows:

ét<T7 K) = fEx <(§T - K)+ |‘Ft§> = Rp(t, gt;T, y)(y — K)+dy = R( >+Qm+1 St( )

= Cm+1<T - t: K> St)? (25)

where E* denotes the expectation with respect to Q% and C™*! is the call price function associated with
the LVG model S™! (given by ) Notice that the time zero call price in a non-homogeneous LVG

model, with initial condition z, is given by
Co(T,K) = C(T, K, x)
where the call price function C is defined as

(1, K, a) =" (Sr - K>+

Then
G(Tm+17K7 ‘I) _G(Tm7K x ( m+17 CTm(Tm7K)>
- INEI (Cm+1 (Tm—f—l - Tm> Ka ST ) ST - ) <Cm+1 m+1) K STm) (ng - K)+>
t;kn e m * tm N PR * &
= 2+1a72n+1<K)]E (a%(KC +1(tm+17 K, STm)> - 2+1a3n+1< )a?{KE C +1(tm+17 K, Sr,)

tr . 28 >
- 2+1a$n+1< )G%KE Ot (Ton + 41, K) = 2+1a3n+1(K)a%{KC(Tm+17K7x)

where we made use of . In the above, we interchanged the differentiation and expectation, using
the Fubini’s theorem. To justify this, we recall that the function 9% ,C™"* (¢, K,-) is measurable,
as a limit of continuous functions (since this derivative exists in a classical sense, everywhere except a
finite number of points K'). In addition, it is absolutely bounded, due to equation and the fact that
CmHi(tr o, K, x) — (x — K)* vanishes at © 1 U and x | L (which, in turn, can be shown by a dominated
convergence theorem) Thus, we conclude that, for any m = 1,..., M, the call price function C (T, -y )

satisfies

%@(K)@@C(Tm K)o (é(Tm, K.x) = (T, K1) = 0 (26)
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Theorem 11. For any x € (L, Uy,), consider the time zero call price in a non-homogeneous LVG model,
C(T,,, K, x) (given by ) Then, C(T,, K, x) is the unique function of K € (L, Uy) that satisfies
the boundary conditions , has an absolutely continuous first derivative and a square integrable second
derivative, and such that its second derivative is continuous and satisfies (@ everywhere except the points

of discontinuity of a,,.

Proof. We have already shown that C (T, -, x) satisfies and possesses all the properties stated in the
above theorem. Notice that the homogeneous version of (with zero in place of C(T},_1, K, x)) is the
same as the homogeneous version of . The uniqueness of solution to the latter equation follows from

Theorem [9 This completes the proof of Theorem [11} O

Now, the calibration strategy for multiple maturities becomes obvious. Suppose that the market pro-

vides us with continuous price curves for call options at multiple maturities 0 < T7 < Ty < - -+ < Ty < 00:
C"(K): Keée(LnUp,) ,form=1,..., M,

as well as the current underlying level x € R. Equivalently, we can assume the knowledge of implied smiles
for a continuum of strikes and multiple maturities. Using the notational convention Ty = 0, we define
CY%K) = (x — K)*, for all K € R. In addition, we extend each market price curve C™(K) to all K € R,
recursively, starting with m = 1, and defining C™(K) = C™ (K, for K ¢ (L, Up,).

Assumption 1. For allm =1,..., M, we assume that:

1. limg,g,, C™(K)—Cm YK) =limgyy, C™K)-—C™"YK) =0;

2. 0%, C™ is positive and continuous everywhere in [Ly,, U], except a finite number of discontinuities

of the first order;

3. C™K)—-Cm"YK) Jo%,C™(K) is bounded from above and away from zero, uniformly over K €
(L, Up)-
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Then, we can set t;, =1, —T,,—1 and

2 C™(K) - C™Y(K)
2 (K = — _ 27
) T ) 0
for m = 1,..., M It is easy to see, that, under the above assumptions, each 9% ,C™ is square integrable,

for m =1,..., M. Then, Theorem [l1|implies that the non-homogeneous LVG model with the parameters

{am, 5, L, Um}%z1 reproduces the market price curves C™ .

When the maturity spacing is not uniform, then the above calibration strategy may lead to grossly
time-inhomogeneous dynamics for the resulting gamma process. In particular, even if the true risk-neutral
dynamics of the underlying are given by a time-homogeneous Markov process, the calibrated process may
have very inhomogeneous paths. This occurs when the times between available maturities vary significantly:
then, t7 = T;—1T,_; varies with 7, and the associated unbiased Gamma process has either many small jumps,
or few large ones, depending on the time interval. This phenomenon is discussed in Remark [3| where it is
also suggested that, in order to fix, or mitigate, the problem, one may use a biased, rather than unbiased,
Gamma process (i.e. with o # 1/t*), which provides more flexibility for controlling the path properties
of the process. If one is nonetheless worried about the lack of homogeneity in the maturities, one can
sometimes add data to induce a more uniform maturity spacing. Of course, in this case, the additional
data will affect the dynamics of calibrated process, and one may need to choose this data accordingly, to

reproduce the desired characteristics of the paths.

Remark 12. Notice that the above model for S can be modified to obtain other methods of interpolating
option prices across maturities. Namely, instead of using a Gamma process to construct each S™7, we
can time change a driftless diffusion by any independent increasing process whose distribution at time t;,
1s exponential. It is easy to see that, in this case, option prices will satisfy equation (@ This was already
observed in [7], in the case of a single maturity. However, when only one maturity is available, the use of
Gamma process is justified by the fact that it is the only Lévy process that has an exponential marginal.
Therefore, it is the only possible time change that produces time-homogeneous Markov dynamics for the
underlying. On the other hand, once we calibrate to multiple maturities, the time homogeneity is, typically,

lost, and there is no particular reason to use Gamma process anymore.
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IV-C Constructing Arbitrage-free Smiles from a Finite Family of Call Prices

In this subsection, we show how to construct continuous call price curves, satisfying Assumption (1] in
Subsection [[V-B] from a finite number of observed option prices. This can be viewed as an interpolation
problem. Nevertheless, due to the non-standard constraints given by Assumption [I] this problem cannot
be solved by a simple application of existing methods, such as polynomial splines. In particular, the
second part of Assumption [I| implies that we have to restrict the interpolating curves to the space of
convex functions, while the other parts of Assumption [1| introduce several additional levels of difficulty.
Perhaps, the most popular existing method for cross-strike interpolation of option prices is known as the
SVI (or SSVI) parameterization (see, for example, [10] and references therein). In order to fit a function
from the SVI family to the observed implied volatilities, one solves numerically a multivariate optimization
problem, to find the right values of the parameters. Then, provided these values satisfy certain no-arbitrage
conditions, one can easily obtain the interpolating call price curves, for each maturity, such that they satisfy
conditions 1 — 2 of Assumption [[l The SVI family has many advantages: in particular, it allows one to
produce smooth implied volatility (and call price) curves using only few parameters. In addition, each
of the parameters has a certain financial interpretation, which makes SVI useful for developing intuition
about the observed set of option prices. As it is shown, for example, in [10], the empirical quality of SVI
fit, applied to the options on S&P 500, is quite good. However, the SVI family was not designed to fit an
arbitrary combination of arbitrage-free option prices, which also reveals itself in the numerical results of [10],
where the interpolated implied volatility, occasionally, crosses the bid and ask values. In this subsection,
we provide an interpolation method that is guaranteed to succeed for any given (strictly admissible) set
of option prices. We also present an explicit algorithm for constructing such an interpolation, which does
not use any multivariate optimization. In addition, the interpolation method proposed here produces
price curves that satisfy the, rather non-standard, condition 3 of Assumption |1| (which is needed for cross-
maturity calibration). Finally, the proposed method is particularly appealing in the setting of the present

paper, as the interpolating price curves are constructed via the LVG models.
We start by considering a specific class of LVG processes that have a piecewise constant variance
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function a®. Assume that L and U are both finite, and

R+1

(I(ZL’) = Z O-j]‘[ijlij) ($)a
j=1

for a partition L =1y < 11 < ... < vr < vy = U and a set of strictly positive numbers {Uj}fill. The
choice of t*, in this case, is not important. To simplify the notation, we denote z = 1/2/t*. In addition,

for fixed x and z, we denote
1

The PDDE (22)), in this model, becomes
a*(K)X"(K) = 2*x(K) = =2*(z = K)* (28)

Notice that, for K € (L,z), V(K) = x(K) — (x — K) satisfies the homogeneous version of the above
equation:

a?(K)V'"(K) - 2*V(K) =0 (29)

For K € (z,U), V(K) = x(K) satisfies the above equation as well. Notice that we have introduced the
time-value function

V(K) = x(K) = (z - K)*

Function V' is not a global solution to equation , as its weak second derivative contains delta function
at K = z. However, on each interval, (L,z) and (z,U), it is a once continuously differentiable solution
to , satisfying zero boundary conditions at L or U, respectively. In addition, V' (K) is continuous at
K =z and V'(K) has jump of size —1 at K = z. It turns out that these conditions determine function V'

uniquely, as follows.

e For K € (L,x), V(K) = V}(K), where V! € CY(L,z) satisfies (29)), with zero initial condition at
K = L, and, hence, has to be of the form:

R+1
VIE) =Y ele ™o e 1y, ) (K) (30)

j=1
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. . 1.1 2.1 . .
with the coefficients ¢;” and ¢;" determined recursively:

L1 o —zvj/o; 1 Oj+1 11 —zv;/o; Titl 91 sy /o
Cj;—le 2vj/oj41 14+ ZJrt ij e 25 /0 + 1-— j Cj7 BZV]/U]
2 0j 0
Cj+1ezw/dy+1 = — 1 — J Cj e zvj/o; + 14+ J Cj ezu]/aj ’ (31)
] i i L1 2,1 _ .
for j > 1, starting with ¢;"' = —A\1e*%/?t and ¢! = A\je *1/71 | with some A, > 0.

For K € (z,U), V(K) = V*(K), where V2 € C'(z,U) satisfies (29)), with zero initial condition at
K = U, and, hence, has to be of the form:

R+1
VAE) =Y e ™ 22 1y, 0 (K) (32)

j=1

. . 1.2 2.2 . .
with the coefficients ¢;” and ¢ determined recursively:

12 oo 1 oF 1.2 /o 0; 2,2 o
Cj e 2vjfo; 1+ Cj+1e 2vj /o1 4+ 1= Cj+1€zuj/aj+1
Tj+1 Tj+1
29 o Jo 1 O 19—/ 0 2,2 o
> ezr/]/a] _ 1 — J C<7+1€ 2V /0541 + 1+ J C'Lrlezuj/aﬁrl ’ (33)
J O J O J
J+1 J+1
. . . 1,2 2,2 — :
for j < R, starting with cg7, = Ae?/7r+1 and ¢} = —Aoe ?U/7r+1 | with some A, > 0.

The constants A; > 0 and Ay > 0 should be chosen to fulfill the C*! property of x(K) at K = z.
Namely, we denote the above functions V1(K) and V?(K), by V1(\;, K) and V?(\y, K), respectively.
We need to show that there exists a unique pair (A, Az), such that: V(A x) = VZ(\y,z) and

Ok V(A1) = 0k V%(Ag, o) + 1. Tt is clear that
VIO, K)=MVILK), V(A K) = V(1K)
Thus, we need to find A; > 0 and Ay > 0, satisfying
MV z) = V3L ), MgV, z) = M0k V3(1,2) + 1
Lemma 13. Function V(1, K) is strictly increasing in K € (L,U), and V*(1, K) is strictly decreas-

ing in K € (L,U).
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The proof of Lemma [13|is straightforward. The C! property and equation imply convexity of
V. In addition, the choice of the coefficients ¢;" and ¢ ensures that V(L) = 0 and V(L) > 0.
Hence, V! stays strictly increasing in (L, U). Similarly, we can show that V2 is strictly decreasing.

Lemma |13 ensures that there is a unique solution (Af > 0, A5 > 0) to the above system of equations.
e Thus, the time value function is uniquely determined by
V(K) = VI K)Llk<e + VA, K)o

We denote by V*%*% the time value function produced by an LVG model with piecewise constant

R+1
J=0

R+1

diffusion coefficient a, given by v = {v;},” and o = {o;},7}, with ¢* =2/ 2%, and with the initial level of

underlying . Similarly, we denote the call prices produced by such model, for maturity ¢t* = 2/2? and all
strikes K € (L,U), via
CYo*(K) = VYo (K) + (. — K)*T (34)

Now, we can go back to the problem of calibration.

Assumption 2. We make the following assumptions on the structure of available market data.

1. We are given a finite family of maturities 0 < Ty < Ty < -+ < Ty < o0, and, for each maturity T;,
there is a set of available strikes —oo < Ki < -+- < K}'Vi < 00. In addition, the following s satisfied,

foreachi=1,... M —1:

Nit1
Jj=1

N;

i+1
Kj j=1

\ K N K{,Ky =0

In other words, we assume that each strike available for the later maturity is either available for the

earlier one as well, or has to lie outside of the range of strikes available for the earlier maturity.
2. We observe market prices of the corresponding call options:
CT,K;):j=1,...,Nj,i=1,....M |

as well as the current underlying level x € R.
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3. In addition, for each i =1,..., M, we are given an interval (L;,U;), such that:
(Ki,K}Qi) C (Li,U;) C (Liy1, Uita),

re(L;,U)C max K" :K"<K' , min K":K">K.
(Li, U3) m>i, j>1 Y J Lorsig> J Ni

where we use the standard convention: max () = —oo and min () = oo. The interval [L;, U;] represents
the set of possible values of the underlying on the time interval (T;_1,T;]. Of course, there exist
infinitely many families {L;, U;} that satisfy the above properties. However, the economic meaning of
the underlying may restrict, or even determine uniquely, the choice of {L;, U;} (e.g. if the underlying
is an asset price, then, it is natural to choose L; = 0). The intervals (L;,U;) can remain the same,

for all v > 1, only if all strikes available for the later maturities are also available for the earlier ones.

The next property of the market data is closely related to the absence of arbitrage, and, therefore, we

present it separately.
Definition 14. The market data TZ»,KJZ:, C(T;, K;),Li, U,z , satisfying Assumption 15 called strictly

admissible if the following holds, for each1=1,..., M:

e the linear interpolation of the graph
(l‘ - Liv LZ) ) C(EJ Ki)u K{ P é(ﬂ? K:/L\/'Z)a K}VZ ) (07 UZ) )

18 strictly decreasing and convex, and no three distinct points in the above sequence lie on the same

line;

e forallj=1,...,N;, we have C(Y},K}) > (x—K})*, and, in addition, ifi > 1 and KJZ € (Li—1,U;—q),
then C(T;, K}) > C(Ti—1, KI71).

In what follows, we assume that the market data is strictly admissible. In practice, due to the presence

of transaction costs, this additional assumption is no loss of generality.
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Remark 15. The simplest possible setting in which the above assumption on the structure of available
strikes (Assumption 18 satisfied, is when the same strikes are available for all maturities. Then, we can
define L; and U; to be independent of i > 1. Even though Assumption 2] allows for a slightly more general
structure of available strikes, in practice, this assumption is often violated. In particular, this is typically
the case when one considers discounted prices (recall that strikes shift after discounting). However, if
option prices for some strikes are not available for earlier maturities, one can fill in the missing prices
so that they satisfy the above strict admissibility conditions. This amounts to a multivariate optimization
problem, which, nevertheless, is particularly simple, as the constraints are linear. Such problems are known
as the linear feasibility problems, and they can be solved rather efficiently, for example, by means of the

interior point method (c¢f. [5)).

The problem, now, is to interpolate the observed call prices across strikes. Namely, we need to find a
family of functions

K CY(K), KER,

for i =1,..., M, such that: they match the observed market prices, C*(K;) = C(T}, K;), for all i and j,
and the family of price curves C? satisfies Assumption , stated in Subsection . We provide an
explicit algorithm for constructing such functions, making use of the LVG models with piecewise constant

diffusion coeflicients.

Theorem 16. For any z > 0, and any positive integers M and {Ni}ij\il, there exists a function that maps

any strictly admissible market data, T;, K}, C(T;, K}), L;, U, x . to the vector of parameters:

=1, M, j=1,..,

M
i=1"

% %

vi= L;= Vo<l << VsM(N+2) < VspM(N+2)+1 = Ui o' = o > 0,... y O3M(N+2)+1 >0

= i i M . .
such that the associated call price curves {CZ =Cv° ”} , defined in , match the given values
=1

1=

C(T;, K;) and satisfy Assumption .

Moreover, this mapping can be expressed as a finite superposition of elementary functions (exp, +, X,

/, max), real constants, and functions f : R™ — R, such that each value f(x) is determined as the solution
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to
9(z,y) =0, y € la(z),b(z)],

where a,b: R" — RU {—oco} U{+0c} and g : R"™* — R are finite superpositions of elementary functions

and real constants, satisfying: a(x) < b(x) and g(x,-) is continuous, with exactly one zero, on (a(x),b(x)).

Remark 17. The vectors v' and o° do not always need to have a length of exactly 3M(N + 2) + 2 and
3M(N + 2) + 1. In fact, if the length of these vectors is smaller than the aforementioned number, we can
always add dummy entries to v, making the corresponding entries of o* be equal to each other and to one

of the adjacent entries. Thus, 3M (N + 2) + 2 should be understood as the mazimal possible length of V'.

Remark 18. The above theorem provides a method for explicit exact interpolation of call prices across
strikes. To interpolate these price curves across maturities, we apply the method described in Subsection
[[V —DB]. Note that the pice-wise constant diffusion coefficients, which produce the interpolated price curves,
do not have to coincide with the diffusion coefficients of the non-homogeneous LVG model, calibrated to
these price curves as shown in Subsection[IV — Bl More precisely, the diffusion coefficients only coincide
for the smallest maturity (i =1). The LVG models with piecewise constant coefficients, introduced in this
subsection, are only used to obtain the cross-strike interpolation of options prices. The final calibrated non-
homogeneous LVG model will have piecewise continuous, but not necessarily piecewise constant, diffusion

coefficients.

Figures show the results of cross-maturity interpolation of the market prices of European options
written on the S&P 500 index, on January 12, QOllﬂ Figure 1| contains the resulting price curves of
call options, as functions of strike. Each curve corresponds to a different maturity: 2, 7, 27, 47, and 67
working days, respectively. In particular, Figure [I| demonstrates that the monotonicity of option prices
across maturities is preserved by the interpolation. The quality of the fit is shown on Figures 2H3] via the
implied volatility curves. It is easy to see that the fit is perfect, in the sense that the implied volatility of

interpolated prices always falls within the implied volatilities of the bid and ask quotes.

5The option prices, as well as the dividend and interest rates, are provided by Bloomberg.
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It is worth mentioning that, in the given market data, the first part of Assumption [2]is not satisfied.
In particular, for longer maturities, the new strikes often appear between the strikes that are available for
shorter maturities. This occurs quite often, for example, because the option prices and strikes need to be
adjusted for the non-zero dividend and interest rates (cf. Remark[19)). In addition, the market data contains
bid and ask quotes, as opposed to exact prices. To resolve these issues, before initiating the calibration
algorithm, we implement the method outlined in Remark Namely, we solve a linear feasibility problem,
to obtain a strictly admissible set of option prices, for the same strikes at every maturity, such that the
price of each option satisfies the given bid-ask constraints, if this option was traded in the market (i.e. the

trading volume was positive) on that day.

As stated in Theorem the interpolated call prices, for each maturity, are obtained via an associated
piecewise constant diffusion coefficient (see, for example, equation ) It is clear from the right hand side
of Figure |3| that, despite the perfect fit of market data, the associated diffusion coefficients may exhibit
rather wild oscillations. The diffusion coefficients of the resulting LVG model, defined in , inherit
this irregularity, which may be undesirable if, for example, one uses the calibrated model to compute
Greeks or the prices of exotic options with discontinuous payoffs. One way to resolve this difficulty is to
approximate the diffusion coefficients with “more regular” functions. We can, then, choose the precision
of the approximation to be such that the resulting call prices fall within the bid-ask spreads. It may seem
that, by doing this, we face the original problem of calibrating a jump-diffusion model to option prices,
which we aimed to avoid in this paper. However, there is a major difference. In the present case, we do not
need to solve the ill-posed inverse problem of matching option prices: we only need to construct a sequence
of regular enough functions that approximate the already known diffusion coefficients, and the associated
call prices will converge to the given market values. The reason why we managed to reduce the notoriously
difficult calibration problem to a well-posed one, is that we formulate it on the right space of parameters
(models), which is not too large, and, yet, is large enough to contain a solution to the calibration problem.
To simplify the computations, here, we choose to approximate the diffusion coefficient a plotted on the right
hand side of Figure |3| with a piecewise constant function that has fewer discontinuities. The approximating

function is constructed by choosing a partition of (L, M) and setting the value of the function on each
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subinterval to be such that the average of 1/a? is matched. The motivation for such metric comes from the
observation that, for short maturities, the asymptotic behavior of interpolated option prices is determined
by the geodesic distance dz/a?(x). The right hand side of Figure |4| shows the two diffusion coefficients,
and its left hand side demonstrates the implied volatility produced by the new coefficient. It is easy to see
that the new diffusion coefficient is much smoother, while the resulting implied volatility still fits within

the bid-ask spread.

call price

1100 1150 1200 1250 1300 1350 1400
K

Figure 1: Interpolated call prices as functions of strike. Different colors correspond to different maturities.
The spot is at 1286.

Remark 19. Notice that we only use the first 5 maturities in our numerical analysis, although there are
market quotes for options with 5 longer matures available on that day. This restriction is explained by
the fact that the available bid and ask quotes may not allow for a strictly admissible set of option prices
(in the sense of cf. Definition . This, however, does not necessarily generate arbitrage, due to the
following two observations. First, the option quotes for different strikes and maturities, provided in the
database, are not always recorded simultaneously. Second, the interest rate is not identically zero, and the
stocks included in the S& P 500 index do pay dividends. In order to address the second issue, we had to
assume that the dividend and interest rates are deterministic. Then, we discounted the option prices and

strikes accordingly, to obtain expectations of the payoff functions applied to a martingale. The assumption
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of deterministic rates, of course, may not always be consistent with the pricing rule chosen by the market.

However, this problem (as well as the first issue outlined above) goes beyond the scope of the present paper.

It is important to mention that the method of cross-strike interpolation, presented in this subsection,
is valuable on its own, not only in the context of LVG models. Indeed, having constructed the price
curves, which have the C' and piecewise C? properties, one can interpolate them across maturities via a
non-homogeneous LVG model. However, as discussed in Remark [12] by considering driftless diffusions run
on different stochastic clocks, one can easily find other models that allow for a cross-maturity interpolation

in a very similar way. Another way to interpolate option prices across maturities is to define

T, _ T T _ T

C CTYK)+ S C(K),

eTi — eTi1

C(T,K) =

eli — eTi1
for T € [T;_1,T;). Then, at least formally, one can define a non-homogeneous local volatility model that

reproduces the above option price surface. The corresponding diffusion coefficient a is given by the Dupire’s

formula:

) 20,C(T, K)
(T, K) = 2o
LK) = 5 BT K)

for all T € [T;_4,T;), with @ = 1,..., M. Note that the parabolic PDE’s associated with the above local

K e (L, U,),

volatility (i.e. the Dupire’s and Black-Scholes equations) are well posed, as follows, for example, from the

results of [I3]. However, defining the associated diffusion process may still be a challenging problem, due
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to the discontinuities of a. Of course, using the results of this section, one can also find a non-homogeneous
LVG model, which has “more regular” diffusion coefficients and which approximates option prices up to the
bid-ask spreads. This is done by approximating the pice-wise constant diffusion coefficient, which results
from the calibration algorithm, as stated in Theorem [16], with functions that possess the desired regularity.

Such an approximation is discussed in the paragraph preceding Remark [T9

The rest of this subsection is devoted to the proof of Theorem In fact, this proof provides a detailed

algorithm for computing the parameters 1/;, a§ that reproduce market call prices.

Structure of the proof. The proof is presented in the form of an algorithm, which facilitates the
implementation. However, it is rather technical and uses a lot of new notation. Therefore, here, we outline
the structure and the main ideas of the proof. It is easy to see that any set of call price curves (as
functions of strikes) produced by a family of homogeneous LVG models (different model for each curve),
with piecewise constant diffusion coefficients, satisfies conditions 1 — 2 of Assumption [I However, we still
need to ensure that the LVG models are chosen so that the resulting price curves also satisfy part 3 of
Assumption (I}, which is a stronger version of the absence of calendar spread arbitrage. Thus, for each
maturity 7;, we need to construct a pice-wise constant diffusion coefficient a; and the associated time value
function V* (which is uniquely defined by and the subsequent paragraph), such that: each time value
curve V' matches the time values observed in the market, and the absence of calendar spread arbitrage
is preserved (V¢ > V=1 for all ). In order to match the observed market values, each V' is constructed
recursively, passing from K; to K;11. This allows us to construct a; and V* locally, so that V* solves
on (L;, Kji1), with a; in lieu of a. However, in order to obtain a bona fide time value function, we have to
ensure that V* satisfies the zero boundary conditions at L; and U;, and has a jump of size —1 at z. These
conditions force us to control the value of the left derivative of V' at each strike K, in addition to the
value of V'(K;) itself (which must coincide with the market value). In order to satisfy the constraints on
derivatives, along with the positivity of time value, we introduce two additional partition points between
every K; and Kji;. The choice of the additional partition points, as well as the proof that they are

sufficient to fulfill the aforementioned conditions, takes most of the proof of Theorem (Steps 1.1-1.3).
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The proof, itself, has an inductive nature: with the induction performed over maturities, and, for every
fixed maturity, over strikes. We show that the results of each iteration possess the necessary properties to

serve as the initial condition for the next iteration.

Step 0. Let us denote the market time values by V:
‘7<T”L>KJZ) - é(ﬂ7 K;) - (Z‘ - K;)+7

fori=1,...,M, j=1,...,N;. It is clear that matching the market call prices is equivalent to matching
their time values. To simplify the notation, we add the strikes K} = L; and K}Viﬂ =U;, forallt=1,..., M,
to the set of available market strikes, with the corresponding market time values being zero (since, in the
calibrated model, the underlying cannot leave the interval [L;, U;] by the time T;). We will construct the

interpolated price curves that match the original market prices, along with these additional ones.

Our construction will be recursive in ¢, starting from ¢ = 1. Assume that we have constructed the
interpolated time values for each maturity 7,,,

m

VHE) =V"EN(E), K ER,

with m = 0,...,7 — 1. For m = 0, we set V° = 0. In addition to matching the market time values, we

assume that these functions satisfy:
VM'K)> V" Y K), K€ (Ln,Upy),

form=1,...,i—1, and V! is strictly smaller than the market time values for maturities 7; and larger.
Our goal now is to construct Vi = V*v"#% guch that the extended family {Vm}fnzl still satisfies the

above monotonicity properties.

Without loss of generality, we can assume that the underlying level x coincides with one of the strikes.
If z is not among the available strikes, we can always add a new market call price, for strike x and

maturities 71, ..., T;, as follows: if z € (K}, K}

i11), then, we choose an arbitrary 0, € (0, 1) and introduce

the additional market time values



Y, A g K- i v - Kj i—1 i
V(CZ_I”JI):(Sl C ,IZL,KJ m—'—c E,Kj+1 m +(1—51)max %4 ([L‘),O 7—117Kj+1
Jjt+1 J Jj+1 J
It is easy to see that the new family of market call prices, for m =1, ..., M, is strictly admissible, and the
constructed time value functions, V!, ..., V=1 satisfy the properties discussed in the previous paragraph,

with respect to the new data.

The construction of V(K) is done recursively in K, splitting the real line into several segments. We
set V'(K) =0, for all K € (—oo, L;]. We, then, extend V"’ to each [L;, K}], increasing j by one, as long as

K, <.

Step 1. Assume that K} +1 < and that, for all K € [L;, Kj], we have constructed the time value function

Vi(K) in the form (30)), with some L; =1y <--- <y =K! and o1 >0,...,015 > 0 . In addition,

we assume that V*(K) > V'"(K), for all K € [L;, K], and the left derivative of V*(K) at K = K,

denoted B, satisfies:

V(T,, Kt ,)—V(T;, K}
Kl — K

We need to extend V* to [L;, K}, ] in such a way that: it remains in the form , on this interval, it

matches the market time value at K

11, and its left derivative at K} 41 satisfies the above inequality.

Note that the case j = 0 is not included in the above discussion. In this case, the left derivative of V*
at K} = L; is zero. However, the derivative of ¥ does not have to be continuous at this point, hence, we
can change its value to a positive number. We choose this number as follows: fix an arbitrary d, € (0,1)

and define
V(T;, K})

B =§y—
Y Ki— L

+ (1 =0) Vit (L), (36)

where Vfl is the right derivative of Vi=!. Due to the strict admissibility of market data, as well as the
convexity of VI~Y(K) for K € [L;, ], and the fact that V=Y(Ki) < V(T;, Kt), we easily deduce that B
given by satisfies , with j = 0, and, in addition, B > V|~ '(L;).

Step 1.1. Choose an arbitrary d3 € (0,1), and define

o V(EaK;-i—Q) _V(EaK;—f—l) V(EaKJZ—f—l) _V(EaKJZ)
By = + (1= 6) T o—<
J+2 T 41 j+1 T g
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Figure 5: Visualization of the points w (on the left) and y (on the right). Red circles represent market
time values for the current maturity. Red lines represent the already constructed time value interpolations.

This will be the target derivative of extended time value function V/(K) at K = K; +1- To match this

value, we need to introduce an additional jump point for the associated diffusion coefficients.

Step 1.2. Introduce

V(T Kiyy) + BK:— A~ B!,
B - B

where A > 0 is the left limit of V*(K) at K = K. Due to the definition of By and the inequality ,

w =

we have w € (K;:, K j’ +1)- In other words, w is the abscissa of the intersection point of two lines: one that
goes through (K}, A), with slope B, and the other one, that goes through (K7, ,, V(T;, K}.,)), with slope
By (cf. Figure [5)).

Step 1.3. Another potential problem is that the extended function V* needs to be strictly larger than

Vi_l on [L“Kz

#11]. The two functions can intersect only if A+ (K},, — K})B < V=YK ,). If the latter

inequality is satisfied, we introduce y € (K}, K j’ +1) as the abscissa of the point at which the linear function

intersects Vi 1:

A+ (y—K)B=V"'(y)

Since V=1 is strictly convex and, either A > V1(K?), or A > VI7!(K!) and B > V{~'(K}), the solution
to the above equation exists and is unique in the interval (Kj, K; +1). It can be computed, for example,

via the bisection method. If A+ (K?,, — K;)B > V"N (K} ,,), we set y = K} .

37



Next, we need to consider two cases.

Step 1.3.a. If w < y, we search for the desired time value function V/(K), for K € [KJZ:, w], in the form
VI(K) = le(j)ﬂefzma + fl2(j)+1eZK/U> (37)

where ¢ is an unknown variable. In order to guarantee that the interpolated time value function remains

in the form 7 the coefficients fll(j) 41 and ff(j) 41 must satisfy:

e 1 - o .
2 zK'%/o- - 1 —2Kilo
fl(j)+1e 7 — 5 A -+ ;B 5 fl(j)_HG j/ — 5 A — ;B :

Since the extended time value function, V*, given above, is a convex function with derivative B at K = K,
and because of the assumption w < y, it is easy to see that, for any choice of o > 0, V¥(K) dominates the

time value of earlier maturity, V*~1(K), from above, on the interval K € [L;, w] (cf. Figure @

Next, we show that there exists a unique value of o, such that the time value function allows for
a further extension to [L;, Kj- +1), such that it matches the market time value at K; 41 and remains in the

form . Notice that the value of Vi(w) is given by A, and its left derivative is B, where:

1 1 1 % ]_ ']
A=A(0)=5 A=ZB Lo AL TR SO0, (38)

Lemma 20. Functions fl(a) and B(U), defined in @-@, are strictly decreasing in o > 0. Moreover,
the range of values of A is given by

A+ B(w—K}),00 |

and the range of values of B is (B, o0).

The proof of Lemma is given in Appendix B. Recall that, for any ¢ > 0, the time value V* can
be extended to [L;,w] via (37). Thus, we need to find o, such that this time value function V* can be
extended further, to [L;, K},

By, at K} ,. Since V*(K) remains in the form , on the interval K € [w, K}, ], it has to be given by

|, so that it matches the given market time value, and the target derivative,

- -1 -
B(o) efE=w/E 4~ A(g) —

: B(O’) e—z(K—w)/&7

SIS
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where ¢ has to be such that the market time value at K = K} 41 1s matched. From Lemma , we know

that, for any fixed ¢ > 0, the function
1 - 5 1 - 5 l )
o5 Alo)+ EB( 5) Aoy = ) gB(a) oA w)/7
defined for all & > 0, is strictly decreasing, and its range of values is
A(o) + B(0) (K}, — w),00
Due to (35)), we have
A‘f’B(w_K;)WLB(K;H w) <V(EaKj+1)

Using the above and Lemma we conclude that there exists a unique ¢ satisfying
A(6) + B(6)(Kjyy —w) = V(T;, K )

The above observation, along with the aforementioned monotonicity, implies that, for each ¢ > &, there

z K;+1—w)/c~r _ V(T K;—‘,—l)

(o) > 0 satisfying
B(o) e *

Nle

exists a unique
6 ( + )/O zl
o 2 (o) -

)

2
which can be obtained via the bisection method. Notice that (o) is strictly decreasing in o € (¢, 00)
o [Li, K.,

Thus, for each choice of o > &, we can extend the time value function V* from [L;, K] to |
5. |

so that it matches the market time value at K., and remains in the form . It only remains to find

o such that the left derivative of V/(K) at K = K} 41 coincides with the target value, B;. This condition

can be expressed as follows
z ~ o(o) =~ i _w) /(o z a(o) - G(o

2(0) Ao) + i)B(a) e Eimmwlfole) = A(g) — (Z)B(a) e K= w/o) — B (40)
Lemma 21. The left hand side of (@) is a strictly increasing function of o € (6,00), and its range of

J

values includes Bj.
The proof of Lemma [21|is given in Appendix B. Lemma 21| implies that there exists a unique solution

o = ¢ to the equation (40]), and it can be computed via the bisection method. Finally, we set: v;(;)41 = w,
5(0), and I(j + 1) =1(j) + 2.

K;+1 and oy(j)+2

G)+1 = 05 Vig)+2 =
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Figure 6: On the left: the case described in Step 1.3.a, where the yellow line represents the function
A(6) + B(6)K, for K > w, and the vertical interval in green represents the range of values of A(o), for
o > 6. On the right: the case described in Step 1.3.b, where the yellow line represents the function
A() + B(7)K, for K > y, and the vertical interval in green represents the range of values of A(c), for
o>0.

Step 1.3.b. If w > y, we search for the time value function V*(K), on the interval K € [K7,y], in the
following form
1

| 0w 1
VI(E) = 3 A-Ip e E=KD/o 4 -
z

A+ 9B AE-K)/o
2 z

The above expression guarantees that, for K € [K;, yl,
VI(K)> A+ B(K - K}) > V"(K),

due to convexity of V=! and the definition of y (cf. Figure [6). In addition, for any o > 0, the extended
time value function remains in the form (30]), on the interval K € [L;,y]. The values of V(K) and its

derivative, at K = y, are given, respectively, by:

/I(O’) = % A— EB e—Z(y—K]Z:)/U + % A+ EB ez(y—K})/a7
< z
B(o) = 2 A% Ko L 2 41 T K)o
20’ z 20. P

The functions A and B , introduced above, are the same as those introduced in Step 1.3.a, with y in place
of w. Lemma [20| can still holds for these functions (one can simply repeat its proof given in Appendix B).
In particular, A(c) and B(o) are strictly decreasing in o € (0, 00), and the range of values of A(c) is given
by

(A+ B(y — K}), 0),
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while the range of values of B is (B, o0). These observations yield the following lemma.

Lemma 22. The function

o+ A(o) + Blo)(Ki,, —v),

J

defined for all o > 0, is strictly decreasing, and its range of values is (A + B(K®

J+1 _K]l:),OO)-

Due to the convexity of V!, and the fact that V'~ (K}) < V/(K}) and V'~ (y) = V'(y), we obtain:
VITHNE],) > A+ B(Kj,, — Kj)

Thus, there exists a unique & satisfying

A@@) + B(o)(Kjy —y) = VI K] ),

J

which can be computed via the bisection algorithm (cf. Figure @

Lemma 23. The following inequalities hold:

B(o) < V(Ti’ﬁf)_f(&) <Bi,  A@)+BOK -y > VUE),

for all K € [y, K},,).

The proof of Lemma [23|is given in Appendix B. We add the next element of the partition, ;)41 = ¥,
and the next value of the diffusion coefficient, 0y(;),1 = 0. Finally, we repeat Step 1, with y in lieu of KJZ:,
and with A(7) and with B() in lieu of A and B respectively. The already constructed time value function
Vi, dominates V=, on the interval [L;,y]. Due to Lemma [23, the values of A(g) and B(7), satisfy all
the properties assumed for A and B at the beginning of Step 1. In addition, due to the last inequality
in Lemma , the graphs of A(¢) + B(5)(K — y) and V! do not intersect on [y, Ki,,] (cf. Figure @
Hence, the algorithm in Step 1.3 ends up in case a. As a result, we obtain the values of vj(jy42, 0u3j)+2,

ViG)+s = Kjy1, 0u(j)4s, and set I(j + 1) = I(j) + 3.

We repeat Step 1, increasing j by one each time, as long as KJZ +1 < @. Thus, we obtain an interpolation

of the time value function on the interval K € [L;, K}], where j is such that © = K}, .
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Step 2. Perform Step 1, moving from K = U; backwards. Namely, we consider the change of variables:
from K € [L;,U;] to K' = L; + U; — K € [L;,U;]. We apply this change of variables to the market time

values, as well as to the interpolated time value functions for earlier maturities. In particular, we obtain

the new underlying level 2’ = L; + U; — z, as well as the new market time values V(T;, L; + U; — K J’), for all

strikes K} =L;+U; — K]iv#l_j, with j =0,..., N; + 1. Then, we repeat Step 1, using this new, modified,

data as an input. This gives us an interpolated time value function on the interval K’ € [L;, K], where

J is such that »" = K7 ;. In the original variables, we obtain an interpolation of the time value function

on the interval K € [K}y ,,_;, U], where, in turn, z = wa-y It is easy to see that the interpolated time

_j7

value, on the interval [Ky. ,, ;, Ui, is in the form (32).

Step 3. Finally, we extend the interpolated time value function to the entire interval [L;, U;]. Recall that
x coincides with one of the strikes, say Kj’ In Steps 1 and 2, we constructed the interpolated time value
function for K € [L;, K} ] U[K},,,U;]. Notice that, repeating the algorithm outlined in Steps 1 and 2,
we can extend V' to the entire interval [L;, U;], so that it matches all market time values, dominates V¢!
from above, and, in addition, it is in the form on [L;, z], in the form on [z,U;], and it has the
prescribed left and right derivatives at z, B; and By respectively. In order for the interpolation function
V% to be a bona fide time value, it needs to have a jump of size —1 at z. In other words, we need to choose
By and B, so that B; — 1 = B,. The only constraints on the choices of B; and By come from the market

data and the previous constructed interpolation function on K € [L;, K} |U[K?,,,U;]. These constraints

are given by:

i i ) 2 i poi i poi
Kj— Kj, Kj — Kj Kj — Kj

By >

(41)

Thus, we choose an arbitrary d4 € (0,1) and define

V(T;, K1) = V(T3, Kj)

B1:54+54 ]i 7 +(]~_54) i i
K — K K= K
— Y4 i i Y4 i i i i
Kj — Kj Kj— Kj K=K

Similarly, we define

J
i 7o
Kj +1 Kj

+ (1 —6y) L - /
K —Ki_,

BQZBl—1:54—1+(54
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_ 5 O KG) — O(T3, K)) C(T, Ki) — C(Th, K )
— Y4 i i + (1 —d4) 7 7

Since the market call prices are strictly admissible (in particular, strictly convex across strikes), we conclude

that B; and B, satisfy .

The following lemma, whose proof is given in Appendix B, completes the proof of the theorem.

Lemma 24. For any z > 0 and any strictly admissible market data, E,K;,C(Ti,K;),Li,Ui,x , the
vectors V' and o', for i = 1,..., M, produced by the above algorithm (Steps 0 — 3) are such that the

o M
. . —~7 7 7 . .
associated price curves (" = CV 7= satisfy Assumption .
=1

1=

Remark 25. Notice that the constants d;, fori = 1,2,3,4, appearing in the proof, can be chosen arbitrarily
(within the interval (0,1)). The choice of the boundary points {L;, U;} introduces additional flexibility
in the algorithm. It is worth mentioning that the properties of interpolated implied volatilities and the
associated diffusion coefficients may depend on the choices of these constants. Therefore, one may try to
optimize over different values of {0;} and {L;,U;}, for example, to improve the smoothness of resulting
diffusion coefficients. Continuing along these lines, one may also want to iterate over all possible choices
of arbitrage-free option prices, consistent with the market. Recall that the market data contains only bid
and ask quotes, and we propose to choose the exact values of option prices by solving a linear feasibility
problem (cf. Remark . Optimizing over all possible choices of option prices, in theory, may improve
the smoothness properties of the output. However, this would come at a very high computational cost, and

would lead to a multivariate nonlinear optimization problem, which we tried to avoid in the present paper.

V Summary and Extensions

In this paper, we considered the risk-neutral process for the (forward) price of an asset, underlying a set
of European options, in the form of a driftless time-homogeneous diffusion subordinated to an unbiased
gamma process. We named this model LVG and showed that it yields forward and backward PDDE’s
for option prices. These PDDE’s can be used to speed up the computations, but, more importantly,

they allow for explicit exact calibration of a LVG model to European options prices. In particular, the
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diffusion coefficient of the underlying can be represented explicitly through a single (continuous) implied
volatility smile. A mild extension of LVG allows for analogous calibration to multiple continuous smiles.
Finally, we showed how the aforementioned PDDE’s can be used to construct continuously differentiable
(with piecewise continuous second derivative) arbitrage-free implied volatility smiles from a finite set of
option prices, with multiple strikes and maturities. The resulting calibration algorithm does not involve
any multivariate optimization, and it only requires solutions to one-dimensional root-search problems and

elementary functions. We illustrated the theory with numerical results based on a real market data.

There are many possible avenues for future research. One of the potential criticism of the proposed
calibration method is the fact that the resulting diffusion coefficient has (a finite number of)) discontinuities.
This feature may create difficulties when computing the greeks, or prices of path-dependent and American-
style options in the calibrated model. An idea on how to resolve this problem is outlined briefly in the few

paragraphs preceding the proof of Theorem [16, However, a more detailed analysis would be very useful.

Another limitation of the results presented herein is that the risk-neutral price process of the underlying
is assumed to be a martingale. Indeed, in many cases, the dividend and interest rates are not negligible. If
they are assumed to be deterministic, then, the calibration problem can be easily reduced to the driftless
case by discounting. However, as discussed in Remark [19] the assumption of deterministic rates may not be
consistent with the market. Therefore, an extension of the proposed model that allows for a non-zero drift
of the underlying is very desirable. In particular, it seems possible to extend the results of this paper to a
risk-neutral price process obtained as a time change of a diffusion with drift. However, certain challenges
may arise and they need to be addressed: in particular, the associated PDDE’s may no longer have closed

form solutions even if the diffusion and drift coefficients are piecewise constant.

A more thorough numerical analysis, in particular, investigating the prices of exotic products produced
by the calibrated models, is also very desirable. We did not conduct such a study in the present paper,

due to its already quite extensive length.

Finally, one can examine the problem of calibrating a LVG model to other financial instruments, such
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as the barrier or American options.

Appendix A

Proof of Theorem [I] Theorems 2.2 and 2.7 in [13], as well as Theorem 1.IT in [4] (a respective theorem
is applicable depending on whether each of the boundary points is finite) provide existence and uniqueness
results for a class of parabolic PDEs with initial and boundary conditions. This class includes the following

equation:

O-u(r,x) = %a%w)@iu(a x)+ %QQ(x)gzﬁ”(a:), w(0,2) =u(r,Ly) =u(r,U_) =0,

implying that it has a unique weak solution. In addition w is absolutely bounded by a constant (which
follows from the estimates in Theorems 2.2 and 2.7, in [13], and in Theorem 1.II, in [4]), and it is vanishing at
L and U. Then, v = u+ ¢ solves ({3)) and satisfies v(0, z) = ¢(z). In addition, it satisfies: v(7, Ly) = ¢(L)
and/or v(1,U_) = ¢(U_), whenever L and/or U are finite. To show that this solution coincides with V¢,

we apply the generalized It6’s formula (cf. Theorem 2.10.1 in [14]), to obtain
E“0(T — ¢"* AT, Derrpr) = v(T, z),

where (" is the first exit time of D from the interval (r, R), with arbitrary L < r < R < U. Notice that
v(1, ) is bounded by an exponential of z, uniformly over 7 € (0,7"). Thus, we can apply the dominated

convergence theorem, to conclude that, as r | L and R T U,
U(T, .1') = Ex’l)(T — CT’R N T, DCT,R/\T) — ]EIU<T — C A T, DC/\T) = ExU(T — C, DC)]‘{CST} + Ex¢<DT)1{C>T},

where ( is the time of the first exit of D from (L, U). Recall that the diffusion can only exit the interval

(L,U) through a finite boundary point. Thus,
v(T'— ¢, D) Licery =v (T =, Ly) 1{ggT, De=Ly} +o(T-¢U-) 1{§§T,D<=U_}
= ¢(L+)1{(§T,DC:L+} + ¢(U*)1{§§T,DC:U,} = ¢(DC>1{<ST}
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Since the diffusion is absorbed at the boundary points, we have:
o(T,2) =B o(Dr)licsry +E 0(D)liesry =E* ¢(Dr)lie>ry +EY ¢(Dr)lie<ry = E*¢(Dr),
which completes the proof of the theorem.

Proof of Theorem [2| Let us apply the It6-Tanaka rule (cf. Theorem 7.1, on page 218, in [I1]) to the
call payoft:
t

(Dt — K)+ = (DO — K)+ + &(Ds)l{DszK}dWS + At(K),
0

where A is the local time of D. Taking expectations, we obtain
CP(t,K,2) =E*(Dy — K)t = (v — K)" + EAy(K).

Multiplying by ¢ and integrating, we use the properties of local time (cf. Theorem 7.1, on page 218, in

[11]), to obtain

: CP(t,K,z)p(K)dK = U(x — K)To(K)dK + % t]E”C a*(D,)p(D,) du.
L L 0

Using Fubini’s theorem, we obtain the following identity:
Q”*(D, < K) =E"1p,<ry = OxC"(u, K, x),

which holds for almost all K € (L, U). Therefore, the measure generated by 05 CP (u, -, ) is the distribution
of D, under measure QP*. Thus, we conclude:
U U 1t U
CP(t,K,z2)p(K)dK =  (z — K)Tp(K)dK + 3 a?(K)o(K)d 0xCP(u, K,z) du.
L L 0 L

Proof of Theorem @ Let us multiply the left hand side of equation by the density of I'; and an

arbitrary test function ¢ € C5° ((L,U)), then, divide it by a?/2 and integrate with respect to 7 and x:

U T t/t"=1,—7/t 2<p($) U T t/t"=1,—7/t* QQO(JI)
T g yDe drdz = T g VD1, x) — d d
oo e = e () = 9le) draiy &
T/t =1 =T /t* U 9
B e S P COp (42)

()" D(E/t) 1

46



T (t/t* o 1)7_t/t*—2 _ Tt/t*_l/t* e—T/t* U 290(.1;)

0 (t)/ET(t /) L VE¥tn o)~ ) ()
U oo ptLpe (1 — 1)pt/E2 T/t 7 2¢(x)
T (t)VE T (¢ /1) VPt ) = ¢la) dr ()

as T — oo. In the above, we applied Fubini’s theorem and used the fact that ¢ is absolutely bounded and,
hence, so is VP¢. Recall also that 7 > ¢*. Applying Fubini’s theorem once more, we interchange the order
of integration in the left hand side of , and, using equation , integrate by parts with respect to x.
This, together with the convergence in , implies:

* — *
9] 7_t/t 1o T/t U

D¢ "
—(t*)t/t*f‘(t/t*) . VEO(r, x)" (x)dxdr (43)
B U oo Tt/t*—l/t* o (t/t* o 1)7_t/t*—2 e—T/t* Dot 2
= . VT VPO (1, ) — ¢(x) dngo(x)dx,

where both integrals are absolutely convergent. Using Fubini’s theorem and the definition of V¢, we

conclude that
00 t/t*—1,—T/t* UVD¢’( ) ”( )d p UV¢( ) //( )d (44)
—— (T, x)o (x)dedT = t,x)p (z)dx
o (E)T(/t) L

Next, we notice that, since t > t*, the expression inside the outer integral in the right hand side of is
a locally integrable function of x € (L,U). Then, the fact that equations and hold for all test
functions ¢ yields:

2 00 7_t/t*—l/t* _ (t/t* _ 1)7_t/t*—2 e—T/t*

V) = )T/

VPO (1, x) — ¢(x) dr, (45)

which holds for every ¢ > t* and almost all z € (L,U). Since the second derivative of V¢(r,-) is locally
integrable, its first derivative is absolutely continuous. To show that V?(r,L,) = V?(r,U_) = 0, we

recall the definition of V% as an expectation and apply the dominated convergence theorem. When ¢ = ¢*,

equation becomes

2 e/t 2
2 /(4% — D.¢ —
VOt ) = VPHra) — 6(a) dr = o

CL2<SL’)t* 0 1 V¢(t,$)—¢($) )

which holds for almost all z € (L, U). Since V?(7,-) and ¢ are continuous, the above equation holds for all

points x at which a is continuous. Therefore, V¢(t*, ) possesses all the properties stated in the theorem.
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Next, we show uniqueness. Consider any function u € C*(L,U), which has an absolutely continuous
derivative and satisfies , along with zero boundary conditions. Applying the generalized It6’s formula
(cf. Theorem 2.10.1 in [I4]), we obtain:

AR 1 AR
w(Dipgrr) — u(Do) = . 5@2(D5)U”(Ds)d3 + . u'(Dy)dDs,
where, as before, (" is the first exit time of D from the interval (r, R), with arbitrary L <r < R < U.
Notice that, since u is continuous and satisfies zero boundary conditions, it is absolutely bounded. Due to

equation (20]), u” is absolutely bounded as well. Thus, taking expectations and applying the dominated

convergence theorem, as r | L and R 1T U, we obtain

¢
1
E*u(D;) —u(z) = E EaQ(DS)u"(DS)l{SSC}dS
0

Since I' is independent of D, we can plug I';+, in place of ¢, into the above expression, to obtain:

o
1
E*u (Dr,.) — u(z) = E* QaQ(DS)u”(DS)l{Sgc}ds,
0
00 ,—t/t 00 o—t/t t1
E*u(Dy)dt — u(x) = E*  —a®(Ds)u"(Ds)1s<cydsdt,
oo e—t/t* 00 o—t/t* t1
E*u(Dy)dt — u(z) = E*  — (u(Ds) — ¢(Ds)) Lis<cydsdt,
0 t* 0 t* o t* -
00 o—t/t* 1 00 —t/ttt
Eu(D)d—u(e) = - o B (u(D,) ~ 6(D,)) dsd (46)
0 0 0

where we made use of the fact that u(L;) = w(U-) = ¢(Ly) = ¢(U-) = 0, to obtain (46). Thus, we

continue:
0o e—t/t* 1 0 §
—Eru(Dy)dt — u(r) = — e YR (u(Dy) — ¢(Dy)) dt, (47)
0 0

where we integrated by parts in the right hand side of , to obtain . This yields:

1 = «
u(z) = - e TR H(D,)dt = VO(t*, x)
0

Proof of Lemma (7| Let us show that Sy has a density in (L,U) under any Q. Consider arbitrary

K e (L,U)and € € (0,1), s.t. [K —e, K +2¢| C (L,U). Choose a smooth function p., which dominates
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the indicator function of [K, K + €] from above, whose support is contained in [K — ¢, K + 2¢], and which

satisfies

Introduce
u(z) = E* (p(Sp+))

for all # € (L,U). Theorem [f] implies that u € C'(L,U), u(Ly) = w(U-) = 0, v" € L*(L,U), and it

satisfies:

1

L, 7 _
5@ (@)u"(z) = = (u(z) = pe(2)) = 0, (48)

for all z € (L,U), except the points of discontinuity of a. Next, we need to recall the standard estimates
for the weak solutions of elliptic PDEs via the norm of the right hand side (see, for example, [12] and
references therein). The only issue that needs to be resolved, before we can apply the standard results, is
that, although u belongs to the Sobolev space W2 ((L,U)), it may not belong to WZ(R). This is due to
the fact that «' may have a discontinuity at L or U, if the boundary point is attainable. To resolve this
problem, we consider a sequence of functions u,, € C§°(R) C WZ(R) which approximates u in the sense of
the Sobolev norm || - [[wzz,v). Applying Remark 3.3, in [12], to u, and passing to the limit, as n — oo,
we estimate the Sobolev norm of wu:
U U
w?(x) + (u'(2)* + (v (2))%dr < ¢; p2(x)dz, (49)
L L

where the constant c; is independent of €. Next, the Morrey’s inequality yields

U 1/2 U 1/2
sup |u(z)] < e u?(z) + (v (v))dx <c3 p2(z)dx < c3V2e
ze(L,U) L L
Finally, we obtain

Q*(S- € [K, K +¢]) < u(z) < esv/2e,

Therefore, the distribution of Sy« is absolutely continuous with respect to the Lebesgue measure on (L, U)

and, in particular, it has a density. It was shown in the proof of Theorem 2| that

Q° (S < K) = 0xC(t", K, x)
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Therefore, Ox C(t*, K, z) is absolutely continuous in K € (L,U), and its derivative, 0% C(t*,-, ), is the

density of Sy under Q*.

Proof of Theorem . Differentiating both sides of @ with respect to 7, then, multiplying them by

an exponential and a test function ¢ € C§° ((L,U)), we integrate, to obtain

Te—T/t* d U T —71/t* U

2
L OP(r K, 1) p(K)dKdr = &
0 t* dT L

a2(K) . m . o(K)d 0xCP(r,K,z) dr (50)

Let us perform integration by parts in the left hand side of :

e —d CP(r,K,x —2 e(K)dKdr = e CP(T,K,x —2 o(K)dK
0 t* dr (. K, )a2(K) (K) ! t* L (T, K, )a2(K) (K)
— —1 — K —2 o(K)dK + —1 e CP(r,K,r)———¢(K)dKdr 51
t* (@ ) a?(K) (K) ™ t* I (7, K, )aQ(K) (K) ’ (51)

where we made use of the fact that

liﬁ)lCD<T,K,$) = (z— K)",

which, in turn, follows from square integrability of the martingale D and the dominated convergence

theorem. Using , as well as the dominated convergence and Fubini’s theorems, we obtain:

A T on e R (KK = 2
(T, J’)W@( ) T = . W

Ct'K,z)— (x — K)" p(K)dK

lim —
T—o0 0 t* dT L

On the other hand, integrating by parts and applying the Fubini and dominated convergence theorems

once more, we derive:

T —r/tt U U T o/t
lim o(K)d 0xCP(r,K,x) dr = lim ¢"(K) CP(r, K,z)drdK
T—oo o t* [ T=oo p, o
U U
= Ct K, z)p"(K)dK =  03,C(t", K,r)p(K)dK
L L

Collecting the above, we rewrite equation as
v 1 * + 1 2 2 *
L
which holds for any ¢ € C§° ((L,U)). This implies that equation holds for almost every K € (L,U).
Since C'(t*,-,2) and (x — -)* are continuous functions, we conclude that holds everywhere except the

points of discontinuity of a.
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The boundary conditions for call price function follow from the dominated convergence theorem. The
square integrability of 9% - C(t*, -, z) follows from the fact that it is absolutely integrable and vanishes at the
boundary (the latter, in turn, follows from the boundary conditions and equation ) To show unique-
ness, we assume that there exists another function, with the same properties, and denote the difference
between the two by u. Function u is a weak solution of the homogeneous version of :

1 2 " 1 o
Sa @ (x) = u(@) =0,

vanishing at the boundary. Finally, as in the proof of Lemma , we apply Remark 3.3 in [12] to obtain an

estimate for the Sobolev norm of u, analogous to , with zero in lieu of p.. This implies that u = 0.

Proof of Theorem [9 Notice that, for a fixed K € (L,U), the function C(t*, K, .) is measurable.
This follows from the measurability of CP (T, K, .), which, in turn, follows from the measurability of the
mapping z — QP as a property of Markov family. At any point K € (L,U) that does not coincide with
a discontinuity point of a, the call price function is twice continuously differentiable in K, and, hence, its

second derivative, 0% C(t*, K, x), is also measurable as a function of z. Thus, we can use to obtain

1 2(K
= B K, 8) —E*(S, — K) =#E’” OixC(t", K, S;) (52)

which holds for all 7 > 0 and all K € (L, U) except the points of discontinuity of a. Since 9% C(t*,-, S;)

is nonnegative and integrates to one, the application of Fubini’s theorem yields
E® 07Ot K, S,) =03 E°C(t" K,S,) =05, C(1T +1*, K, x), (53)

where the derivatives in the right hand side are understood in a weak sense, and we used Proposition [5| to
obtain the last equality. Due to , 0% . C(T+t*,-,x) is, in fact, locally integrable on (L, U), and equation
holds for almost every K € (L,U). Using the monotone convergence theorem, it is easy to show that
C(t,-,x) is continuous, for any 7 > 0, and, hence, holds everywhere except the points of discontinuity
of a. The boundary conditions follow from the dominated convergence theorem. In addition, and
an application of Fubini’s theorem imply that 0% ,C(7 + t*, -, ) is absolutely integrable on (L,U). This,
along with the boundary conditions and equation , imply that 0% C(7 + t*, -, z) is square integrable.

To show uniqueness, we apply the same argument as at the end of the proof of Theorem [§]
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Appendix B

Proof of Lemma [20} Notice that, for all y > 0, we have:
(I4+ye®+y—1"=1—e21+2y) >0,
which follows from the inequality e* > 1+ 2y. Since (1 + 0)e 2% +0 — 1 = 0, we obtain
(1+y)e®+y—1>0, y>0.

Therefore, for any positive A and B,

i [ s(w—Kj) B e 1 sw—-K) B
A/(O') = — A — zB (—'7) _ e_z(w—Kj)/O' R A + EB ( ])
2 z o? z 2 z o? z
_1 AM _B M L] eHw-KD/o
2 o? z o
1 Az(w -Kj) B zw-Kj) | Ko _ L z(w — KY) KD _,
2 o? z o o2
_lﬁez(wa;ﬁ)/g 2(w — Kj) L1 e 2w—KD/o 2w —Kj) 1 <0
2z o o
Similarly, we have:
~ 1 z Z('LU — Kl) 2z i
B’ I ZA— il Z A e w-K)/o
(@)=-5 = p =
+> - ZA+B Z(w;KJ‘) —ZA Kl
o o o
i Z(w _ KJZ) 7 —z(w—K%) /o
:_Tﬂ TA—B(IU—KJ«)—A e J
2(w — K¢ , .
_z A J)A +B(w—K)+A K)o
202 o J
z ) —z(w—K% /o z 7 2(w—K¥ /o
SQT‘Z B(w—Kj)—‘f—Ae (w=K3)/ —T‘Q B(w—Kj)+A A (w=K35)/ <0

Taking limits as o converges to 0 and oo, we complete the proof of the lemma.

Proof of Lemma . For any a < V(T;, K;H) and any

be (O ‘7(1—’17[(]@—&—1) —(I>

i
K —w
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we introduce ¥ = ¥(a, b) as the unique solution to

1 by 2(Ki,  —w)/Z 1 by —2z(K?i, , —w )
5 a_’_;b 6( j+1 )/ _|_§ a_;b e ( Jj+1 )/ V(T Kj+1) (54)

It is shown in the proof of Theorem (16| that such ¥ exists and is unique. It was also shown that the left
hand side of is strictly increasing in a and b, and it is strictly decreasing in X. This yields that ¥(a, b)

is strictly increasing in a and b.

Counsider the associated function

z 2 z

)

defined for K € [w, Kg+1] Note that F'(a,b;-) is convex, increasing, and it solves the ODE (29). In
addition, F(a,b;w) = a, Ok F(a,b;w) = b, F(a,b;K},,) = V(T;, K},,), and

z ¥ (a,b) Ki z Y(a,b) _
F b F(Z ) b ( 1 w)/z(a b) - _ —’b ( j+1 )/2(0‘ b)
OrcF (0, b KG) = @ T e o (a,b) 2 c

Let us show that, for a fixed b, 0 F'(a,b; K}, ) is strictly decreasing as a function of
ae VTI,K , —b K, —w, V T,K

Choose any two points a; < ag, from the above interval. Notice that the function u(K) = F(ay,b; K) —
F(ay, b; K) satisfies:

22 22 22

22(a2,b)”(K) T Y2(a1,b)  22(ag,b)

u'(K) - F(a1,b; K), (55)

on the interval K € (w, K},,) The right hand side of is nonnegative. Notice that u(w) = a; —
az < 0. Assume that there is K € (w,K},,), such that w(K) > 0, then, there must exist a point
wy € (w,K},,), such that u(w;) > 0 and u'(w;) > 0. From , we conclude that u(K) is strictly
convex in the interval K € [wy, K7,,]. In particular, it means that u(K},;) > 0, which is a contradic-
tion. Therefore, the above assumption is wrong and u(K) < 0, for all K € [w, K] ;). This means that
F(ay,b; K) < F(ag, b; K), for all K € [w, K},,], and, due to the fact that F(a;,b; K},,) = F(as,b; K} ),

we obtain Ox F(ay,b; K},,) > OxF(ay, b; K}, ;). To show that the inequality is strict, we notice that, if
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Ok F(a1,b; K}, ) = Ok Fl(az, b; K} ), then, v/ (K}, ;) = 0 and (55)) implies that u" (K

1) > 0, which, in

turn, implies that wu is strictly positive in a left neighborhood of K* i+1, which is impossible. Repeating

the above arguments, one can show that dx F(a,b; K!,,) is strictly decreasing in b € (0, (V(T}, K} ) —

a)/(Kjyy — w)).

Finally, using both the current notation and that introduced in the proof of Theorem [16| (Step 1.3.a),

we notice that:
5(0) = £(A(0), B(0)),
and recall that A(c) and B(o) are strictly decreasing in o € (&,00). It is easy to see that the range

of values of (A(c), B(c)) belongs to the set of admissible values of (a,b), defined earlier in this proof.

Collecting the above, we conclude that

Ao+ T By i wie@ _ _E gy = T By e -w)/ao)
250y ANt B) 2oy )T B0
—OxF A(0), Blo) KL, (56)

is a strictly increasing function of o € (4,0). Notice that, as o | &, we have: (o) — o0, and the left
hand side of converges to B(6) < B;. When ¢ — oo, we obtain: A(s) — A+ B(w — K}) and
B(o) = B, and, in turn, OxF A(0), B(o); Ki,, — 0xF A+ B(w—K;),B;K!,, . Since F(a,b;-) is

strictly convex, we have

F A+ B(w—-Ki),B:K\,, —F A+ B(w— K'), B;
OxF A+ Bw—K), B Kl, > (= K. P (= Kj) Brw

V(T Ky — A—B(w—K?) 5
e i g 1’
K -

where the last equality is due to the definition of w. This completes the proof of the lemma.

Proof of Lemma 23] To show the first inequality in the statement of the lemma, we notice that

A(a) + B(@) (K4 —

y)=V" 1(KJZ+1) V(Tiz, Kg+1) < V(T;, K;—i—l)
In addition, since y < w and B < By, we have:

(o) + Bi(Kyy —y) > A+ Bly — K}) + Bi(K,, —)
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> A+ Bw - K;) - Bl(K;+1 —w) = V<ﬂvK;+1>

The last inequality in the statement of the lemma follows from the strict convexity of V*~! and the following

two observations:

A(@) + B(a) (K, —y) = Viil(K;Jrl)v A(G) > A+ B(y — K;) =V"(y)

J

Proof of Lemma [24] Parts 1 and 2 of Assumption [I| are satisfied by construction. Let us show
that the price curves C = C*"7"*% gatisfy the following: for all i > 1, C/(K)— C" 1K) /0% .CI(K) is
bounded from above and away from zero, uniformly over K € (L;,U;). Observe that

i—1

CHK)=CY(K) 22 VVeoar(K) —yv e hes(K)

Ok C'(K) a; (K) Vvieter(K) ’

where
n

a(K) = Do)y oK)

Since each value function V**"#% is bounded from above and away from zero, on any compact in (L, U;),
we only need to analyze the limiting behavior of the above ratio, as K | L; and K 1 U;. Due to Assumption
, Lz S Ll',l, for all 7. If Lz < Ll',l, then, as K \l, Li;

Vui,ai,z,x(K) _ Vl/ifl,aifl,z,x(K)

. —1
Vlﬂ,a’,z,x(K)

If LZ = Lifla we have: o ) .
VVZ’UZ’Z"T(K) . VV1—170.1—1’Z’$(K>

lim —
KlL; Vvhoe ,z,a:(K)
Nez(BE—Li)/ot _ \ig=2(K—Li)/o} _ \i=1gz(K—Li)/oi" + Ni—le—z(K—Li)/oy™"
KlL; AZGZ(K*Li)/Ui — )\Zefz(KfLi)/ai
_ Nfof = Aot
R

with some positive constants A’ and A\*~'. Notice that V{(L;) = 2\"/o?, where VI is the right derivative of
Vi= VY= Similarly, ViTH(L;) = 207! /ot Recall , which guarantees that Vi (L;) > Vi '(L;).
Hence, the right hand side of is strictly positive. Analogous arguments hold in the case of K 1 U;,

which completes the proof of the lemma.
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