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Alternative Characterizations
 
of American Put Options
 

Abstract 

We derive alternative representations of the McKean equation for the value of the American put option. 
Our main result decomposes the value of an American put option into the corresponding European put 
price and the early exercise premium. We then represent the European put price in a new manner. This 
representation allows us to alternatively decompose the price of an American put option into its in­
trinsic value and time value, and to demonstrate the equivalence of our results to the McKean equation. 



Alternative Characterizations
 
of American Put Options
 

The problem of valuing American options continues to intrigue finance theorists. For example, in 
the New Palgrave Dictionary of Economics, Ross (1987) writes: 

This does not mean, however, that there are no important gaps in the (option pricing) theory. 
Perhaps of most importance, beyond numerical results . . . ,  very  little  is  known  about  most  
American  options  which  expire  in  finite  time. . .Despite  such  gaps,  when  judged  by  its  ability  
to explain the empirical data, option pricing theory is the most successful theory not only 
in finance, but in all of economics. 

The history of the American option valuation problem spans over a quarter of a century. In the 
framework of Samuelson’s equilibrium pricing model, McKean (1965) showed that the optimal stopping 
problem for determining an American option’s price could be transformed into a free boundary problem. 
This insight allowed him to derive rigorous valuation formulas for finite-lived and perpetual American 
options. Although the McKean equation explicitly represents the value of the finite-lived American 
option in terms of the exercise boundary, the solution reveals little about the underlying sources of 
value for an American option and does not lend itself to analysis or implementation. 

Somewhat later, Black and Scholes (1973) and Merton (1973) developed a more satisfactory theory of 
option pricing using arbitrage-based arguments. Merton showed that while the Black-Scholes European 
option pricing methodology applied to American call options on non-dividend paying stocks, it did not 
apply to American put options. He also observed that McKean’s solutions could be adapted to valuing 
American put options by replacing the expected rate of return on the put and its underlying stock 
with the riskless rate. This insight foreshadowed the later development of risk-neutral pricing of Cox 
and Ross (1976) and the equivalent martingale measure technique of Harrison and Kreps (1979) and 
Harrison and Pliska (1981). The application of this technology to the optimal stopping problem for 
the American put option was studied by Bensoussan (1984) and Karatzas (1988). While the optimal 
stopping approach is both general and intuitive, it does not lead to tractable valuation results due to 
the difficulty involved in finding density functions for first passage times. 

The intractability of the optimal stopping approach lead Brennan and Schwartz (1977) to investigate 
numerical solutions to the corresponding free boundary problem. Jaillet, Lamberton, and LaPeyre 
(1989) rigorously justify the Brennan-Schwartz algorithm for pricing American put options using the 
theory of variational inequalities. Other numerical solutions were advanced by Parkinson (1977) and 
Cox, Ross, and Rubinstein (1979). Geske and Shastri (1985) compared the efficiency of these approaches 
and explained why an analytic solution may be more efficient. Furthermore, Geske and Johnson (1984) 
argued that numerical solutions do not provide the intuition which the comparative statics of an analytic 
solution afford. 

Analytic approximations have been developed by Johnson (1983), MacMillan (1986), Omberg 
(1987), and Barone-Adesi and Whaley (1987). Blomeyer (1986) and Barone-Adesi and Whaley (1988) 
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extend these approximations to account for discrete dividends. However, these approximations cannot 
be made arbitrarily accurate. In contrast, the Geske and Johnson (1984) formula is arbitrarily accurate, 
although difficult to evaluate unless extrapolation techniques are employed. 

The purpose of this paper is to explore alternative characterizations of the American put’s value. 
These characterizations enhance our intuition about the sources of value of an American put. They 
also provide computational advantages, new analytic bounds, and new analytic approximations for this 
value. Our first characterization decomposes the American put value into the corresponding European 
put price and the early exercise premium. In contrast to approximations by MacMillan (1987) and 
Barone-Adesi and Whaley (1988), we provide an exact determination of the early exercise premium. 
This decomposition was also derived independently in Jacka (1991) and Kim (1990) using different 
means1 . We provide another proof of the result and offer intuition on the nature of the early exercise 
premium. In particular, we show that the early exercise premium is the value of an annuity that pays 
interest at a certain rate whenever the stock price is low enough so that early exercise is optimal. 

As in McKean (1965), our formula for the American put value is a function of the exogenous 
variables and the exercise boundary. While the function relating the boundary to the exogenous 
variables remains an unsolved problem, the boundary can be determined numerically. Having priced 
American put options in terms of a boundary, we also value European put options in terms of a 
boundary. We prove that our result is equivalent to the Black-Scholes (1973) formula for the price of a 
European put. This work generalizes earlier papers by Siedenverg (1988), and Carr and Jarrow (1990), 
and should be of  interest  in its  own right.  

From our main valuation result and a particular choice of a boundary for our European put formula, 
we are able to decompose the American put value into its intrinsic value and its time value ( or delayed 
exercise premium ). Just as the early exercise premium capitalizes the additional benefit of allowing 
exercise prior to maturity, the delayed exercise premium yields the additional value of permitting 
exercise after the valuation date. A second boundary choice for our European put formula then recovers 
the McKean equation. In contrast to Geske and Johnson (1984), all of our characterizations for the 
value of an American put involve only one dimensional normal distribution functions. 

The outline for this paper is as follows. In section I, we decompose the American put value into 
the corresponding European put price and the early exercise premium. Section II represents the 
corresponding European put price in terms of an arbitrary boundary. In section III, we select boundaries 
in order to decompose the American put value into its intrinsic and time value, and to show the 
equivalence of our main result to McKean’s equation. Finally, section IV summarizes the paper and 
indicates some extensions and avenues for future research. An appendix contains proofs of our main 
results. 

1Jacka (1991) obtains the result using probability theory applied to the optimal stopping problem while Kim (1990) 
obtains it as a limit of the Geske-Johnson (1984) formula. 
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I The Early Exercise Premium 

Throughout the paper, we assume the standard model of perfect capital markets, continuous trading, 
no arbitrage opportunities, a constant interest rate r >  0, and a stock price St following a geometric 
Brownian motion with no payouts, i.e., 

dSt 
= µdt + σdWt, for all t ∈ [0, T ], (1)

St 

where the expected rate of return per unit time, µ, and the instantaneous volatility per unit time, 
σ >  0, are constants. The term dWt denotes increments of a standard Wiener process defined on the 
time set [0, T ] and on a complete probability space (Ω, F , Q). 

Consider an American put option on the stock with strike price K and maturity date T . Let P t 

denote the value of the American put at time t ∈ [0, T ]. For each time t ∈ [0, T ], there exists a critical 
stock price, Bt, below which the American put should be exercised early, i.e., 

if St ≤ Bt, then P t = max[0, K  − St]  (2)  

and if St > Bt, then  Pt > max[0, K  − St]. (3) 

The exercise boundary is the time path of critical stock prices, Bt, t  ∈ [0, T ]. This boundary is inde­
pendent of the current stock price S0 and is a smooth, nondecreasing function of time t terminating in 
the strike price, i.e. BT = K. The put value is also a function, denoted P (S, t), mapping its domain 
D ≡ (S, t) ∈ [0, ∞) × [0, T ] into the nonnegative real line. The exercise boundary, Bt, t  ∈ [0, T ], divides 
this domain D into a stopping region S ≡ [0, Bt] × [0, T ] and  a  continuation region C ≡ (Bt, ∞) × [0, T ] 
(see Figure 1). Equation (2) indicates that in the stopping region, the put value function P (S, t) equals  
its exercise value, max[0, K  − S]. In contrast, the inequality expressed in (3) shows that in the contin­
uation region, the put is worth more “alive” than “dead”. Since the American put value is given by 
(2) if the stock price starts in the stopping region, we henceforth assume that the put is alive at the 
valuation date 0, i.e. S0 > B0. 

∂P ∂P ∂2PThe partial derivatives, , , and  exist2 and satisfy the Black-Scholes partial differential 
∂t ∂S ∂S2 

equation3 in the continuation region C, i.e. 
σ2S2 ∂2P (S, t) ∂P (S, t) ∂P (S, t)

+ rS − rP (S, t) +  = 0, for (S, t) ∈ C. (4)
2 ∂S2 ∂S ∂t 

McKean’s analysis implies that the American put value function P (S, t) and the exercise boundary Bt 

jointly solve a free boundary problem, consisting of (4) subject to the following boundary conditions: 

P (S, T ) = max[0, K  − S]  (5)  

lim P (S, t) = 0  (6)  
S↑∞ 

lim P (S, t) =  K −Bt (7)
S↓Bt 

∂P (S,t)lim 
∂S = −1. (8)

S↓Bt 

2See Jaillet, Lamberton, and Lapeyre (1989) [Theorem 3.6] or Van Moerbeke (1976), p. 116, Theorem 1. 
3See McKean (1965), p. 38 and Merton (1973) p. 173. 
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Equation (5) states that the American put is European at expiration. Expression (6) shows that the 
American put’s value tends to zero as the stock price approaches infinity. The value matching condition 
(7) and (2) imply that the put price is continuous across the exercise boundary. Furthermore, the high 
contact condition (8) and (2) further imply that the slope is continuous. This condition was postulated 
by Samuelson (1965) and proved by McKean (1965). Equations (7) and (8) are jointly referred to as 
the “smooth fit” conditions. 

Working within Samuelson’s equilibrium framework, McKean (1965) solved the free boundary prob­
lem for the American call option. By applying his analysis to the American put option, and by replacing 
the expected rate of return on the option and stock by the riskless rate, one obtains an analytic val­
uation formula for the put value and an integral equation for the exercise boundary, Bv. Numerical  
evaluation of this integral equation is complicated by the fact that the integrand depends on the slope 
of the exercise boundary, which becomes infinite at maturity (lim ∂Bv = ∞). To avoid this difficulty, 

∂v v↑T 

we seek an alternative characterization for the American put’s value which does not involve the slope 
of the exercise boundary. Our first theorem obtains such a characterization4 . 

Theorem 1 (Main Decomposition of the American Put) On the continuation region C, the  Amer­
ican put value, P0, can be decomposed into the corresponding European put price, p0, and  the  early  
exercise premium, e0: 

P0 = p0 + e0, (9) 

where    T ln(Bt/S0) − ρ2t−rtNe0 = rK e √ dt, 
0 σ t x exp(−z2/2)and N(x) ≡ 0 

√ dz is the standard normal distribution function. 
2π 

To understand this decomposition, consider the following trading strategy which converts an Amer­
ican put option into a European one. Suppose that an investor holds one American put5 whenever 
the stock price is above the exercise boundary. When the stock price is at or below the boundary, the 
investor duplicates the put’s exercise value by keeping K dollars in bonds and staying short one stock. 
Since the American put is worth more alive than dead above the boundary, the value of this portfolio 
at any time t ∈ [0, T ] is the larger of the put’s holding and exercise values i.e. max[Pt, K  − St]. 

The strategy’s opening cost is the initial American put price, P0, since the stock price starts above 
the boundary by assumption (i.e. S0 > B0). If and when the stock price crosses the exercise boundary 
from above, the investor exercises his put by shorting one share of stock to the writer and by investing 
the exercise price received in bonds. The “smooth fit” conditions (7) and (8) guarantee that these 
transitions at the exercise boundary are self-financing. However, when the stock price is below the 
boundary, interest earned on the K dollars in bonds must be siphoned off to maintain a level bond po­
sition. If and when the stock price crosses the exercise boundary from below, the investor liquidates this 

4Independently, Jacka (1991) and Kim (1990) derive the same result by different means. 
5Alternatively, if the put is mispriced, the investor can manage the self-financing portfolio of stocks and bonds which 

replicates the put’s payoff. We determine this portfolio shortly. 
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bond position, using the K dollars to buy one put for K−S dollars and to close his short stock position 
for S dollars. The “smooth fit” conditions again guarantee self-financing at the exercise boundary. At 
expiration, the strategy’s liquidation value matches the payoff of a European put, max[0, K−ST ], since 
the alive American put is worthless above the boundary. 

The present value of this terminal payoff is the initial European put price p0. The initial early 
exercise premium e0, as defined in (9), equals the present value of interest accumulated while the stock 
price is below the boundary. The decomposition (9) then states that the initial investment in the 
trading strategy, P0, equates to the present value of the terminal payoff, p0, and the present value of 
these intermediate interest withdrawals, e0. 

The price of a European put at the valuation date 0 is given by the Black-Scholes formula: 

 rT p0 = Ke
− N(k2T ) − S0N(k1T ), (10) 

 
e )−ρ2 T T 2 

wher k ≡ ln(K/S
T √0 2 , k  ≡ k T − σ

√
T = ln(K/S0)

2
−ρ√ 1 , and ρ1 ≡ ρ + σ2 

2 = r + σ tly,  
σ T 1T T 2 . Consequenσ

in the continuation region C, the initial American put value may be expressed as a function of the 
exogenous variables (S0, K, T, r, σ) and the exercise boundary (Bt, t  ∈ [0, T ]):  T 

P0 = Ke−rT N(k2T ) − S0N(k1T ) +  rK e− rtN(b2t)dt, (11) 
0 

where b2t ≡ ln(Bt/S0)−ρ√ 2t , ρ2 ≡ r − σ2/2. 
σ t 

The initial boundary value, B0, is the initial stock price, S0, which implicitly solves the value 
matching condition (7): 

T 
Ke−rT N(k2T ) − S0N(k1T ) +  rK e −rtN(b2t)dt = K − S0. (12) 

0 

Since the critical stock price B0 depends on future boundary values, Bt, t  ∈ (0, T ], it must be determined 
by setting the terminal boundary value to the strike price (BT = K) and working backwards through 
time. 

Our equations (11) and (12) do not involve the slope of the exercise boundary, as in McKean’s 
equation. In addition, we have localized the effect of the exercise boundary, Bt, t  ∈ [0, T ], on the 
American put value to the last term in (11). Unfortunately, the boundary satisfies the nonlinear 
integral equation (12), which has no known analytic solution. However, solving (12) numerically for 
the exercise boundary should prove easier than in McKean’s formulation. 

The early exercise premium is increasing in the boundary. This observation allows us to bound the 
American put value analytically. Suppose that an estimate for the boundary is known to be always 
greater (lesser) than the true boundary Bt. This estimate along with (11) then generates an upper 
(lower) bound on the put option. For example, the true boundary, Bt, always lies between the strike 
price, K, and the exercise boundary for the perpetual put, B  (i.e. K ≥ Bt ≥ B  for all t ∞ ∞ ∈ [0, T ]). 
McKean (1965) and Merton (1973) calculate the perpetual boundary to be B  = rK/ρ1. Consequently,  ∞
we can bound the American put value P0 analytically:      T  ln(K/S )  ρ t T ln(B /S )  ρ t

p0 +  − rt   
−

  
−√0 2 ≥ ≥   − rt ∞ √0

rK e N dt P0 p0 + rK e N  2
dt. (13) 

0 σ t 0 σ t 
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Section III shows that for at or out-of-the-money puts (S0 ≥ K), the upper bound in (13) is tighter 
than the bound given by the price of the corresponding European put with strike price growing at 
the riskless rate. As far as we know, there are no explicit tighter bounds to the exercise boundary. 
However, another upper bound on the American put value can be generated by using that initial stock 
price S0, which equates the right side of (13) to the exercise value, max[0, K  − S0]. Since this quantity 
lies between Bt and K, inserting it in (11) yields an even tighter upper bound than the left side of (13). 
This procedure can also be used to generate lower bounds and can be applied iteratively. 

Our characterization also allows us to approximate the American put value by replacing the exercise 
ˆboundary Bt in (11) with an estimate for it, Bt: 

T −rtN 
ln( B̂t/S0) − ρ2t 

P0 ≈ p0 + rK e √ dt. 
0 σ t 

At a minimum, an estimator should satisfy the characteristics of the exercise boundary described at 
the start of this section. An example of such an estimator which leads to an analytic approximation is 
the discounted strike price, ˆ = Ke−θ(T −t), θ  ≥ 0. For small times to maturity, Van Moerbeke (1976) Bt √ 
shows that the exercise boundary, Bt is approximately Ke−ασ T −t, where  α is a unitless constant6 . 
Conversely, for very long times to maturity, the exercise boundary Bt converges at an exponential rate 
to the perpetual boundary B∞. An estimator which also accounts for both of these characteristics is 

ˆ T −tan exponentially weighted average7 of the strike price and the perpetual boundary, Bt = Ke−θ 
√ 

+ 
B∞(1 − e−θ 

√ 
T −t), θ  ≥ 0. 

Besides the above benefits, our characterization also facilitates the analysis of limiting values and 
comparative statics. For example, as the initial stock price approaches infinity, equation (11) indi­
cates that the premiums for the European put and early exercise both tend to zero. Consequently, 
the American put value also vanishes, verifying the boundary condition (6) and confirming intuition. 
Differentiating (11) with respect to the initial stock price yields the “delta” for the American put: 

−rtN '(b2t)T∂P0 e exp(−x2/2) 
= −N(k1T ) − rK √ dt ≤ 0, where N '(x) ≡ √ (14)

∂S0 0 S0σ t 2π 

is the standard normal density function. Thus, as the initial stock price falls, the premiums for the 
European put and early exercise both rise. The early exercise premium rises because of the increased 
probability of stock price trajectories entering into the stopping region. As the initial stock price falls 
below the critical stock price, the American put is valued by (2). Consequently, as the stock price 
approaches zero, the American put value approaches the strike price, which acts as an upper bound. 
Although the observed American put value remains constant at the strike price over time, this does not 
represent an arbitrage opportunity, since all puts written with positive strike prices are immediately 
exercised. 

Beyond indicating the sensitivity of the American put value to stock price changes, the delta of an 
alive American put also represents the number8 of shares to hold when replicating it in a self-financing 

6See Van Moerbeke (1976), p. 144. 
7See Barone-Adesi and Whaley (1987) for a similar approximation. 
8The amount of dollars invested in bonds when replicating an alive American put in a self-financing strategy is given 

by P0 − ∂P0 S0.∂S0 
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strategy. Consequently, since the early exercise premium’s delta is negative (before expiration), more 
stock is shorted than for a European put because of the possibility of early exercise. 

The delta can also be used to determine a simpler integral equation for the exercise boundary, 
Bt, t ∈ [0, T ]. Using the high contact condition (8), the critical stock price, B0, is the initial stock price 
S0, which solves the following integral equation: 

−rtN '(b2t)T e
rK √ dt = N(−k1T ). (15) 

0 S0σ t 

Once again, the entire exercise boundary is generated numerically by working backwards through time. 

Calculation of the other derivatives verifies that (11) satisfies the free boundary problem (4) to 
(8). Kim (1990) also verifies that the limiting value of (11) yields the perpetual put formulae given in 
McKean (1965) and Merton (1973). 

II Representing European Puts in Terms of a Boundary 

The previous section priced American puts in terms of the exercise boundary. This section represents the 
value of a European put in terms of an arbitrary boundary. The appendix proves that this representation 
is mathematically equivalent to the Black-Scholes formula (10). We then select alternative boundaries 
to generate various valuation formulas for a European put. These formulas enhance intuition on 
the sources of value of a European put and are employed in the next section to generate additional 
characterizations of the American put’s value. 

As in the Black-Scholes dynamic hedge, we consider a trading strategy in stocks and bonds whose 
liquidation value at the expiration date T is the put’s terminal payoff, max[0, K  − ST ]. Consider a 
strategy with the amount mt dollars held in bonds earning interest continuously at constant rate r and 
with the number of shares of stock equal to nt. The value of this strategy at any time t is: 

Vt ≡ mt + ntSt. (16) 

Suppose transitions in stock holdings occur only at a positive, smooth, but otherwise arbitrary 
boundary At which terminates at the strike price: 

AT = K. (17) 

Examples of such a boundary include the strike price itself, K, the exercise boundary for an American 
put, Bt, or an estimator for this boundary, B̂t, as given in section I. We study an example of this type 
of strategy, termed the stop-loss start-gain strategy, defined by: 

mt = 1{St≤At}At; nt = −1{St≤At}, for all t ∈ [0, T ], (18) 

where 1{B} is the indicator function of the set {B}. This strategy involves keeping At dollars in bonds 
whenever the stock price St is at or below the boundary At. Funds are injected and withdrawn as 
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required after accounting for the interest earned. The strategy also requires that one share of stock be 
held short when the stock price is at or below the boundary. No bonds or stocks are held above the 
boundary. The stop-loss start-gain strategy for specified boundaries has been previously studied by 
Hull and White (1987), Ingersoll (1987), and Siedenverg (1988) among others. 

Substituting (18) in (16) implies that the value of the stop-loss start-gain strategy at any time 
t ∈ [0, T ] is:  

Vt = 1{St≤At}At − 1{St≤At}St = max[0, At − St]. (19) 

Consequently, from equation (17), this strategy replicates the payoff of a European put i.e. VT = 
max[0, K  − ST ]. From (19), the initial investment in the strategy is V0 = max[0, A0 − S0]. Since the 
strategy replicates the European put’s payoff, the put’s value is given by this initial investment plus the 
present value of the external financing required to implement this strategy. The appendix determines 
this present value, yielding the following theorem. 

Theorem 2 (Main Decomposition of the European Put) The European put price, p0, is given 
by: 

2  T  
σ S0 N '(a T

1t) 
p0 = max[0, A0 − S0] +  √ dt+ N(a − rt

2t)d(Ate ), (20)
2 0 σ t 0 

where a1t ≡ ln(At/S0)−ρ1t√ , ρ1 ≡ r + σ2/2 and a ≡ ln(At/S0)
2t 

−ρ√ 2 t , ρ2 ≡ r − σ2/2. 
σ t σ t 

In general, the European put value decomposes into three terms. The first term in (20) is the initial 
investment in the stop-loss start-gain strategy (18). The next term represents the present value of the 
external financing required because of adverse movements of the stock price at the arbitrary boundary 
At. The final term represents the present value of funds injected and withdrawn in order to keep At 

dollars in bonds whenever the stock price is at or below this boundary. The appendix proves that our 
representation (20) is equivalent to the Black-Scholes formula. 

In addition, our representation (20) is a generalization of the formula given in Carr and Jarrow 
(1990). To get this formula, we use the exponential boundary: 

T A = Ke−r(
t 

−t). (21) 

Substituting (21) into Theorem 2 yields a decomposition9 of the initial European put price into its 
intrinsic and time value:   

σ2  
S T

rT 1 ln(K/F ) − σ2t/2 
p0 = max[0, Ke

− − 0 0
S0] +  √ N ' √ dt, (22)

2 0 σ t σ t 

where F0 ≡ S0e
rT is the initial forward price of the stock. The corresponding result for the binomial 

model is developed in Siedenverg (1988). 

9To directly prove the equivalence of (22) to the Black-Scholes formula (10), use (10) to express the forward price of 
the European put p̂(T ) in terms of the forward price of the stock Ŝ, and differentiate it with respect to time to maturity 
T , holding the forward price constant. Then integrate back over T using the boundary condition p̂(0) = max[0, K  − Ŝ] 
to determine the constant of integration. 
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Equation (22) indicates that the payoff of a European put is replicated by holding a pure discount 
bond paying K dollars at T and being short one stock whenever the stock price is at or below the 
present value of the strike price, Ke−r(T −t). While this strategy is self-financing below this boundary, 
external financing is required at the boundary. The first term in (22) is the initial investment in the 
strategy while the second is the present value of this external financing. 

Suppose that on the valuation date 0, we wish to price a European put with current strike price 
K growing at the riskless rate r. By the expiration date T , the exercise price will be KerT . Let  the  
current price of this put be g0. Replacing K in (22) with KerT yields: 

σ2S0 
T 1 ln(K/S0) − σ2t/2 

g0 = max[0, K  − S0] +  √ N ' √ dt. (23)
2 0 σ t σ t 

Margrabe (1978) shows that this put is an upper bound for an American put with strike price K. In  
section III, we prove that the upper bound generated in the last section is tighter than (23), if the 
American put is at or out-of-the-money (S0 ≥ K). 

A second boundary choice in our representation of the European put option leads to another im­
portant decomposition. Consider a constant boundary equal to the strike price: 

At = K. (24) 

Substituting (24) into Theorem 2 leads to the following decomposition10 of the European put value:   
T σ2S0 N

'(k1t) 
p0 = max[0, K  − S0] +  √ − rKe−rtN(k2t) dt, (25) 

0 2 σ t 

ln(K/S0)−ρ1t ln(K/S0)−ρ2twhere recall k1t ≡ √ , ρ1 ≡ r + σ2/2 and  k2t ≡ √ , ρ2 ≡ r − σ2/2. Equation (25) 
σ t σ t 

indicates that the payoff of a European put can be replicated by keeping K dollars in bonds and being 
short one share whenever the put is at or in-the-money. No bonds or stocks are held when the put is 
out-of-the-money. The first term represents the initial investment in the strategy while the other term 
gives the present value of the external financing needed to implement the strategy. 

III Various American Put Representations 

This section uses our main decomposition of the American put value in Theorem 1 and our repre­
sentation of the European put price in Theorem 2 to derive two alternative characterizations of the 
American put’s value. 

Substituting the European put formula (25) arising from the constant boundary At = K into 
Theorem 1 yields a decomposition of the American put value into its intrinsic value, max[0, K  − S0], 
and its time value, also called the delayed exercise premium, d0: 

P0 = max[0, K  − S0] +  d0 (26) 

10Note that if the interest rate vanishes (r = 0), then the boundary in (21) simplifies to that in (24) and the European 
put value in (25) simplifies to that in (22) (with r = 0).  
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where  T   
σ2S0 N '(k T

1t)
d0 = √ dt− rK e− rt[N(k )  N(b )]dt. 

2 0 σ t 
2t 2t

0 
−

This representation can be given a financial interpretation by rearranging it as:    T σ2S N ' (k )
P0 − max[0, K − 0 1t

S0] =  d0 = √ − rKe−rt[N(k2t) − N(b2t)] dt. (27) 
0 2 σ t 

The following strategy duplicates the time value of the American put in the continuation region. 
Suppose an investor holds an American put when it is at or out-of-the-money. When the stock price is 
strictly between the strike price and the exercise boundary, the investor continues to hold the American 
put, and in addition, holds one share of the stock while keeping K dollars in borrowings. When the 
stock price enters the stopping region, the investor exercises his put by delivering the share held and 
using the strike price received to pay off his borrowing. Consequently, the investor holds nothing in 
this region. The value of this strategy at any time t ∈ [0, T ] is  Vt = 1{St>Bt}(Pt − max[0, K  − St]), 
which is the time value in the continuation region. Since the stock price starts in the continuation 
region (S0 > B0), the strategy has an initial investment of P0 − max[0, K  − S0]. Since the exercise 
boundary terminates at the strike price (BT = K), this strategy has zero terminal value. The delayed 
exercise premium, as determined in (26), equals the present value of the intervening cash flows. Since 
there is no terminal payoff, (27) then states that the initial investment in this strategy equates to the 
present value of these cash flows. The American put has the same value as a claim which pays the 
exercise value immediately, and a flow equal to the sum of the stock price movement “around” the 
strike price less interest on the strike price paid while the put is in-the-money but optimally held alive 
(i.e. K > St > Bt). 

The exercise boundary Bt, t ∈ [0, T ], can be determined implicitly from the condition (7) that there 
is no value in delaying exercise at this boundary (dt|St =Bt = 0). Consequently, the critical stock price 
B0 is the initial stock price S0 that solves: 

σ2 T −rtN ' (k2t) Te √ dt = r e −rt[N(k2t) − N(b2t)]dt. (28)
2 0 σ t 0 

Thus, the put is exercised as soon as the present value of the flow arising from movement of the stock 
price at the strike price equates to the present value of interest paid while the stock price is between 
the exercise boundary and the strike price. 

The decomposition (26) into intrinsic and time values can also be used to bound the American put’s 
value. Since the difference in cumulative normals in (27) is nonnegative, setting the difference to zero 
yields the following upper bound: 

Tσ2S0 N ' (k1t)
P0 ≤ max[0, K − S0] +  √ dt, (29)

2 0 σ t 

≡ ln(K/S0)−ρ1twhere recall k1t √ . From (25), this is the same upper bound as in (13). Comparing (29) 
σ t 

with (23), we see that our upper bound given by (29) is tighter if the American put is at11 or out-of­
the-money (S0 ≥ K). Using a result from Hadley and Whitin (1964), Appendix 4, Property 9, our 

11A slightly weaker sufficient condition is S0 ≥ Ke−ρ1T . 
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upper bound can be rewritten in terms of standard normal distribution functions: 

S0 
[ ]  

K  λ [ ( √ )]
P0 ≤ max[0, K  − S0] +  1{S0≤K} − N(k1T ) − 1{S0≤K} − N k1T + λσ T ,

λ S0

where λ ≡ 2ρ1/σ
2 . 

Finally, to generate McKean’s characterization of the American put value, let the boundary used 
to price the European put be the exercise boundary for the American put: 

At = Bt. (30) 

Then substituting (30) into Theorem 2 yields the following representation for the European put value: 

Tσ2S0 
T N ' (b1t) −rt)p0 = max[0, B0 − S0] +  √ dt + N(b2t)d(Bte 

2 0 σ t 0 

T Tσ2S0 N ' (b1t) 
= √ dt + N(b2t)d(Bte 

−rt), since S0 > B0. (31)
2 0 σ t 0 

Equation (31) indicates that the payoff to a European put can be achieved by keeping Bt dollars in 
bonds and staying short one share whenever the stock price is in the stopping region. No bonds or 
stocks are held when the stock price is in the continuation region. Since the stock price starts in this 
region, no investment is initially required. However, transitions at the exercise boundary and the bond 
position below it are not self-financing. The first term in (31) gives the present value of the external 
financing required at the boundary, while the second term gives this present value below it. 

Substituting formula (31) for the European put price into Theorem 1 yields the following formula12 

for the value of an American put: 

T T Tσ2S0 N ' (b1t)
P0 = √ dt + N(b2t)d(Bte 

−rt) +  rK e −rtN(b2t)dt 
2 0 σ t 0 0 

T Tσ2S0 N ' (b1t) −rt).= √ dt − N(b2t)d((K − Bt)e (32)
2 0 σ t 0 

To understand this decomposition, consider a strategy of holding one American put whenever the 
stock price is above the exercise boundary. When the stock price is in the stopping region, keep K − Bt 

dollars in bonds, but hold no puts or stocks. Since the stock price starts in the continuation region, the 
startup cost of the strategy is the initial American put price P0. Since the American put is worthless 
in the continuation region at expiration and BT = K, the strategy has no terminal payoff. In contrast 
to the strategy underlying Theorem 1, this strategy is not self-financing at the exercise boundary. The 
first term in (32) is the present value of the external financing at this boundary, while the second is 
this present value below it. Since there is no terminal payoff to this strategy, equation (32) indicates 
that its startup cost equates to the present value of its external financing requirement. 

12Equation (32) is in fact equivalent to the McKean equation for the American put value. To see this, replace S0N
'(b1t 

with the equivalent value Bte
−rtN '(b2t in the first term in (32) and integrate the second term by parts. 
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IV Summary and Extensions
 

This paper makes several contributions. We decompose the American put’s value into the corresponding 
European put price and the early exercise premium. This formulation leads to increased understanding, 
more efficient numerical evaluation, tighter analytic bounds, and new analytic approximations. In 
addition, we employ a stop-loss start-gain strategy at an arbitrary smooth boundary to obtain a new 
European put valuation formula. This allows us to alternatively decompose the American put price 
into intrinsic and time value and to prove the equivalence of our results to the McKean equation. 

Although we considered the case of no dividends, our results easily extend to the case where the 
underlying asset pays continuous proportional dividends13 . This extension to continuous dividends 
can be used to price American options on commodities, foreign currencies, or futures prices. By 
letting interest rates be the underlying state variable, American bond options can also be priced (see 
Jamshidian (1989) for an application of our results to a specific bond option model). By generalizing 
the payoff function, other American claims can be valued by this approach, for example compound 
options, prepayment options, or callable bonds. It is also possible to relax the assumption that the 
stock price follows a geometric Brownian motion. The results in the paper easily generalize to the case 
where the stock price follows an arbitrary diffusion process. 

There are at least three important avenues for future research. First, as the integral equations 
determining the exercise boundary remain unsolved, it would be useful to investigate the nature of the 
solution and its approximations based on a study of those equations. A second significant avenue for 
future research involves valuing American puts when the underlying asset has discrete payouts. A third 
avenue involves multiple state variables, for example, combining stochastic stock prices with stochastic 
interest rates and/or dividends. 

13The only nontrivial change is the determination of the exercise boundary at expiration. For American put options, 
if the dividend rate δ ≥ 0 i s less than or e qual t o  the  riskless r ate r , then the exercise boundary Bt converges to the 
strike price K at expiration as before (i.e. BT = K). However, if the dividend rate δ exceeds the riskless rate, then 
B r

T = K < K, reflecting the reduced incentive to exercise early. δ 
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Appendix
 

Proof of Theorem 1: 

We wish to prove14 that:    T ln(B /S ) ρ t
P0 = p0 + rK e− rt t 0 2

N  
−

dt. 
0 σ

√
t 

Let Zt ≡ e−rtPt be the discounted put price, defined in the region D ≡ {(S, t) : S  ∈ [0, ∞), t  ∈ [0, T ]}. 
In this region, the pricing function P (S, t) is  convex  in  S for all t, continuously differentiable in t for 
all S, and  a.e. twice continuously differentiable in S for all t. Consequently, the discounted pricing 
function: 

Z(S, t) ≡ e −rtP (S, t). (33) 

inherits these properties. Although the partial derivative 2 is discontinuous at the boundary B , Itô’s ∂S  [ t

    2
]

15    2 2 σ S
lemma extends to Z(S, t), so that Z = Z + T ∂Z(St,t)dS + T ∂ Z(St,t) t + ∂Z(St,t)

T 0 0  ∂S t 0 2   dt. Therefore 
∂S 2 ∂t

from (33):    T  T 2
rT rt ∂P (St, t) rt ∂ P (St, t) σ2S2 

−   ∂P (St, t)
e PT = P0 + e− dS + e− t − re− rt

t P (S , t) +  e− rt

 t dt. 
2 0 ∂S 0 ∂S 2 ∂t 

Now P ,K  − S  16 
T ax[    Q̃= m 0 T ] and there exists a probability measure , equivalent  to Q , such that: 

˜dSt = rStdt + σStdWt, (34) 

14D. Lamberton communicated this proof to us. It was motivated by our earlier proof based on Fourier transforms. 
15A sketch of the proof for the extension can be obtained as follows. Unless specified otherwise, all theorem and 

equation references are to Karatzas and Shreve[23]. The proof of equation (7.4), p. 219 can be modified and extended 
to apply to f : [0, ∞) × � → � denoted f(x, t), where f is convex in x for all t, continuously differentiable in t for all 
x and a.e. twice continuously differentiable in x for all t. Itô’s lemma (see Theorem 3.6, p. 153) is used to get a slight 
modification of equation (7.5), p.219:  t     

∂fn(X , s) t t
s  1 t

fn(Xt, t) = f n(X0, 0) + ds + f n
' (Xs, s)dMs + f n

' (Xs, s)dVs + f n
''(Xs, s)d M ,

0 ∂s 0 0 2 s
0 

( )

where the prime(s) on f denote partial differentiation with respect to the first argument of f . The identical argument     
gives f (X ) → ( ), t ∂f ), t n(Xs,s  → t     ∂f(Xs,s)  t  

 t t
n t, t f Xt ds ds Xs, s∂s  ∂s , f 

0 n
' ( )dVs → f '(Xs, s  a.e.

0
)dV , f  n

' (X , s  s 0  s s dM
0 0

)
t t  

→
f (Xs, s or  t

0 
' )dMs in probability f every fixed , and  1 f n

''(Xs, s)d(M)s converges to a limit in probability. Since f(x, t2 0 )
is a.e. twice continuously differentiable in x, this limit is determined as:  t   

1 t
 1

f n
''(Xs, s)d M s = f  

n
''(x, s)d x

sl dx from Rogers and Williams[31] p. 104 (45.4) 
2 0 

( )
2  x∈'  0 

1 t

→ f ''(x, s)d lxdx from Karatzas and Shreve[23] top of p. 215
2 s x∈' 0 

1 t

= f ''(Xs, s)d(M)s from Rogers and Williams[31] p. 104 (45.4). 
2 0 

( )
16Define Q̃ by its Radon-Nikodym derivative  ˜dQ = exp[µ−r − ( µ−r W )2 T

T dQ σ σ 2 ].

       ∂2P      
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˜wher ≡ W µ r e Wt t − −
 t is a standard Brownian motion on (Ω, F , Q̃). Separating the put value into the 

σ

two regions, P (St, t) = 1 St>Bt P (St, t) + 1 St Bt (K − St), we have: { } { ≤ }
   T ∂P (S , t) 

e− rT max[0, K  − ST ] =  P0 + e− rt t
1 St>Bt  − ˜1{ } 
 {St≤Bt} [rStdt + σStdWt] 

0 ∂S     T ∂2P (S , t) σ2
t S2 

rt t ∂P (St, t)

+ e− 1 St>Bt  − rP (St, t) +  + 1 St Bt [−r(K − St)] dt. 

0 
{ }

∂S2 2 ∂t { ≤ }

On the continuation region, the pricing function P (S, t) satisfies the Black-Scholes partial differential 
equation (4). Consequently, the terms multiplying 1{St>Bt} sum to zero, leaving: 

T T −rt1{St≤Bt}dt + −rtσSt d ˜e −rT max[0, K  − ST ] =  P0 − rK e e 
∂P

W.  
0 0 ∂S 

˜Taking expectations with respect to the martingale measure Q establishes the result: 

T ln(Bt/S0) − ρ2t 
p0 ≡ Ẽ{e −rT max[0, K  − ST ]} = P0 − rK e −rtN √ dt. 

0 σ t 

Q.E.D. 
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Proof of Theorem 2: 

To determine the discounted external financing of the strategy (18), define the process: 

Dt ≡ e −rt · max[0, At − St], for all t ∈ [0, T ] 

= e −rtAt · max[0, 1 − St/At] 

= e −rtAt · max[0, 1 − Yt], 

where Yt ≡ St/At. Using integration by parts: 

AT e 
−rT max[0, 1 − YT ] =  A0e	 

−r0 max[0, 1 − Y0]
 
T T
 −rt)+ Ate 

−rtd(max[0, 1 − Yt]) + max[0, 1 − Yt]d(Ate (35) 
0	 0 

Now, from the Tanaka-Meyer formula17: 
t 

max[0, 1 − Yt] =  max[0, 1 − Y0] − 1{Yt<1}dYt + ΛY (1, t), 
0 

where ΛY (1, t) is the  local time of the process Y at 1 by time t. Consequently (35) becomes: 

T 
AT e 

−rT max[0, 1 − YT ] =  A0 max[0, 1 − Y0] +  Ate 
−rt[−1{Yt<1}dYt + dΛY (1, t)] 

0 
T	 T −rt) −	 −rt).+ 1{Yt<1}d(Ate 1{Yt<1}Ytd(Ate	 (36) 

0	 0 

Since Yt ≡ St/At and AT = K by (17), the left side of (36) becomes e−rT max[0, K  − ST ], while the 
right side is: 

T T 
max[0, A0 − S0] − Ate 

−rt1{St/At<1}[dSt/At − (St/A
2)dAt] +  Ate 

−rtdΛY (1, t)t 
0	 0 

T T	 T −rt) −+ 1{St/At<1}d(Ate 1{St/At<1}(St/At)e 
−rtdAt + 1{St/At<1}Stre 

−rtdt 
0 0	 0 

−rtT	 T e
= max[0, A0 − S0] − 1{St<At}[e 

−rtdSt − Stre 
−rtdt] +  St1{St<At}dAt 

0	 0 At 
T T	 T −rte−rt) −+ e −rtAtdΛY (1, t) +  1{St<At}d(Ate	 St1{St<At}dAt 

0	 0 0 At 
T T T −rt)= max[0, A0 − S0] − 1{St<At}d(Ste 

−rt) +  e −rtAtdΛY (1, t) +  1{St<At}d(Ate 
0	 0 0 

˜Taking expectations using the equivalent martingale measure Q implies: 

T	 T 
p0 ≡ ˜	 −rt ˜ ˜E{e −rT max[0, K  −ST ]} = max[0, A0 −S0]+  Ate EdΛY (1, t)+  E1{St<At}d(Ate 

−rt), (37) 
0	 0 

from Fubini’s Theorem and from the fact that the expectation of 0 
T 1{St<At}d(Ste

−rt), a local martingale, 
vanishes. To evaluate the first integral, recall Yt ≡ St/At. From (34) and Itô’s lemma: 

dYt	 dAt 1 
= (r − µa)dt + σdW̃t, where µa ≡ . 

Yt	 dt At 

17See Karatzas and Shreve (1988) p. 220 (7.7). 
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Then from the properties of local time, the first integral can be rewritten as:
 

T σ2 T −rt ˜Ate EdΛY (1, t) =  Ate 
−rt)(1, t; Y0, 0)dt, 

0 2 0 

where )(Yt, t; Y0, 0) denotes the (lognormal) transition density function: 
  

2  t 
ln(Yt/Y0)−ρ2t+ µadu 

0exp −1 √ 
2 t  σ  

)(Yt, t; Y0, 0) ≡ √ . 
Yt 2πσ2t 

Consequently, using the standard normal notation in (14), the first integral in (37) has the form: 

−rt tT σ2 T Ate ln(1/Y0) − ρ2t + du−rt ˜ ' 0 µa
Ate EdΛY (1, t) =  √ N √ dt 

0 2 0 σ t σ t 
−rt tσ2 T Ate ln(A0 exp( 0 µadu)/S0) − ρ2t 

= √ N ' √ dt 
2 0 σ t σ t 
σ2 T −rtAte ln(At/S0) − ρ2t 

= √ N ' √ dt. (38)
2 0 σ t σ t 

Substituting (38) in (37) yields: 

2  σ T   
rt N ' (a ) T At 2t

p rt
0 = max[0, A0 − S0] +  Ate

−  dt + )(St, t; S0, 0)dStd(Ate
− ),

2 0 σ
√
t 0 0 

where a ≡ ln(At/S0) ρ2t 
2t 

−√ . To simplify the first integral, use the identity: 
σ t
 

− rt 
'   ' Ate N (a2t) = S0N (a1t), (39) 

where At > 0 and: 
ln( t/S

1t  a2t σ
√ A ) 

a
− ρ t ≡ − t = √0  1

. (40)
σ t 

To simplify the second integral, perform the change of variables z = ln(St/S0) ρ t√ − 2 . Thus:  
σ t 

2  σ S T   
0 N '(a1t)dt T

p0 = max[0, A0 − S0] +  √ + N(a2t)d(Ate
− rt). (41)

2 0 σ t 0 

Q.E.D. 
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Proof of Equation 41: 

To prove that (41) is equivalent to the Black-Scholes formula (10), use integration by parts on the 
last integral in (41): 

T � Tσ2S0 N ' (a1t) −rtN(a2t)
� T −rtN 

da2t 
p0 = max[0, A0 − S0] +  √ dt + Ate � − Ate 

' (a2t) dt 
2 0 σ t 0 0 dt 

T σ T da2t
= 1{S0<A0}(A0 − S0) +  S0 N ' (a1t) √ dt + Ke−rT N(k2T ) − 1{S0<A0}A0 − S0 N ' (a1t) dt 

0 2 t 0 dt 
T da2t σ 

= −1{S0<A0}S0 + Ke−rT N(k2T ) − S0 N ' (a1t) − √ dt, (42) 
0 dt 2 t 

where the second equality follows from (17) and (39). Differentiating (40) and substituting in (42) 
leads to: 

T 
p0 = −1{S0<A0}S0 + Ke−rT N(k2T ) − S0 N ' (a1t)a1

' (t)dt 
0 

= −1{S0<A0}S0 + Ke−rT N(k2T ) − S0N(a1t)� T 

0 

= −1{S0<A0}S0 + Ke−rT N(k2T ) − S0N(k1T ) + 1{S0<A0}S0 

Ke−rT N(k2T ) − S0N(k1T ),= 

which is the Black-Scholes formula (10). 
Q.E.D. 
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