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Abstract

The modern theory of option pricing rests on It6 calculus, which is a second order calculus
based on the quadratic variation of a stochastic process. One can instead develop a first order
stochastic calculus, which is based on the running minimum of a stochastic process, rather
than its quadratic variation. We focus here on the analog of geometric Brownian motion
(GBM) in this alternative stochastic calculus. The resulting stochastic process is a positive
continuous martingale whose laws are easy to calculate. We show that this analog behaves
locally like a GBM whenever its running minimum decreases, but behaves locally like an
arithmetic Brownian motion otherwise. We provide closed form valuation formulas for vanilla
and barrier options written on this process. We also develop a reflection principle for the
process and use it to show how a barrier option on this process can be hedged by a static
postion in vanilla options.

I am grateful to Kevin Atteson, Thong-Wei Koh, and Vadim Linetsky for comments. They are
not responsible for any errors.
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1 Introduction

The modern theory of option pricing rests on Ito calculus, which is a second order calculus based
on the quadratic variation of a stochastic process. In the standard Black Scholes model, the focus is
on the quadratic variation of the log of the spot price S. Letting W denote the standard Brownian
motion (SBM) driving S, the model requires that:

(n (S/So)) = o2(W),, >0, (1)

In words, the quadratic variation of the log price is positively proportional to the quadratic variation
of the driving SBM. Any solution S to (1)) is called Geometric Brownian Motion (GBM).

In this paper, we price options using an alternative first order calculus, which replaces the
quadratic variation of a process with its running minimum. In particular, we model the underlying
price process as a continuous martingale F' started at Fy and evolving so that:

In (F/Fpy), = oW, t>0, (2)

inf
where In (F//Fy), =selo4 In(F;/Fy) denotes the running minimum of In(F;/Fp), o is a positive

constant, and W, Esel?()f,t] W, denotes the running minimum of W. Comparing with , we see
that F' is defined to be the analog of the GBM S that arises when the quadratic variation of a
process is replaced by its running minimum. Since the calculus is first order, o replaces o2 as the
proportionality constant.

It is straightforward to solve for the underlying price process F":

Fy = Fpe®™e (1 + oWY),  t>0, (3)

where W} = W, — W, is the running drawup of the SBM W. It is natural to compare this solution
with the general solution S of :

2

S, = Spe= T WtgoWe t>0, (4)

with the parameters Sy and o both positive.

Each process arises as the product of three factors. First, each process starts at a positive level,
denoted Fy and Sy respectively. Second, each starting level is multiplied by a positive decreasing
process, with oW, replacing —%Q(W)t = —%275 in the argument of an exponential function. Third,
each product is further multiplied by a positive submartingale, with 1 4+ oW} in replacing e”"t
in as the multiplier of that product. It follows that both processes start positive and remain
positive forever. Whenever the driving SBM W is above its minimum W,, the random process W,
is locally constant, so the Brownian drawup W}’ is locally affine in W. It follows from that our
new martingale F' is also locally affine in the driving SBM W at such times, in stark contrast to S,
which always behaves as an exponential function of W. This locally affine behavior of F' leads to a
downward sloping skew, characteristic of many options markets.

It is clear from (3] that the law of F" at a fixed time 7" depends on the bivariate law of (W ., W7}).
Fortunately, the reflection principle implies that the bivariate law of (W, Wr) is known in closed
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form. As a result, the desired bivariate law is also known, allowing us to develop not only the
law of Fr, but also the bivariate law (F, Fr). The paper shows how one can use this bivariate
law to price vanilla and lower barrier options on F' in closed form. We also develop a reflection
principle for the F' process, relating the law of F', to the law of Fip. This reflection principle gives
an investor the ability to replicate the payoff of a lower-barrier one-touch on F, by holding a static
position in co-terminal puts. We show that this static replicating portfolio of puts is robust to
the introduction of independent stochastic volatility, even if the stochastic process generating this
volatility is unknown. We argue that these properties of F' render our new martingale intuitive,
tractable, realistic, and yet simple, making it a suitable springboard for further development.

2 Analysis

We assume no arbitrage and zero interest rates. By the Fundamental Theorem of Asset Pricing,
there exists a probability measure Q under which asset prices are martingales. Financial consider-
ations such as limited liability often restrict attention to positive martingales, with GBM being the
standard example. The goal of this paper is to explore the properties of a new positive continuous
martingale, which arises as the natural analog of GBM in a first order calculus, which arises when
the quadratic variation of a process is replaced by its running minimum. We will show that our
new martingale may also be considered as a very special case of the more general class of Azema
Yor martingales.

Let W be a standard Brownian motion under a risk-neutral measure Q. Let W, Eselr[lof,t] W
be the running minimum of the W process over the time period [0,¢]. Let WP = W, — W, be
the running drawup of the W process over the time period [0, ¢]. Trivially, we can decompose W}
additively by:

Wy=W,+ W/, t>0.

By Skorohod’s lemma, there is a unique way to assign the Gaussian probability density of W; to the
ordered pair (W,, W}Y). For j <0 and k > 0, we find that the bivariate PDF Q(W, € dj, W} € dk)
depends on j and k£ only through their distance £ — j > 0. When we derive the marginal of W}’
from this bivariate law, we observe that this PDF of W} is folded normal. When we furthermore
derive the marginal of W, from the bivariate law, we observe that —W, has the same PDF as W}".

We are interested in defining a “geometric” version of W, which emphasizes a first order variation
such as W rather than the second order variation (W), = t. This task is accomplished by replacing
differences in the Brownian minimum by ratios and also by replacing differences in the drawup
definition by ratios. The geometric process will be the product of its minimum and its drawup,
rather than the sum of the two. The starting value of the geometric process will be the multiplicative
identity element one, rather than the additive identity element zero. Furthermore, the geometric
process stays positive, with zero and infinity as natural boundaries.

Azema and Yor show how one can develop a family of local martingales from a given martingale
and its extremum. Consider the Azema Yor local martingale that arises when the driving martingale
is an SBM W and its extremum is W:

A

Ny = @(%) + (W)WY, t>0, (5)
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where ®(z) = [ ¢(a’)da’ is an anti-derivative of ¢(x). Suppose we choose ¢(x) = e”. Then an
anti-derivative is ®(x) = e®. Let F; denote the proposed local martingale for this choice:

F, = Yeq Weppy
e (L+ W), t=0. (6)

Notice that this process separates multiplicatively into an exponential function of the Brownian
infimum W, and an affine function of the Brownian drawup W. This is analogous to a standardized
GBM S which has the form

S, =ez Wi t>0. (7)

Since W (0) = WY =0, setting t = 0 in @ implies that the process F' starts at 1:
Fy=1. (8)
Taking the total derivative in @ implies that F' solves:
dF, = e dW,,  t>0, (9)

subject to the initial condition . Hence, the process F' is a local martingale, and it can be shown
that it is also a martingale.

inf
Now let F, =sefo,] F; denote the running minimum of the F' process over [0,t]. Since W can
only decline at the times when W = 0, we have:

F,=e%  t>0. (10)

Solving for W,:
W,=InF,=hkF, t>0, (11)

since Inx is an increasing function. It follows that we have constructed a continuous martingale
whose log has the same minimum as standard Brownian motion. In contrast, the GBM S in is
a continuous martingale whose log has the same quadratic variation as standard Brownian motion.
Since quadratic variation is a second order variation while the running minimum is first order, the
continuous process F' defined in @ will be referred to as the first order martingale. When W
is above its minimum, then W is locally constant so F} = e¢(1 + W, — W,) is locally affine in
W. Hence, increments of the continuous martingale F' are locally normally distributed. When W
is at its minimum and then declines, the continuous martingale F' declines exponentially. Hence,
these increments of the continuous martingale F' are locally lognormally distributed. The Lebesgue
measure of the set of times when W is at its minimum is zero. Thus, the continuous martingale F'
spends 100% of its time behaving locally like an arithmetic Brownian motion (ABM). Nonetheless,
indicates that £, > 0 and hence the F' process is positive. Since the dynamics mimic an
ABM almost everywhere, using the F' process to describe the dynamics of an underlying results in
a downward sloping skew, characteristic of many options markets.
Substituting in (9) implies that F' solves the following SDE:

dFt - EtthJ t 2 0, (12)
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subject to the initial condition (). We also have the following differential version of (10):
dF, = F,dW, — t>0. (13)

subject to the initial condition:
F,=1. (14)

Recall that the Brownian drawup W) of the SBM was defined as the difference between the
Brownian level W; and the Brownian minimum W,. Suppose we analogously define the drawup of
the first order martingale F' as the ratio of its level to its minimum, i.e.:

==t t>o (15)

Then we trivially have that the first order martingale F' decomposes multiplicatively as:
F,=F,F’ t>0. (16)

Comparing with @ and , we conclude that our first order process’ drawup is affine in the
Brownian drawup:

FP=1+W t>0. (17)

There are no parameters in our definition of the first order process F', but it would be straight-
forward to introduce two parameters. The first one, naturally labelled Fy, would be the starting
value of F' and hence is required to be positive. The second parameter, naturally labelled o, is also
required to be positive. The square of this parameter 2 has units of one over years and controls
the width of the PDF of F; through o%t. The definition of the two parameter first order martingale
is:

F, = Fpe"™ (1 +oW)),  t>0. (18)

where recall W) = W, — W,. It is natural to compare this two parameter process with the GBM:
S, = Spe~2 et >0, (19)

For the first order F' process, scaling W by o is accompanied by scaling W by o. In contrast, for
the second order S process scaling W by o is accompanied by scaling (W); =t by 2.

For each fixed time t > 0 and starting level Fy, > 0, we may regard F; as a function of the
parameter o. Differentiating w.r.t. ¢ and setting ¢ = 0 implies that:

0
8_Ft<0) = wt + th = Wt, t Z 0. (20)
o

o=0

Thus this stochastic flow is just the driving SBM W. The well known Brownian scaling property of
W, extends to the pair (IW,, W) so that (¢cWW,,cW}’) has the same bivariate law as (W 2, W2,).



3 Derivation of Bivariate Laws

Let T > 0 be a fixed time called the terminal time. In this section, we derive in closed form the
bivariate law of the terminal minimum F'; and the terminal drawup F7, conditional on the current
levels I, and F} at any prior time ¢ € [0, 7. We first develop the corresponding results for standard
Brownian motion and then use these to develop the bivariate law of (EF, F}}) given (F,, F}).
Consider a down-and-in binary call (DIBC) written on the terminal Brownian drawup W}. For
in-barrier j < 0 and strike £ > 0, the payoff at the terminal time 7 is 1(W, < j, W} > k). Let 7
be the first passage time of the SBM W to the lower barrier j < 0. As usual, if W never hits j, we
set 7 = 0o0. Fort € (0,7), let DIBCym(j, k) = Q{W; < j, Wi > k} denote the value at time ¢
of the DIBC expiring at 7. Using a no arbitrage argument, the appendix shows that for t € (0, 7),
1<0,k>0:
DIBCym(j, k) = 2Q{Wr < j — k}. (21)

In words, prior to knocking in, the DIBC with barrier j < 0 and strike £ > 0 has the same value as
two co-terminal binary puts on Wy struck at j — k& < 0. The conditional value of the two binary
puts on Wy can of course be determined in closed form:

j—k—W,

QQt{Wng—k}:2N< —

) , te|0,7), (22)

J i
2

2
where N(z) = °_ ¢ 75— dx is the univariate normal distribution function. Equations and

together imply that for t € (0,7),7 <0,k > 0:

(23)

DIBCyr(j, k) = Q{Wy < j,Wp > k} = 2N (Q) ‘

T—1

So the bivariate law in the middle just depends on the univariate normal distribution function on
the RHS. Notice that this bivariate law depends on the time ¢ values of W, and W}’ only through
their sum W; = W, + W?. In contrast, the dependence on j < 0 and k£ > 0 occurs only through
the distance k —j > 0. As a result, subtracting j from both arguments of the DIBC does not affect
the result implying that for ¢ € (0, 7):

k=W,
@t{wTso,Wgﬁzk_j}:@t{W;zk_j}ZQN(J t)_

T—t
Hence, the marginal law of W7 at ¢ = 0 with W, = 0 is folded normal. If we subtract & from both
of the arguments of the DIBC in (23), we get that for ¢ € (0,7):

(24)

— (25)

Comparing and , we see that at ¢ = 0 with W, = 0, =W has the same law as Wj.
Differentiating w.r.t. j and k yields the following simple closed form formula for the bivariate
PDF of the Brownian Minimum and Brownian Drawup:

i~ k-,
Qt{wTSj_lﬁWIﬁgZO}:Qt{ETSj_k}ZQN(‘;>'

5



where:
b( . k) — (k ' ” )6 (k2(jT7t)t>2 1 <0 k> 0
Js (T t>3 J t 9 J ) - Y-

Armed with these results, we now derive the conditional bivariate PDF of the pair (F,, F}’).
Evaluating and at t =T implies that:

Fp =Y, FY=1+W2, t>0.

Using the standard change of variables formula, it follows that for J € (0,1], K > 1 and ¢t € (0, 7),
the conditional bivariate PDF of the pair (F,, F}) is given by:

Q{Fy€dJ, Fl€edK} = f(J,K)dJdK, where:

(K—1—InJ—W;)?
J

Wy =In(F,) + FY — 1. (26)

1
2 e 20D

f(L,K)= m(K—l—ln(J)—Wt) , with:

3.1 Marginal of the First Order Martingale

At the terminal time T, the first order martingale Fr is just the product of its terminal minimum
F' and its terminal drawup Frp:
Fr = F,F}.

Since the conditional bivariate law of (F, F"V) is known, the law of the product is Q,{ Fr € dF'}:

1
F
= J — dJ
/Of '

. 5 P o= sy (5 -1-In()-W2)”
= — L 1-m(J))-W dJ. 27
/0\/7r(T—t)3 7 n(J) = Wi 7 (27)

Hence, the transition PDF of Fr is given by the bounded integral in (27)). This integral cannot be
calculated in closed form, so evaluating the PDF requires quadrature. However, we will see in the
next section that iterating the integration does not introduce additional quadratures.

4 Pricing Lower Barrier Claims and Calls

Since the first order martingale is driven by a single SBM, one can replicate any contingent claim
written on its path via dynamic trading in the underlying risky asset and in a riskless asset. No
arbitrage implies that the value of such a path-dependent claim is given by the cost of this replicating
portfolio. In this section, we develop closed form pricing formulas for this replication cost for a few
contingent claims. In particular, we focus on some simple lower barrier options and on standard
calls.



4.1 One-Touch

We start with a One-Touch with a lower barrier. We will present a semi-static hedge for this claim
in the next section. In this subsection, we just focus on providing a simple closed form pricing
formula assuming zero interest rates.

Let OT,(L,T') denote the arbitrage-free value of a One-Touch at time ¢ € [0, T7:

OT(L,T)= E1(Fr <L), (28)
for any barrier L < Fy. We trivially have:
OL(L,T)=1F, <L)+ 1(F,>L)E1(F; < L), (29)
for all t € [0, 7], and for all L < Fj. Since the underlying F' is our first order martingale:
1(Fy < L) = 1(W;y < In(L)), (30)
for all L € (0,1]. Substituting in implies that:

In(L) — W,

OT(L.T) = U(F, < L) = L(E, > L)EA(Wy < In(L)) = 1(E, > LN 22—

, (31

where N(z) is the standard normal distribution function and W is given in (26)).

4.2 Down-and-In Call

We next turn to the pricing of a Down-and-In Call assuming zero interest rates. We first establish
some preliminary model-free results concerning the value of a down-and-in call. We then assume that
its underlying is our first order martingale F', allowing us to strengthen our conclusions substantially.

A down-and-in call (DIC) with strike price K and maturity date T pays its owner (Fp — K)*
at T', so long as the underlying I’ process has touched or crossed some lower barrier L < Fj prior
to T'. If F fails to touch or cross L prior to T', then the DIC expires worthless. Let DIC(L, K,T')
denote the arbitrage-free value of a Down-and-In Call at time ¢ € [0, T:

DIC,(L,K,T) = E,1(F, < L)(Fr — K)*, (32)

for any barrier L < Fj and strike price K > L. Setting L = Fj results in the arbitrage-free value of

a vanilla call:
Cy(K,T) = E(Fr — K)+, (33)

for any time t € [0, 7] and strike price K > Fy. The two option prices are trivially related by:
DICY{(L,K,T) = 1(F, < L)C{(K,T)+ 1(F, > LYEA(Fy < L)(Fr — K)™", (34)

for all t € [0,T], L < Fy, and K > L. This result just says that before the barrier is hit, the
arbitrage-free value of the DIC is given by its expected payoff, while after the barrier is hit, the
DIC value coincides with the vanilla call value.



Next consider the problem of pricing a Down-and-In Call written on our first order martingale
F. We will show that since:
Fr = er (1 + W2, (35)
and:

Fp=e'r, (36)

the payoff of a DIC written on F' can be related to the payoft from a claim written on W, and W7.
For L € (0,1] and K. > L:

L +

K,
W(Er < L)(Fr—K.)" = (L —J)J 1+Wr}5—70 dJ
0
L
= §(Mr — MU I(WE — k(K. T)) (37)
0
where
k(x)=x— 1. (38)
Now: .
(5(6&T _ eln(J)) = (W, — ln(J))j (39)

from the properties of Dirac delta functions. Substituting in implies that the payoff of a
DIC written on F' can be related to the payoff from a claim written on W, and Wj:

UEy < L)(Fr— K = 6(Wa — () (W2 — k(K./J) 4. (40)

Multiplying by 1(F, > L) and taking conditional expectations at time ¢:

UE, > DEA(Fy < L)(Fr— KY* =1(F,> L) Bo(Wy — ()(Wg — k(Ko/T)*dJ. (A1)

0

Substituting in implies:

L
DICYL,K,T)— 1(F, < L)C{(K,T)=1(F, > L) Ed(Wp —In(J)(WE — k(K./J))TdJ. (42)
0
We now show how to eliminate W# from (42). The appendix proves that for any 7 < 0 and
k>0:
LW, > j)EL(Wy < j) (Wi — k)" = LW, > j)2E,(j — k — Wr)". (43)

In words, a Down-and-In Call written on W7 with in-barrier j and strike k£ has the same pre-touch
value as 2 co-terminal puts written on Wr struck at j — k. Suppose that ¢t € [0, 7], so we have
W, > j. Since 1(W, > j) = 1, differentiating both sides of w.r.t. j implies that for ¢ € [0, 7]:

LW, > ) ES(Wy = j)(Wp = k)" = 1(W, > j)2E1(Wr < j - k). (44)
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However, when W, > j, it is well known that the reflection principle implies that:
2E0(Wyr < j—k)=E1(W,<j—k). (45)

In words, 2 digital puts have the same pre-touch value as a co-terminal One-Touch. Substituting

in implies that for ¢ € [0, 7]:
LW, > j)ES(Wy — j) (Wi — k)" =1(W, > j)EL1(W, < j — k). (46)

Since J < L € (0,1], we have In(J) < 0, and since K > L, we have k(K./J) > 0. Evaluating
at j = In(J) and at k = k(K J), substitution into implies that we can eliminate W2:

DIC(L,K,T) — 1(F, < LYC{K.,T) = 1(F,> L) " EAW., <In(J) — k(K./J))dJ (47)
_E s D) L2N In(J) — k(K./J)— W,
0 Tt

dJ,

where W; is given in (26)). The price of a standard call struck at K. > 1 is just the special case

when L = 1: .
In(J) — k(K./J) =W,
Ck. )= on MDZMESD T
0 T—t
We can now state the main result of this subsection. For L € (0,1] and K. > L, a DIC on the
first order martingale F' is priced by:

dJ. (48)

DIC\(L,K.,T) = 1(F, < L)C\(K.,T) + 1(F, > L) 2N —
. =

where Cy(K,,T) is given by (48), W, is given by (2€]), and where k(K./J) is given by (38). Hence,
the problem of valuing a DIC has been reduced to a single quadrature. If we differentiate the DIC

value twice with respect to its strike K., we obtain the joint risk-neutral PDF of Fp and F as a
single quadrature.

dJ,  (49)

5 Semi-Static Replication of a One-Touch

As mentioned, the arbitrage-free approach to pricing is based on establishing the existence of a
replicating portfolio and determining its initial cost. The standard approach for replication requires
the ability to trade continuously in the underlying risky asset and in a riskless asset. For some
path-dependent contingent claims (eg. barrier options and lookbacks) and for some dynamics (eg.
Geometric Brownian motion), there may exist an alternative replicating strategy which just involves
static positions in co-terminal options. In this section, we show that for a lower barrier one-touch
written on our first order martingale F', there is a static hedge involving just co-terminal put options.
The hedge is established at the time the one-touch is sold, and the hedge is liquidated if the barrier
is first touched before expiry. At this first hitting time, the value of the portfolio of co-terminal puts

9



is guaranteed by the model to be worth one, regardless of the actual value of the hitting time. If the
barrier is not touched by expiry, the portfolio of co-terminal puts is guaranteed to expire worthless
because all of the put options are struck below the barrier. We refer to this type of replication as
“semi-static”, since the put options in the hedge may be sold before they mature.

Consider a static position in a portfolio of co-terminal European options of maturity 7. Suppose
we never use in-the-money options, hence we use only at-the-money (ATM) and out-of-the-money
(OTM) puts and calls. By allowing arbitrary static positions in a continuum of positive strikes, one
can construct any terminal payoff h(Fr) of the terminal first order martingale Fr. In particular,
using initially OTM put options struck at a level K € (0, 1] and below, one can construct the payoff
(In K —In Fr)* = In" (K/Fr), which we refer to as “put on the log”. The initial goal of this section
is to prove that for K € (0,1]:

K
ES[L+ Wt (K Fr)] = B§W e, (50)
=T

where W (-) denotes the Lambert W function. In words, the path-dependent claim paying W (e%)

at its maturity date 7" with strike price K < Fy = 1 has the same initial price as the co-terminal
path-independent claim paying 1+In*(K/Fr). We may consider (50 as the analog of the reflection
principle for the first order martingale F'. The next section shows that the relative pricing result
in survives intact when the underlying first order martingale F' is generalized into any Ocone
martingale. Put another way, the introduction of independent stochastic volatility with unknown
dynamics does not change the relative pricing result in (50)).

Of course, the contingent claims on each side of do not trade outright in financial markets.
However, Mellin transforms can be used to invert for the PDF of F',, implicit on the RHS of .
Integration then yields the CDF of F, which is just the value of a one touch. Since the LHS
can be interpreted as the price of a portfolio of bonds and OTM put options, the inversion and
subsequent integration gives a relative pricing relation between a one touch and a portfolio of bonds
and co-terminal OTM puts. We indicate how this latter relative pricing relationship can be used
to provide a semi-static replicating portfolio for a one touch.

For K € (0,1], the payoff (In X' — In Fr)" from the put on the log struck at In K arises by
combining the payoff from % puts on Fr struck at K with the payoffs from C}—‘QI puts on Fr struck
at all strikes below K:

1 K
(InK —InFp)" = —=(K - Fr)" + —(J = Fp)tdJ. (51)
K 0 J?
Let Py(K) be the initial value of a European put struck at K and maturing at 7. It follows from
no arbitrage that for K € (0,1]:
50 o 1 K1
cll+(InK—-—InFr)T] =1+ ?PO(K) + ﬁPO(J)dJ. (52)
0
In words, the path-independent payoff [1 4+ (In K — In Fr)"] has the same initial value as a static
position in:

10



1. a co-terminal bond paying $1 at T’

2. % co-terminal puts on Fr struck at K with each put paying (K — Fr)™ at T, and:

dJ

3. an infinitesimal position in S co-terminal puts struck at J, for each J € (0, K).

For any K > 0, the payoff from the put on the log struck at In K’ decomposes into the sum of
the payoffs from all binary puts on the log struck below In K:
In K
(InK —InFp)" = I(In Frr < 0)dC. (53)

—0o0

Evaluating @ at t =T and taking logs implies that for the first order martingale:

In Fr = Wy + In(1 4+ W7). (54)
Substituting into implies:
In K
(InK —InFp)t = 1(Wr+In(l+W7) < 0)dl
71(:10K e
= LW+ In(1+k) <O)6(WF — k)dkdl, (55)
—00 0

by the law of total probability. Thus, the payoff from the put on the log arises by combining the
payoffs from a static position in co-terminal down-and-in butterfly spreads written on the terminal
Brownian drawup. From no arbitrage, the put on the log also has the same value as an ensemble
of co-terminal down-and-in butterfly spreads written on the terminal Brownian drawup:

In K [e's)

EQIn"™(K/Fr) = EN (W < 0 —1In(1 + k)S(Wo — k)dkde. (56)

—00 0

Recall that the Appendix showed that for any barrier j < 0 and k£ > 0:
EQ (W < HUWE > k) =2EQ1(Wp < j— k) = EQ1(W, < j — k)
by the reflection principle. Differentiating w.r.t. k£ and negating:
EGU W < j)6(Wp = k) = EGO(Wor — (5 — ). (57)

We now suppose that K € (0,1) so that £ —In(1 + k) < 0 for all & > 0. Evaluating at
j =¢—In(1+ k) and substituting the result in implies that:

In K e’}

EQIn"(K/Fr) = EQ5(Wop — (€ —In(1 + k) — k)dkdC. (58)

—00 0

11



By Fubini and the symmetry of the Dirac delta function:

[e%9) In K

ESIm"(K/Fp) = E2 5(0 — (In((1 + k)e*) + W) dedk
= EY c §(0 — (In((1 + k)e®) + Wo)1(¢ < In K)dldk
= EQ N 1(In((1 + k)e¥) + W, < In K)dk, (59)

0

using the sifting property of the Dirac delta function. Exponentiating inside the indicator function
implies that:

> K
EXn™(K/Fp)=E} 1 (k+1)*t< er k. (60)
0 Lr
Recall that the Lambert W function W (x) is the inverse of xe® and is increasing for x > 0. It
follows that:

0 K K
EQWnN(K/Fp)=E} 1 k+1<W e— dk=EW e— -1 (61)
0 oy Fr
Hence, the path-independent payoff 1 + In* FET has the same initial price 7(K) as the path-
dependent payoff W eFﬁT ,le.
K K
r(K)=El|1+Int — || = E§W e— . (62)

Evaluating at k—j =InJ and at t = 0 with Wy = 0, the distribution function of F is
known in closed form:

InJ
Q{W, <InJ}=Qu{F, < J}=2N —= | Je(01]. (63)
VT
Differentiating w.r.t. J implies that the PDF of £, is also known in closed form:
2 nn?dJ
Qui{F,cdl} =/ =520 Je(0,1]. (64)
s J
Hence, the expected value on the RHS of can be written as an explicit integral:
K n
7(K) = EOW e = B e— \/—e G o (65)
Fr
The RHS of is recognized as a multiplicative convolution in K of the function w(-) = W(e-)
with the function ¢(-) = y/ Zre” s . 1(- € (0,1)), i.e
7(K) = (w* q)(K), K >0, (66)
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where the % denotes multiplicative convolution. The Mellin transform of a function f(J),J > 0 is
defined by:

M;(s) = Ooo JU(T)d, (67)

for s in some region in the complex plane where the integral converges. Taking the Mellin transform

of both sides of ([66)):
Mz (s) = My (s)M,(s). (68)

In words, the Mellin transform of 7 is just the product of the Mellin transform of w and the Mellin
transform of ¢. In principle, the Mellin transform on the LHS of can be directly observed from
the smile. From Corless, Jeffrey, and Knuth [§], the Mellin transform of the Lambert W function
on the RHS is:

My(s) = JW(I)dJ = w (69)

By a simple change of variables, the Mellin transform of w(-) = W(e-) is:

< [(s)
— s—1 —
My (s) = ) JT W (ed)dJ Ses)® (70)
Substituting in implies:
_ T(s)
Ma(s) = = Mi(s) ()
One can solve for the the Mellin transform of ¢:
_ _ s(—es)
d(s) = My(s) = ) Mz (s). (72)

Let OT(L) = OL q(J)dJ be the value of a one-touch with lower barrier L € (0,1]. The Mellin
transform of the indefinite integral OT is related to the Mellin transform of the function ¢ being

integrated by:

Mon(s) = =28 + D _(—@F((SS++ 11>))5+ Mo(s +1). (73)

The Inverse Mellin transform of a function f(s) is defined as:

c+100

MK =5 T (74)

™

c—100

where c is any real such that the integral converges. Applying the inverse Mellin transformation to

(73)), we have:

(_es)erl

OT(L) = Qy{Fy < L} = {M‘l T+

MW(8+1))}(L), Le(0,1].  (75)
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While this representation is certainly more complicated than integrating the simple formula for
the PDF of F, in , the advantage of the representation is that it holds unchanged when the
dynamics of the underlying process are generalized to entertain independent stochastic volatility.
We explore this further in the next section.

To replicate the payoff of a one-touch written on the first order martingale F, indicates that
one initially buys co-terminal puts for all strikes below some critical level. If the underlying first
order martingale does not touch L by expiry, then all of these puts expire worthless. On the other
hand, if the underlying first order martingale does touch L at some time prior to expiry, then at
the first passage time, this portfolio of puts should be sold. The revenue generated is just sufficient
to buy a bond paying one dollar at 7. Once this bond is purchased, the payoff to the one-touch is
replicated.

The next section shows that this semi-static replication result survives intact if the SBM W
driving the first order martingale is generalized into an Ocone martingale.

6 Extension to Independent Stochastic Volatility

7 Summary and Extensions

We developed a positive continuous martingale denoted by F' and analyzed it. In particular, we
gave a closed form formula for the bivariate PDF (F, F7). We showed that the PDF and CDF of
Fr are both given by a bounded integral. We also explored the implication of symmetry for our
first order martingale.

One can generalize our first order martingale by replacing the exponential function by the
distribution function of a nonpositive random variable. One can treat these PAY martingales as the
skeleton of some more complicated process arising by time change. If the time change is continuous
and independent, we have the same link between the law of the level and the joint law of the
minimum and drawup. If the stochastic clock is a subordinator, Weiner Hopf factorization can be
explored. When two correlated SBM’s act as drivers, we still have tractability since the joint law
of the two minima is known. In the interests of brevity, these extensions are best left for future
research.

8 Appendix

Consider a Down-and-In Binary Call written on W}, the terminal drawup of an SBM, with in-
barrier j < 0 and strike price £ > 0. The payoff at time 7" is 1(W, < j,W# > k) and prior to
knocking in, the price is 1(W, > j)E,1(W < j,WF > k). In this appendix, we will show that for
7<0andk > 0:

LW, > JEAWp < j, W7 > k) = LW, > j)2E,1(Wr < j — k). (76)

In words, we claim that prior to knocking in, the Down-and-In Binary Call described above has the
same price as 2 binary puts on Wy struck at j — k. The reason is that the two binary puts can
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be used to replicate the payoff of the DIBC. Suppose that for some t € [0,7T], we have W, > j. If
W stays above j between t and T', then the 2 puts expire worthless, as does the DIBC. If instead,
W hits 7 between ¢t and 7', then at the first passage time, one of the binary puts can be sold. By
the symmetry of SBM, the revenue generated from the sale of the binary put struck at j — k is
just sufficient to buy one binary call struck at j + k. After purchasing the call, the investor has a
binary call and a binary put on W which are equally OTM. If the minimum does not sink further
by T, then the binary call part of the position provides the desired payoff. If the minimum does
sink further, then at each time that the minimum decreases, the whole position is sold and a new
one is purchased which is centered at the running minimum. By the symmetry of SBM, the revenue
generated by rolling down the binary put strike is just sufficient to cover the cost of rolling down
the binary call strike. Again, the binary call part of the position provides the desired payoff.
We now also show that for j <0 and k > 0:

LW, > J)EA(Wy < j)(Vy' = k)" = LW, > j)2E,(j — k — Wr)". (77)

In words, we claim that prior to knocking in, a Down-and-In Call written on the terminal drawup
of an SBM has the same price as 2 puts struck at j — k. The reason is that the two puts can be used
to replicate the payoff of the DIC. Suppose that for some ¢t € [0, T], we have W, > j. If W stays
above j between t and T, then the 2 puts expire worthless, as does the DIC. If instead, W hits j
between ¢t and T', then at the first passage time, one of the puts can be sold. By the symmetry of
SBM, the revenue generated from the sale of the put struck at j — & is just sufficient to buy one call
struck at j + k. After purchasing the call, the investor has a strangle on W centered at j. If the
minimum does not sink further by 7', then the call part of the strangle provides the desired payoff.
If the minimum does sink further, then at each time that the minimum decreases, the strangle is
sold and a new one is purchased which is centered at the running minimum. By the symmetry of
SBM, the revenue generated by rolling down the put strike is just sufficient to cover the cost of
rolling down the call strike. Again, the call part of the strangle provides the desired payoff.
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