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The Finite Moment Logstable Process And Option Pricing
 

ABSTRACT 

We document for the first time a striking regularity in the U.S. equity index options 

market. We empirically observe that when implied volatilities are graphed against a stan­

dard measure of moneyness, the implied volatility smirk does not flatten out as maturity 

increases. This behavior contrasts sharply with that observed in currency options and also 

contradicts a prediction of virtually all existing stationary option pricing models. These 

models all imply that the volatility smirk should flatten out as maturity increases, due 

to the onset of the central limit theorem. This implication holds for all models with or 

without jumps and stochastic volatility, so long as the model has finite skewness and kur­

tosis of returns and a stationary volatility process. To capture the actual behavior of the 

index volatility smirk across maturities, we develop a parsimonious model which has infi­

nite skewness and kurtosis of returns, but has finite moments of all orders for stock prices 

themselves. We calibrate our model and demonstrate its superior empirical performance 

against several alternatives. 

JEL Classification Codes: G12, G13, F31, C14. 

Key Words: Volatility smirk; maturity effect; Lévy α-stable motion; self-similarity; option 

pricing. 



Ever since the stock market crash of 1987, the U.S. stock index options market has been 

exhibiting a striking pattern documented by academics and practitioners alike. At a given 

maturity level, the Black and Scholes (1973) implied volatilities for out-of-the-money puts 

(or in-the-money calls) are much higher than those which are near or in-the-money.1 This 

phenomenon is commonly referred to as the “volatility smirk.” 

It is less well known that implied volatilities also have a strong empirical regularity in 

the maturity direction. When implied volatilities are graphed against a standard measure of 

“moneyness”, we document that the resulting implied volatility smirk does not flatten out as 

maturity increases. The measure of moneyness for which this observation holds is the log of 

the strike over the forward, normalized by the square root of maturity. In the Black Scholes 

model, this moneyness measure is roughly the number of standard deviations that the log of 

the strike is away from the log of the forward. 

Despite many empirical studies of the US equity index options market, to the best of 

our knowledge, this invariance of the smirk to maturity has not been documented previously. 

There are several potential reasons why this regularity has eluded researchers’ attention. First, 

in other option markets such as currencies, the implied volatility smirk or smile does flatten 

out as maturity increases.2 Second, when the moneyness measure is not normalized by the 

square-root of maturity, the smirk does flatten out as maturity increases.3 Finally, all stan­

dard option pricing models imply that the volatility smirk ultimately flattens with increasing 

maturity, whether or not the model allows jumps and/or stochastic volatility. This flatten­

ing phenomenon is due to the central limit theorem and arises whenever the model has finite 

conditional moments for stock returns and the volatility process is stationary. 

It is well known that the implied volatility smirk is a direct result of conditional non-

normality in stock returns. In particular, the downward slope reflects asymmetry in the 

risk-neutral distribution of the underlying stock return, as measured by skewness, and the 

1See, for example, Ait-Sahalia and Lo (1998), Jackwerth and Rubinstein (1996), and Rubinstein (1994) for 
empirical documentation of this phenomenon in S&P 500 Index options. 

2Backus, Foresi, and Wu (1997) document this pattern for major currency options, although the flattening 
occurs at a much slower rate than implied by i.i.d innovations. 

3For example, Ait-Sahalia and Lo (1998) use the ratio of strike over futures on the horizontal axis of their 
plots of the implied volatility smirk. 



curvature of the smirk reflects the fat-tails of the risk-neutral return distribution, as measured 

by kurtosis. In continuous-time finance, a standard way to generate skewness and kurtosis 

in the distribution of stock returns is to use a Lévy process with jumps. However, when the 

log price is modeled as a Lévy process with jumps and finite moments, the skewness, if finite, 

decreases like the reciprocal of the square-root of maturity, and the kurtosis, if finite, decreases 

with the reciprocal of maturity (see Konikov and Madan (2000) for a proof). As a result, 

the conditional distribution converges to normality and the implied volatility smirk flattens 

as maturity increases. Incorporating stochastic volatility slows down this effect, but does not 

stop the convergence to normality, so long as the volatility process is stationary.4 

To prevent the onset of the central limit theorem and the accompanying flattening of 

the smirk, we develop a new option pricing model for which the return distribution of the 

underlying stock has infinite moments for any order of two or greater. Although higher order 

return moments are infinite for our process, all moments of the stock price itself are finite. This 

delicate balancing act is accomplished by modeling returns as driven by a Lévy α-stable process 

with maximum negative skewness. The resulting return distribution has a very fat left tail but a 

thin right tail. The fat left tail engenders infinite moments for returns of orders greater than α, 

obviating the convergence to normality and the flattening of the volatility smirk. The thin right 

tail is thickened when we use the exponential function to map returns to prices, but remains 

thin enough so that the resulting price distribution has finite conditional moments of all orders. 

The finiteness of these price moments guarantees the existence of an equivalent martingale 

measure and, therefore, the finiteness of option prices at all maturities. Our specification also 

allows a simple analytical form for the characteristic function of the return. Many standard 

contingent claims can then be readily priced by the fast Fourier transform (FFT) method of 

Carr and Madan (1999). 

In the Black Scholes model, the log price is modeled as an arithmetic Brownian motion, 

which is a standard example of a Lévy process, i.e. a process with stationary independent 

increments. It is well known that the Black Scholes model has a free scale parameter σ which 

controls the width of the risk-neutral distribution. Our Lévy α-stable process is also a Lévy 

4See, for example, Backus, Foresi, and Wu (1997) and Das and Sundaram (1999) on the convergence to 
normality under stochastic volatilities. 
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process, but in addition to a free scale parameter σ, the process also has an additional free 

parameter α ∈ [0, 2] which controls the tails of the distribution. In particular, setting α = 2 

causes our log price process to degenerate to a Brownian motion, so that the Black Scholes 

model arises as a special case of our model. Setting α < 2 generates a fat left tail consistent 

with the implied volatility smirk observed in the equity index options market. 

Under our Lévy α-stable process, the slope of the implied volatility smirk is directly con­

trolled by the tail index parameter α. The fact that the implied volatility smirk does not flatten 

out with increasing maturity is, in fact, a direct consequence of the self-similarity property of 

the Lévy α-stable process. Under such a self-similar process, the tail behavior of the return 

distribution is invariant under time aggregation. 

The stochastic component of our log price process is a pure jump process with no continuous 

component. This implies that in our model, the risk in an option position cannot be delta­

hedged away, although a riskless portfolio can be formed by dynamically trading in a continuum 

of options. Since this form of dynamic trading must be regarded as a physical impossibility at 

present, our model must in turn be interpreted as treating options as primary assets, which 

serve a role in helping to complete the market. Given the increasingly popular view that 

markets are fundamentally incomplete, there are many possible risk-neutral processes for stock 

and option prices which are consistent with an assumed statistical process for the stock and 

the absence of arbitrage. However, the selection of a particular risk-neutral process for the 

stock price can be interpreted as a way to indirectly select a particular risk-neutral process and 

a corresponding initial value for each member of the family of options written on the stock. 

The validity of the choice can be measured by capturing the extent to which the model option 

prices match the market option prices across all strikes, maturities, and dates. Thus, we regard 

the Lévy α-stable process which we use to specify the risk-neutral process for stock returns 

as a way to indirectly but exogenously impose a unique arbitrage-free stochastic process and 

initial value for each member of the option family. 

To show that our choice is validated by the time series and cross sectional behavior of 

observed option prices, we calibrate our model and test it against a number of alternatives 

using about one year’s worth of daily S&P 500 index option data. The results indicate that 
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(1) despite the parsimony of our model, it has superior explanatory power over all alternatives 

tested, and (2) the key weakness in these alternative pure jump and jump-diffusion models is 

their inability to simultaneously fit volatility smirks at different maturities. 

The paper is organized as follows. The next section reviews the literature on existing 

option pricing models and on the Lévy α-stable process. Section II documents in detail the 

maturity pattern of the volatility smirk for S&P 500 index options. Section III introduces 

our specification of the risk-neutral stock price dynamics and illustrates the procedure used 

to determine option prices. Section IV deals with the design and results of our empirical 

tests on S&P 500 index options. Section V illustrates how the model can be readily extended 

to (1) include a diffusion component, (2) to refine the structure of the jump, and (3) to 

incorporate stochastic volatility. Foe each case, we derive the closed form representation of 

the characteristic function for the log return. We also calibrate these extended models and 

discuss the merits of each extension. Section VI briefly summarizes the paper and suggests 

some future research. 

I. Literature Review 

It is well known that at a given maturity, implied volatilities of index options slope down in 

a slightly convex manner when graphed against various measures of moneyness. It is widely 

agreed that the downward slope is a direct result of asymmetry in the conditional risk-neutral 

distribution of returns from the underlying asset, while the curvature arises from fatter tails in 

both ends of this distribution. In short, the moneyness bias is a direct result of conditional non-

normality in the underlying return’s risk-neutral density. Many processes have been proposed 

to generate non-normality in asset returns. In discrete time, conditional non-normality can be 

directly incorporated into the innovations via (i) expansions, e.g. Abadir and Rockinger (1997), 

Backus, Foresi, and Wu (1997), Brenner and Eom (1997), Corrado and Su (1996), Corrado 

and Su (1997), Jarrow and Rudd (1982), Jondeau and Rockinger (1998), Longstaff (1995), 

Potters, Cont, and Bouchaud (1998), Abken, Madan, and Ramamurite (1996a), Abken, Madan, 

and Ramamurite (1996b), and Rubinstein (1998); (ii) direct specification of more generalized 
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distributions, e.g. Aparicio and Hodges (1998), Bookstaber and McDonald (1987), Posner and 

Milevsky (1998), Sherrick, Garcia, and Tirupattur (1995), Sherrick, Irwin, and Forster (1992), 

and Sherrick, Irwin, and Forster (1996); and (iii) mixtures of distributions, e.g. Melick and 

Thomas (1997) and Ritchey (1990). In continuous time finance, a popular way to generate 

conditional non-normality at moderate to long maturities is through the use of stochastic 

volatility models. These models also capture the well-documented volatility clustering feature 

of the data. Prominent examples include the stochastic volatility models by Heston (1993), 

Hull and White (1987) and Romano and Touzi (1997) and the GARCH option pricing models 

by Duan (1995), Duan, Gauthier, and Simonato (1999), Duan and Simonato (2000), and Duan 

and Wei (1999). A second popular way to generate non-normal innovations in continuous 

time is to incorporate jumps into the asset price process. Examples include processes with 

finite jump arrival rates such as in Merton (1976),Bates (1991) and Kou (1999), processes with 

infinite jump arrival rates such as the variance-gamma model of Madan and Milne (1991) and 

Madan, Carr, and Chang (1998), and processes that can have finite or infinite jump arrival 

rates such as the CGMY model by Carr, Geman, Madan, and Yor (2000). Incorporating a 

stochastic or GARCH-type volatility process not only 

While many researchers have focussed on the volatility smirk across moneyness at one 

fixed maturity, we argue that the maturity pattern provides us with an additional dimension 

which can be used to design models and test their implications. Failing to take account of 

the maturity dimension can lead to unreasonable and unstable parameter estimates in model 

calibration and to erroneous and unwarranted conclusions in model comparisons. For example, 

when calibrating a pure jump or jump-diffusion model with constant volatility, one obtains 

rather different parameter estimates depending on the maturity or range of maturities for 

the option data used in the calibration. The reason is simple: given the appropriate choice 

of parameter estimates, a constant volatility jump-diffusion model is capable of fitting the 

volatility smirk at any given maturity; but such a model cannot simultaneously fit smirks at 

different maturities. Similarly, when comparing the performance of different option pricing 

models, the particular maturities of the options used in the data set tends to determine the 

conclusions reached. In particular, when using moderate to long maturity options, one often 

finds that the contribution of a jump process is minimal, while the role of stochastic volatility 
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process is vitally important. However, the role of a jump process is much more important 

when calibrating models to short maturity options, since all stochastic volatility models imply 

that the conditional distribution of the stock return at the initial instant is normal, and are 

thus incapable of capturing the deep smirk observed in overnight options. 

Backus, Foresi, and Wu (1997) and Das and Sundaram (1999) illustrate how stochastic 

volatility can interact with jumps to slow down the flattening of the volatility smile or smirk 

with increasing maturity. These authors argue that both jumps and stochastic volatility com­

ponents are necessary to capture the variation in currency option prices across the whole 

spectrum of maturities and strikes. A key parameter that controls the decay of the volatility 

smile or smirk over maturity is the persistence of the stochastic volatility. The more persistent 

the volatility process is, the more slowly the smile flattens out. Backus, Foresi, and Wu (1997) 

give examples on how to calibrate the mean-reversion parameter for the volatility process to 

the cross-sectional maturity pattern of currency implied volatilities. 

While a jump-diffusion model with stochastic volatility can capture the moneyness and 

maturity patterns of currency option implied volatilities, it cannot capture the corresponding 

behavior of U.S. equity index volatilities. In particular, the maturity pattern of the volatility 

smirk requires that the volatility process be non-stationary, while the time series data suggest 

the opposite. The model which we propose defuses this inherent tension successfully. 

Financial asset returns are often regarded as the cumulative outcome of a large number 

of information arrivals occurring more or less continuously over time. According to a gener­

alization of the standard central limit theorem, if the sum of a large number of i.i.d. random 

variables has a limiting distribution after appropriate shifting and scaling, then the limiting 

distribution must be a member of the α-stable class (Lévy (1925) and Feller (1971)). It is 

therefore natural to assume that asset returns are at least approximately governed by a stable 

distribution if the accumulation is additive, or by a log-stable distribution if the accumulation 

is multiplicative. 5 

5Mittnik, Rachev, and Paolella (1998), for example, illustrate how different compounding schemes lead to 
different stable processes in the limit. 
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The normal distribution is the most familiar and computationally tractable stable distri­

bution with a tail index α = 2. It has routinely been postulated to govern asset returns. 

However, since the pioneering work of Fama (1965), it has been known that returns are often 

much more leptokurtotic than implied by normality. This naturally leads to the considera­

tion of non-Gaussian stable distributions with α < 2, as proposed by Mandelbrot (1963b), 

Mandelbrot (1963a), and Fama (1965). 

Because stable distributions are infinitely divisible, they are particularly attractive for 

continuous time modeling, as emphasized by Samuelson (1965) and McCulloch (1978). The 

stable generalization of the familiar standard Brownian motion is often called the Lévy α­

stable motion and is the subject of two recent monographs by Samorodnitsky and Taqqu 

(1994) and Janicki and Weron (1994). The relevance of stable motions for option pricing has 

been recognized previously. For example, Janicki, Popova, Ritchken, and Woyczynski (1997) 

and Popova and Ritchken (1998) derive option pricing bounds in an α-stable security market. 

However, in the nondegenerate case of α < 2, any finite interval almost surely contains 

an infinite number of discontinuities. This feature implies that the risk in an option position 

cannot be delta-hedged away and that the variance and higher moments of asset returns are 

not defined. In particular, the infinite variance may imply that the risk premium is not finite. 

McCulloch (1987) and McCulloch (1996) circumvent this problem in pricing options by an 

innovative specification of the marginal utility of the asset. 

Our approach to the modeling of stock index returns is unique. In light of the extreme 

negative skewness evidenced by equity index option prices, we incorporate maximum negative 

skewness into the Lévy α-stable motion. This incorporation allows us to not only capture the 

asymmetry of the risk-neutral distribution exhibited in stock option prices, but also to obtain 

finite moments of all orders for the asset price. We are thereby assured of the finiteness of the 

risk premium, and the corresponding finiteness of option prices. 
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II. Maturity Variation in the Volatility Smirk 

A. Data and estimation issues 

To document the maturity variation in the volatility smirk, we have obtained daily closing 

bid and ask implied volatility quotes on out-of-the-money S&P 500 index options across all 

strikes and maturities from April 6th, 1999 to May 31st, 2000 (290 business days). We also 

have daily closing futures prices corresponding to each option maturity. Our exclusive use of 

out-of-the-money options is an industry convention, arising from their greater liquidity and 

model sensitivity than their in-the-money counterparts. 

We apply the following filters to the data: (1) the time to maturity is greater than five 

business days; (2) the bid implied volatility quote is positive; (3) the ask is no less than the bid. 

After applying these filters, we also plot the mid implied volatility for each day and maturity 

against strike prices to visually check for obvious outliers. After removing these outliers, we 

have 62,950 option quotes left over a period of 290 business days. 

B. The smoothed implied volatility surface 

In Figure 1, we plot the average implied volatility surface across maturity and moneyness, 

where the latter is defined as: 
ln (K/F )

d = √ , (1) 
σ τ 

for σ as some measure of the average volatility of the index. K and F are respectively the 

strike price and the futures price corresponding to the implied volatility quote. The use of the 

constant σ in the denominator of (1) is an industry convention designed to allow comparison 

across stocks, and to allow a simple interpretation of this moneyness measure as roughly the 

number of standard deviations that the log strike is away from the log forward price in the 

Black Scholes model6 . In Figure 1, we use σ = 27.4%, which is the average of all the implied 

volatility quotes. 

6Note that d is also the average of −d1 and −d2 appearing in the standard Black Scholes put formula. 
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We use the mid point of the bid and ask for the implied volatility quotes. The implied 

volatility (IV ) curve as a function of moneyness and maturity is obtained via nonparametric 

kernel regression. This smoothing method is especially suitable to cases where the functional 

structure is unknown, but extensive data are available. The kernel regression estimator can be 

expressed as: (
|Z−Zi| N

i=1 K H

 
IVi

IV (Z) = , (2)   N 
( 
|Z−Zi|
 

i=1 K H

where K(·) is the kernel function, Z = (d, τ) is the information set, N is the number of 

observations, and H is called the bandwidth matrix. Equation (2) is essentially a weighted 

average of the implied volatility quotes (IVi). The kernel K(·) assigns a weight to each implied 

volatility quote IVi based on the distance between the corresponding information Zi = (di, τi) 

and the conditional information Z = (d, τ): |Z − Zi|. The kernel is generally decreasing with 

the distance. The bandwidth matrix H adjusts the sensitivity of the kernel (weight) to the 

distance. 

The choice of the kernel function typically has little influence on the end result. We use 

the most popular one, the independent Gaussian kernel: 

2
� 

j

� 

K(·) = Π2 
j=1k(xj) , k(xj) = √ 1 

exp − 
x

, 
2π 2 

with xj = (zj − zij)/hj where zj is an element of Z and zij is an element of Zi. With the 

independent kernel, we choose a diagonal bandwidth matrix with the j-th diagonal element 

given by hj . 

The degree of smoothing depends to a large extent on the choice of the bandwidth matrix 

H. The larger is the bandwidth, the greater is the degree of smoothing. The optimal choice is a 

tradeoff between bias and variance, which is best captured by minimizing the mean integrated 

squared error( MISE): 

[.  2 ]
MISE = E IV (Z) − IV (Z) dZ .

(
 

Z 
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In practice, MISE is expanded and attention is restricted to the contribution from only the 

leading terms of the expansion, which is called the asymptotic MISE (AMISE). Assuming that 

the explanatory variables (Zi) are multivariate normally distributed and applying a Gaussian 

kernel, minimizing the AMISE gives the optimal bandwidth matrix, 

( 
4 
)1/(δ+4) 

Σ1/2N−1/(δ+4)H = ,
δ + 2

where Σ is the variance-covariance matrix of the the information set Zi and δ is the dimension 

of Z. In the case of independent Gaussian kernels with δ = 2, we have: 

hj = σjN
−1/6 , (3) 

where σj is the standard deviation of zij . When the information set is not multivariate normal, 

or when the time series are autocorrelated, the bandwidth choice changes accordingly. Some­

times, cross-validation is necessary to empirically determine an optimal bandwidth.7 For our 

purpose, (3) suffices as a benchmark choice for the bandwidth. We have experimented with 

different bandwidths by applying a different multiplier to the bandwidth in (3). We have also 

performed nonparametric smoothing with a local linear Gaussian kernel. In every case, the 

basic features of the implied volatility surface remain the same, regardless of changes in the 

bandwidth or the kernel. 

The nonparametrically smoothed implied volatility surface is plotted in Figure 1. As ex­

pected, at each maturity, implied volatilities decline as moneyness increases: in fact, this 

decrease is almost linear8 . A striking feature of Figure 1 is the lack of variation in the slope 

of this line as the maturity increases. This lack of variation stands in sharp contrast to the 

flattening out effect observed in the currency options market. Figure 2 slices Figure 1 into 

several two-dimensional graphs and overlays the volatility smirks at different maturities. As 

maturity increases, the overall level of the volatility smirk rises slightly, but does not flatten 

out at all. If anything, the slope for long maturity smirks is slightly steeper. 

7See Simonoff (1996) for a detailed discussion on the choice of kernels and bandwidth.
 
8We recognize that this linear relation cannot be maintained asymptotically.
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Ait-Sahalia and Lo (1998) report a slightly flattening in their nonparametrically estimated 

implied volatility smirk (see their Figure 4). However, the horizontal axis of their plot uses 

moneyness defined as K/F . If the horizontal axis of our Figure 1 were changed to this money­

ness measure, then our volatility skew would flatten out due to the stretching of our original 

horizontal axis as maturity increases. Thus, it is possible that their results would be consistent 

with ours if they were plotted on the same axes. Consistent with this conjecture, their non-

parametrically estimated skewness becomes more negative as maturity increases, while their 

kurtosis estimates increase with maturity (see their Figure 7). 

C. A formal test of the maturity pattern 

While Figure 1 is illustrative, it lacks statistically rigor. In this section, we perform a statistical 

test to determine whether the slopes of the implied volatility smirk is flattening or steepening 

with increasing maturity. Suppose that for each day, options have m different maturities 

indexed by j = [1, 2, · · · ,m]. At each maturity, we regress implied volatility on the moneyness, 

d, 

IVj = a + bjdj + ej , 

where bj captures the slope of the smirk. As shown in Figure 1, the volatility smirk is approx­

imately linear within the observed moneyness range. However, as shown in Figure 2, the slope 

in short term implied volatility does appear to change as the moneyness goes from negative to 

positive. Including the implied volatilities generated from out-of-the-money calls would bias 

the estimate of the slope, whose variation with maturity is our prime concern. Thus, for the 

regression, we restrict the moneyness to be in the range d ∈ [−2, 0]. The lower bound on mon­

eyness is imposed because puts struck further out-of-the-money are not as liquid as at short 

maturities, and quotes at these strikes are not available at long maturities. For the regression 

to be robust, we further require at least five data points at each maturity. 

For each day in our sample period, we obtained m regression slopes, one for each maturity. 

The top panel of Figure 3 depicts the term structure of the smirk slope for each of the 290 

business days tested. Visual inspection indicates that the term structure is in most cases (1) 
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not linear in maturity, and (2) downward sloping. Bearing in mind that smirk slopes are 

negative, the downward sloping term structure implies that smirk slopes are becoming more 

negative as maturity increases. To determine the statistical significance of this effect, on each 

day we regress the smirk slope on the time to maturity to capture the overall slope of the term 

structure: 

bj = α + βτj + ǫ. 

The slope estimate β is negative for most days, i.e. the smirk usually steepens with increasing 

maturity, as suggested by the top panel in Figure 3. For 195 out of the 290 days tested, the 

t-statistic for β is less than −1.96, while for no days is the t-statistic greater than 1.96. Figure 

4 depicts the nonparametrically smoothed distribution of the t-statistics on the estimates of β 

over the 290 days tested. The t-statistic is overwhelmingly negative and skewed to the left. In 

particular, the probability that the t-statistic is greater than 1.96 is less than 1%. 

As a further test, we repeat the regression using the pooled term structure data for all days. 

The slope estimate from the pooled data (β) is −0.6083, with a t-statistic of −19.32, which is 

significantly negative for any reasonable confidence interval. The regression fit is depicted in 

the bottom panel of Figure 3. 

Both the smoothed implied volatility surface and the formal regression tests point to a 

robust feature of the S&P 500 index options market. When graphed against the appropriate 

measure of moneyness, the implied volatility smirk does not flatten out as maturity increases. 

As a result, the risk-neutral density of the index return is NOT converging to normality as 

maturity increases. The central limit theorem, which is used by Backus, Foresi, and Wu (1997) 

to explain the long term behavior of almost all option pricing models with jumps and stationary 

stochastic volatility, does not apply to the market for S&P 500 index options. Clearly, a new 

class of models is required in order to account for the behavior of US equity index option prices. 
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III. The FMLS Process and Option Pricing
 

The key implication of the empirical results in the previous section is that stock returns exhibit 

self-similar properties under the risk-neutral measure. The tail behavior of the risk-neutral 

distribution is approximately invariant under time aggregation. Modeling the stock return 

by a Brownian motion, as in the Black Scholes model, captures such a self-similar property: 

stock returns remain normal under time aggregation. However, it is well-known that the 

implied density of stock returns is highly non-normal, and in particular, is heavily skewed to 

the left. The only process that possesses both non-normality and self-similarity is the Lévy 

α-stable process with the tail index parameter α < 2. When α = 2, the Lévy α-stable process 

degenerates to a Brownian motion. 

Unfortunately, a symmetric Lévy α-stable motion for log prices with α < 2 has infinite ex­

pected arithmetic return. This led Merton (1976) to conjecture that such a specification would 

make a 5-minute call option worth 100 percent of its underlying stock. Merton (1976) further 

conjectures that this specification for the market portfolio might also require the equilibrium 

interest rate to be infinite. 

To circumvent these difficulties, we model the stock return by a Lévy α-stable process with 

maximum negative skewness. Our use of a Lévy α-stable process retains the key advantages 

of a non-normal return distribution and self-similarity. Our imposition of maximum negative 

skewness is required to deliver finite conditional moments of all orders for the stock price, 

relieving Merton’s concerns. As a result, we christen this process the Finite Moment Log 

Stable (FMLS) process. Although our intent in maximizing negative skewness is to produce 

finite option prices, our specification has the bonus of capturing the highly skewed feature of 

the implied density for stock returns, a feature that cannot be captured by either a Brownian 

motion or a symmetric Lévy α-stable process. 

Formally, let St denote the stock price at time t. We assume that the risk-neutral measure 

Q is such that under it, the stock price follows the log-stable process: 

− α, 1 dSt/St = (r q) dt + σdLt 
− , t ∈ [0, T ], (4) 
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α,β α,β where Lt denotes a Lévy α-stable process. The increment dL
( t is distributed α-stable with

 
zero drift, dispersion of dt1/α, and a skew parameter β: Lα 0, dt1/α, β . In (4), we set β = −1 

to achieve finite moments for stock prices and negative skewness in the return density. We 

further restrict α ∈ (1, 2) in conformity with much empirical evidence. 

In general, a stable random variable x ∼ Lα(θ, σ, β) with α ∈ (0, 2], θ ∈ ℜ, σ ≥ 0, and 

β ∈ [−1, 1] can be represented by its characteristic function: 

 [ ( )]  exp iuθ u ασα 1 iβ ( sgn u) tan πα if α = 1,
φx(u) ≡ iux 

Ee = [
− | |

(
− 2 J (5)  exp iuθ − |u|σ 1 + iβ 2 ( sgn u) ln |u| if α = 1.π

When α < 2, the tails are “fat” and the tail probabilities behave like λ−α: 

1 + β 1 β 
lim λαP (x > λ) = Cα σα , lim λαP (x < λ) = Cα 

−
σα , 

λ→∞ 2 λ→∞ 
−

2 

where: 
(. ) ∞ −1  1

α Γ(2 α)
−α if α = 1,

Cα ≡ x sinxdx = − cos(πα/2)

0  2/π if α = 1.

The only exception is if |β| = 1. When β = −1, the right tail is a “thin” decaying faster than 

λ−α . As λ → ∞, 

 (  ( (  )
 α/(2(α


− −1)) α/(α
λ 

−1)
1 exp

 
√ λ 

ασ̂2πα(α−1) α (
−(α − 1) if α > 1,ασ̂

 α

P (x > λ) ∼ 1 (π/2σ)λ−1 
 √ exp − − eπ/2σ)λ−1 if α = 1, 2π 2
 0 if α < 1,

where: ( )
π −1/α 

σ̂α = σ cos (2 − α) . 
2

The same formula applies to the left tail when β = 1 because P (x < −λ) = P (−x > λ) and 

x ∼ Lα(0, σ, 1) implies −x ∼ Lα(0, σ,−1). See Zolotarev (1986), Theorem 2.5.3. 
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As a result of this tail behavior, the Laplace transform of an α-stable variable x ∼ 
Lα(0, σ, β), is not finite unless β = 1. When β = 1, the Laplace transform is given by: 


 ( ) [ J  exp λασα sec απ if α = 1, 

L (λ) ≡  e −λx 2 
Ex = 

−
(  λ > 0. (6)  exp −σ 2 λ ln λ if α = 1,

R
π

We are interested in the distribution of the log return lnST /St over the horizon τ = T − t: 

(  
≡ α, 1 sτ ln St+τ/St = µτ + σ LT

− − α,−1 Lt ,

where µ is determined by the no-arbitrage condition under the measure Q. The conditional 

characteristic function of the return sτ can be inferred from (5): 

[ J ( )
α πα 

φs (u) ≡ s
E τ 

t e iu = exp iuµτ − τ (iuσ) sec , 1 < α < 2. (7) 
2 

Furthermore, the nth moment of ST can be represented as a Laplace transform in (6): 

( )
≡ Sn [e ns

E [Sn α ] n πα 
E τ 

t T t t ] = St exp nµτ − τ (nσ) sec , (8) 
2 

which is finite for all n. Note that β = −1 is the only α-stable case with α < 2 where we have 

finite moments for ST . 

Setting n = 1 in (8), we have: 

( )
πα 

Et [ST ] = St exp µτ − τσα sec . 
2 

By no-arbitrage, E [S ] = S e(r−q)τ 
t T t under measure Q, and so: 

πα 
µ = r − q + σα sec . (9) 

2 

Given the characteristic function in (7) and the no-arbitrage condition in (9), we can apply 

the fast Fourier transform (FFT) method of Carr and Madan (1999) to simultaneously value 

European calls at a whole spectrum of strike prices. 
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Our parsimonious FMLS model has only two free parameters σ and α, but it can generate 

a rich array of risk-neutral densities or volatility smirks. In particular, the model is capable of 

generating the maturity pattern in the volatility smirk which is observed in US index options. 

The top panel of Figure 5 illustrates that the implied volatility smirk computed from the FMLS 

process does not flatten out significantly as maturity increases. In contrast, the bottom panel 

depicts the case of a typical pure jump model, i.e. the variance-gamma model of Madan, Carr, 

and Chang (1998). As maturity increases, the implied volatility smirk flattens out significantly. 

Figure 6 illustrates that the slope of the smirk is directly linked to the tail index α. The 

smirk becomes flatter as the tail index α becomes closer to its normal limit α = 2. The fact 

that the tail index α is invariant under time aggregation (self-similarity) is the key reason that 

volatility smirk does not flatten out as maturity increases. 

IV. Model Calibration 

In this section, we calibrate the FMLS model to the nonparametrically smoothed implied 

volatility surface in Figure 1. In particular, we transform the smoothed implied volatility 

surface to out-of-the-money option prices using a constant interest rate and dividend yield of 

r = 7.33% and q = 1.17% respectively. We then determine the parameters by minimizing the 

sum of squared pricing errors (sse): 

NC NP2 2C P sse = min 
� 

w 
(
Ci − Ĉi(Θ) + 

� 
w 
(
Pi − P̂i(Θ) , (10) i i

Θ 
i=1 i=1 

where Ci and Pi are realized out-of-the-money call and put prices quoted as a percentage of 

spot, and Ĉi(Θ) and P̂i(Θ) are their respective counterparts implied from the model given the 

parameter vector Θ. NC and NP are respectively the number of out-of-the-money call and put 

options. 

In a maximum likelihood framework, where errors attached to the observed prices are 

assumed to be normally distributed with mean zero and variance Vi, the weight would be 

given by wi = 1/Vi. Unfortunately, the error variance for each price quote is unknown. Bliss 
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and Panigirtzoglou (2000) provide a detailed discussion on the sources of errors and their 

implications for the weights. We used equal weights across option prices, assuming equal 

variance for all pricing errors. 

For the estimation, we use option prices on three maturities: 1, 6, and 12 months. For each 

maturity, we choose 8 strikes which are evenly distributed in ln K/S and fall roughly within 

the moneyness range of [−2, 1]. In particular, 

 
 −0.1841 −0.3682 −0.4909    −0.1534 −0.3068 −0.3988    −0.1227 −0.2454 −0.3068    −  0.0920 −0.1841 −0.2148  

ln(K/S) =   .  −0.0614 
 

−0.1227 −0.1227   −0.0307 −0.0614 −0.0307    0 0 0.0614  
0.0307 0.0614 0.1534 

The three columns correspond to the three maturities. 

In addition to our two-parameter FMLS model, we also calibrate the popular three-parameter 

variance-gamma (VG) model of Madan, Carr, and Chang (1998) and the traditional four-

parameter jump-diffusion (MJD) model of Merton (1976). Under the VG model, the risk-

neutral log price process is: 

d ln St = (r − q + µ)dt + ωdtt+ σdWt,t

where tt denotes a subordinated gamma time, i.e. dtt is independently and identically gamma

distributed: γ(dt : 1, α), where α is the variance rate. The parameter µ arises from the 

concavity of the log: [ ( ) ]
1 1 

µ = ln 1 − ω + σ2 ν . 
α 2 

­
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The characteristic function of sτ is 

[ ( ) ] τ [ ( ) ] τ
α α 

φ (u) = e
 iu(r 1 − 1 
s

−q)τ 
−

1 − ω + σ2 α 1 − iuω − σ2 u2 α .
 (11)
 
2 2 

The stock price process under the MJD model is, under measure Q, 

(  
dSt/St = (r − q − αg)dt + σdW k 

t + e − 1 dJ(α), 

where Wt is a Wiener process capturing the continuous part of the price movement while 

J(α) is a Poisson jump process with intensity α. The jump magnitude is captured by the 
[ J

∼ 2 1 2

normally distributed random variable k N(ω, η ). The parameter g = 
 ek − 1 = e
 ω+
E 2

η 

is the mean percentage jump conditional on one jump occuring. The characteristic function of 

sτ ≡ ln St+τ/St is 

[ ( ) ( ] 
1 1
 1 2 2

 
φs(u) = exp
 iu r − q − αg − σ2 τ −
 u
 2σ2τ + α
 e
 iuω−

2
u η − 1 τ
 .
 (12)
 

2 2
 

Table I summarizes the calibration results and demonstrates that our FMLS model performs 

best in having the smallest sum of squared pricing errors (sse), while it has the least number 

of parameters (two). Figures 7, 8, and 9 depict their performance in matching the out-of-the

money option prices and the implied volatility smirks at different maturities. The Achilles 

heel of the MJD model and the VG model is that, for a given set of parameters, they cannot 

simultaneously fit the implied volatility smirk at different maturities. The same weakness 

holds for all pure jump Lévy processes with finite (but nonzero) skewness and kurtosis for 

log stock returns, since these moments decrease with maturity by virtue of the central limit 

theorem. Correspondingly, the volatility smirk flattens out as maturity increases. Our FMLS 

model relieves the stress in the maturity pattern by adopting a self-similar process. It matches 

the slope of the volatility smirk by an optimal choice of the tail index α, and guarantees no 

arbitrage and finite option prices by incorporating maximum skewness to the Lévy α-stable 

motion. 

­
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V. Extensions
 

The FMLS model compares favorably over other jump models in preventing the implied volatil­

ity smirk from flattening out as maturity increases. It is a very parsimonious model that meets 

three requirements needed to explain the US index options market: (1) self-similarity, (2) 

non-normality and (3) martingality. The martingality condition implies, inter alia that the 

risk-neutral mean of option prices should be finite. The Black-Scholes model delivers self-

similarity and martingality, but implies a normal distribution for asset returns. Many jump 

or jump diffusion models generate the observed non-normality and meet martingality, but fail 

to deliver self-similarity and thus fail to capture the maturity pattern of the implied smirk. 

Previous work on α-stable motions violated the martingality condition and hence either gen­

erated suspicious results or had to resort to utility specifications to reconcile a reasonable risk 

premium. The FMLS model is the first to capture all three features simultaneously, and does 

so parsimoniously. 

As the FMLS model is a pure jump model with iid Lévy increments, it does not capture 

the often-documented “volatility” clustering. Thus, the FMLS model should be regarded as 

a springboard for further extensions which capture this phenomenon. By treating the α­

stable process as a generalization of the standard Brownian driver extensions of our model 

are straightforward. In what follows, we will briefly discuss some of these potential extensions 

and their relative merits in practice. To save space, we do not report the the derivations and 

calibration results of these extended models. However, these results are available upon request. 

A. Pure Jump Versus Jump Diffusion 

While the FMLS model is a pure jump model, a diffusion component can be added to the 

model in a very straightforward manner: 

α,−1dSt/St = (r − q)dt + σ1dL + σ2dLt
2 ,t 

19
 



where L2 
t is a Brownian motion with variance 2t and is a degenerate case of an α-stable motion 

with α = 2. 

The characteristic function of the log return, sτ ≡ ln St+τ/St, can be obtained as a direct 

extension of (7): 

[ J ( ( ) )
iusτ 

πα πα 
φs (u) ≡ α 

Et e = exp iu r − q + σα 
1 sec − σ2 

2 τ − τ (iuσ1) sec − τ(uσ2)
2 . 

2 2 

Option pricing is therefore also straightforward. Repeated calibration exercises, however, in

variably generate an estimate for σ2 that is indistinguishable from zero. This result coincides 

with the recent empirical evidence of Carr, Geman, Madan, and Yor (2000), who also find 

that the explanatory power of their pure jump process is not enhanced by the addition of a 

diffusion component. 

These results contrast sharply with empirical results on the traditional Poisson compound 

jump-diffusion models such as Merton (1976) (MJD). Indeed, in our calibration of the MJD 

­

model in Table I, the diffusion component is a significant component and accounts for 17.9% 

of the variation.9 The sharp contrast comes from the difference in the fine structure of the 

jump specification in these models. In both the FMLS and CGMY models, as the jump size 

approaches zero, the arrival rate for jumps of this size approaches infinity. As a result, the 

aggregate arrival rate across jumps of all sizes is infinite. In contrast, in the Poisson compound 

jump model (MJD), the aggregate arrival rate of jumps is constant and finite at α. The fact 

that there are an “infinite” number of very small jumps in the FMLS and CGMY model relieves 

their need for a diffusion component. This, however, is not the case for the MJD model. In 

short, while adding a diffusion component to our FMLS model poses no difficulty in terms of 

implementation, this component has no additional explanatory power in terms of determining 

option prices. 

9Under the MJD model, the variance of the log return is given by 

κ2 = 
[
σ2 + α(ω2 + η2)

] 
τ. 

The fraction of variation explained by the diffusion component is σ2/κ2. 
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B. Refining the Structure of Jumps
 

Under the FMLS model, the structure of jumps is controlled by a maximum negatively skewed 

α-stable Lévy motion. The arrival rate of jumps of size x is given by its Lévy measure: 

ν(dx) = c |x|−α−1 , ±

where c+ = 0 for x ∈ (0,∞) and c = 1/Γ(−α) for x ∈ (−∞, 0]. Although the random − 

component of the process features only negative jumps, the predictable component of the 

process compensates by so much that the support of the distribution for any positive time is 

the entire real line. 

Our calibration results indicate that the FMLS jump structure adequately captures the 

non-normality of asset returns, i.e. the implied volatility smirk. Nonetheless, to improve the 

fit of an implied smirk at any maturity, one can further refine the jump structure through 

subordination: 

α,−2 sτ = (r − q + µ) τ + ωτ̃ + σLτ̃ , 

where the time length of the α-stable Lévy motion is subordinated by a subordinator τ̃ . As 

an example, we derive the direct α-stable counterpart of the VG model of Madan, Carr, and 

Chang (1998), where we replace their gamma subordination of a standard Brownian motion 

by a gamma subordination of a standard α-stable Lévy motion. That is, the subordinator τ ̃

is assumed to follow an independent gamma process with unit mean rate and variance rate 

η: γ(τ ; 1, η). As in Madan, Carr, and Chang (1998), we also add a free drift parameter ω 

to generate asymmetry. The parameter µ is an adjustment term to guarantee no-arbitrage. 

Under such a specification, the characteristic function of the log return sτ is given by 

( ( ) )
πα − τ 

α η

φs(u) = e iu(r−q+µ)τ 1 − iuω − (iuσ) sec η ,
2 

with µ given by: [ ( ) ]
1 πα 

µ = ln 1 − ω − σα sec η . 
η 2 
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We calibrate this gamma-subordinated FMLS model to the implied volatility smirk. The 

results (not reported) indicate that while its capability of fitting one implied volatility smirk 

at a given maturity is improved, the self-similarity structure is lost and hence the stability 

across maturities is actually not as good as the benchmark model. 

C. Stochastic “Volatility” 

Under the FMLS model, the variance of the log return is infinite. However, an analogous 

parameter σα is referred to as the α-dispersion and this statistic captures the “variability” of 

the log return. Through the use of stochastic time change, a stochastic dispersion process can 

be readily incorporated into the FMLS model in order to capture the “volatility clustering” 

phenomenon. 

As an example, we incorporate the extensively cited square-root model of Heston (1993) 

into the FMLS framework: 

1/α α, 1dSt/St = (r − q)dt + v t dLt 
− ;

√ (13) 
dvt = κ(θ − vt)dt + βvtdWt. 

The characteristic function of the log return sτ is now given by: 

φs(u) = exp [iu(r − q)τ − b(τ)vt − c(τ)] 

with 

2λ (1 e−ητ )
b (τ) = 

−
,

2η − (η − κ) (1 − e−ητ )[ ( ) ] 
κθ η κ ( )

c (τ) = 2 ln 1
−− 1 − e −τη + (η − κ) τ ,

β 2η 

with �
α πα 

η = κ2 + 2βλ, λ = [(iu) − iu] sec . 
2 
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The model has four free parameters: Θ ≡ (α, κ, θ, β) and two state variables (St, vt). Since 

one cannot directly observe vt, one needs to infer it from the option price data each day by 

minimizing the sum of squared pricing errors, given a choice of the parameters. 

We also calibrate this model to the nonparametrically smoothed mean implied volatility 

surface. The results (not reported) indicate that, even with two more free parameters, the 

model does not significantly outperform the FMLS benchmark in fitting the mean implied 

volatility surface across dates. however, its greater flexibility does show up in fitting the 

variation of the implied volatility smirk across maturity at each date. 

VI. Final Thoughts 

Modeling U.S. equity index returns with our FMLS process is very appealing because the 

model-implied skewness and kurtosis of the index return are not finite, and hence do not 

decrease over maturity. It thus provides a parsimonious way of capturing the implied volatility 

surface along both the moneyness and maturity dimensions. 

Further research should go into documenting the maturity pattern for other indices and for 

individual stocks. Our preliminary investigations suggest that stochastic time change can be 

profitably used to improve the fit of our model even further. 
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Table I
 

Estimates of Jump(-Diffusion) Models
 

Entries are estimates (in the parentheses are standard errors) and sum square pricing errors 
(sse) of the parameters of models: (i) the FMLS model, (ii) the VG model, and (iii) the MJD 
model. The characteristic functions of the log stock return under these models are, respectively, 

[ ( ) ] 
πα α πα 

φFMLS(u) = exp
 iu r − q + σ2 sec τ − τ (iuσ) sec ;

2 2
 

[ ( ) ] τ [ ( ) ]− − τ

1 α 1
 α

φV G(u) = e
 iu(r−q)τ 1 −
 ω + σ2 α
 1 iuω σ2 u2 α ;

2 

− −
 
2
 [ ( (  

1 2 
 ) (  ] 1
 1


φMJD(u) = exp
 iu r − q − α
 e ω+  − 1 −
 σ2 2 2

2
η 1

τ −
 u
 2σ2τ + α
 e iuω−
2
u η − 1 τ
 .


2
 2
 

Parameters FMLS VG MJD
 

α 1.6145 0.7221 1.8604 
(0.0110) (0.1384) (0.3523) 

σ 0.1486 0.1642 0.1003 
(0.0010) (0.0168) (0.0079) 

ω — −0.1834 −0.0930 
— (0.0527) (0.0117) 

η — — 0.1271 
— — (0.0196) 

sse(×105) 5.8004 18.2319 11.5350 
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Figure 1. Volatility Smirk in S&P 500 Index Options. The surface is obtained 
via nonparametric smoothing of daily closing implied volatility quotes (mid point of bid and 
ask) on S&P 500 index options from April 4th, 1999 to May 31st, 2000 (62,950 observations). 
Independent Gaussian kernels are used with bandwidth hj = −1/6 . Moneyness, d, is defined √ σjn
as d = ln (K/F ) /σ τ , where σ = 27.4% is the average of all implied volatility quotes. 
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Figure 2. Volatility Smirk in S&P 500 Index Options. Lines are two-dimensional 
cuts from Figure 1 at maturities of 1 month (solid line), 6 months (dashed line), 12 months 
(dash-dotted line), and 15 months (dotted line). 
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Figure 3. Maturity Effect on Volatility Smirk. Lines in the the top panel are the
 
term structure of the estimated smirk slopes at each day. The dashed line in the bottom panel
 
depicts a linear regression fit to the stacked data of the term structure. At each maturity and
 
each day, the smirk slope is estimated by the following regression:
 
IVj = aj + bjdj + ej ,
 
where the moneyness dj is defined as in Figure 1.
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Figure 4. The Term Structure of Implied Volatility Smirk. Solid lines capture the
 
nonparametrically estimated (with Gaussian kernel) distribution (probability density at the
 
top panel and cumulative density at the bottom) of the t-statistics of the β estimates for the
 
290 days from January 6th, 1999 to May 31sdt, 2000. The dot-dashed lines are implied by
 
the normal density with comparable mean and variance. β captures the term structure of the
 
implied volatility smirk slope bj :
 
bj = α + βτj + ej ,
 
where the slope bj is estimated from the regression:
 
IVj = aj + bjdj + ej ,
 
at each day and maturity j.
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Figure 5. Volatility Smirk Under (a) FMLS Model and (b) VG Model. Implied 
volatilities are computed from the FMLS model (the top panel ) with parameters: α = 1.4 
and σ = 14% and from the VG model (the bottom panel) with parameters: σ = 14%, η = 0.3, 
and ω = −0.3. We also set interest rate r = 7.33% and dividend yields q = 1.17%. Maturity 
τ equals 1 month (solid line), 6 months (dashed line), and 12 months (dash-dotted line). 
Moneyness is defined as in Figure 1. 
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Figure 6. Volatility Smirk Under FMLS Model. Implied volatilities are computed 
from the FMLS model with α being 1.2 (solid line), 1.5 (dashed line), and 1.8 (dashed-dotted 
line). We set interest rate r = 7.33% and dividend yields q = 1.17%. Maturity is 1 month. 
Money is defined as in Figure 1. 
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Figure 7. Empirical Performance of the FMLS Model. Stars, circles, and crosses 
are smoothed implied volatility quotes (top panel) and its corresponding call option prices (in 
percentage of spot, bottom panel) with maturities of, respectively, 1 month, 6 months, and 12 
months. Lines (solid, dashed, and dash-dotted, respectively) are implied by the FMLS model 
with parameter estimates given in Table I. Interest rate and dividend yield are assumed to be 
constant across maturities: r = 7.33% and q = 1.17%. Money is defined as in Figure 1. 
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Figure 8. Empirical Performance of the VG Model. Stars, circles, and crosses are 
smoothed implied volatility quotes (top panel) and its corresponding call option prices (in 
percentage of spot, bottom panel) with maturities of, respectively, 1 month, 6 months, and 12 
months. Lines (solid, dashed, and dash-dotted, respectively) are implied by the VG model with 
parameter estimates in Table I. Interest rate and dividend yield are assumed to be constant 
across maturities: r = 7.33% and q = 1.17%. Money is defined as in Figure 1. 
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Figure 9. Empirical Performance of the MJD Model. Stars, circles, and crosses 
are smoothed implied volatility quotes (top panel) and its corresponding call option prices (in 
percentage of spot, bottom panel) with maturities of, respectively, 1 month, 6 months, and 12 
months. Lines (solid, dashed, and dash-dotted, respectively) are implied by the MJD model 
with parameter estimates given in Table I. Interest rate and dividend yield are assumed to be 
constant across maturities: r = 7.33% and q = 1.17%. Money is defined as in Figure 1. 
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