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THE FINITE MOMENT LOGSTABLE PROCESS AND OPTION PRICING

ABSTRACT

We document for the first time a striking regularity in the U.S. equity index options
market. We empirically observe that when implied volatilities are graphed against a stan-
dard measure of moneyness, the implied volatility smirk does not flatten out as maturity
increases. This behavior contrasts sharply with that observed in currency options and also
contradicts a prediction of virtually all existing stationary option pricing models. These
models all imply that the volatility smirk should flatten out as maturity increases, due
to the onset of the central limit theorem. This implication holds for all models with or
without jumps and stochastic volatility, so long as the model has finite skewness and kur-
tosis of returns and a stationary volatility process. To capture the actual behavior of the
index volatility smirk across maturities, we develop a parsimonious model which has infi-
nite skewness and kurtosis of returns, but has finite moments of all orders for stock prices
themselves. We calibrate our model and demonstrate its superior empirical performance

against several alternatives.

JEL CrassirFicaTioN CoDES: G12, G13, F31, C14.

KEY WORDS: Volatility smirk; maturity effect; Lévy a-stable motion; self-similarity; option

pricing.



Ever since the stock market crash of 1987, the U.S. stock index options market has been
exhibiting a striking pattern documented by academics and practitioners alike. At a given
maturity level, the Black and Scholes (1973) implied volatilities for out-of-the-money puts
(or in-the-money calls) are much higher than those which are near or in-the-money.! This

phenomenon is commonly referred to as the “volatility smirk.”

It is less well known that implied volatilities also have a strong empirical regularity in
the maturity direction. When implied volatilities are graphed against a standard measure of
“moneyness”’, we document that the resulting implied volatility smirk does not flatten out as
maturity increases. The measure of moneyness for which this observation holds is the log of
the strike over the forward, normalized by the square root of maturity. In the Black Scholes
model, this moneyness measure is roughly the number of standard deviations that the log of

the strike is away from the log of the forward.

Despite many empirical studies of the US equity index options market, to the best of
our knowledge, this invariance of the smirk to maturity has not been documented previously.
There are several potential reasons why this regularity has eluded researchers’ attention. First,
in other option markets such as currencies, the implied volatility smirk or smile does flatten
out as maturity increases.? Second, when the moneyness measure is not normalized by the
square-root of maturity, the smirk does flatten out as maturity increases.® Finally, all stan-
dard option pricing models imply that the volatility smirk ultimately flattens with increasing
maturity, whether or not the model allows jumps and/or stochastic volatility. This flatten-
ing phenomenon is due to the central limit theorem and arises whenever the model has finite

conditional moments for stock returns and the volatility process is stationary.

It is well known that the implied volatility smirk is a direct result of conditional non-
normality in stock returns. In particular, the downward slope reflects asymmetry in the

risk-neutral distribution of the underlying stock return, as measured by skewness, and the

!See, for example, Ait-Sahalia and Lo (1998), Jackwerth and Rubinstein (1996), and Rubinstein (1994) for
empirical documentation of this phenomenon in S&P 500 Index options.

2Backus, Foresi, and Wu (1997) document this pattern for major currency options, although the flattening
occurs at a much slower rate than implied by i.i.d innovations.

3For example, Ait-Sahalia and Lo (1998) use the ratio of strike over futures on the horizontal axis of their
plots of the implied volatility smirk.



curvature of the smirk reflects the fat-tails of the risk-neutral return distribution, as measured
by kurtosis. In continuous-time finance, a standard way to generate skewness and kurtosis
in the distribution of stock returns is to use a Lévy process with jumps. However, when the
log price is modeled as a Lévy process with jumps and finite moments, the skewness, if finite,
decreases like the reciprocal of the square-root of maturity, and the kurtosis, if finite, decreases
with the reciprocal of maturity (see Konikov and Madan (2000) for a proof). As a result,
the conditional distribution converges to normality and the implied volatility smirk flattens
as maturity increases. Incorporating stochastic volatility slows down this effect, but does not

stop the convergence to normality, so long as the volatility process is stationary.*

To prevent the onset of the central limit theorem and the accompanying flattening of
the smirk, we develop a new option pricing model for which the return distribution of the
underlying stock has infinite moments for any order of two or greater. Although higher order
return moments are infinite for our process, all moments of the stock price itself are finite. This
delicate balancing act is accomplished by modeling returns as driven by a Lévy a-stable process
with maximum negative skewness. The resulting return distribution has a very fat left tail but a
thin right tail. The fat left tail engenders infinite moments for returns of orders greater than «,
obviating the convergence to normality and the flattening of the volatility smirk. The thin right
tail is thickened when we use the exponential function to map returns to prices, but remains
thin enough so that the resulting price distribution has finite conditional moments of all orders.
The finiteness of these price moments guarantees the existence of an equivalent martingale
measure and, therefore, the finiteness of option prices at all maturities. Our specification also
allows a simple analytical form for the characteristic function of the return. Many standard
contingent claims can then be readily priced by the fast Fourier transform (FFT) method of

Carr and Madan (1999).

In the Black Scholes model, the log price is modeled as an arithmetic Brownian motion,
which is a standard example of a Lévy process, i.e. a process with stationary independent
increments. It is well known that the Black Scholes model has a free scale parameter o which

controls the width of the risk-neutral distribution. Our Lévy a-stable process is also a Lévy

4See, for example, Backus, Foresi, and Wu (1997) and Das and Sundaram (1999) on the convergence to
normality under stochastic volatilities.



process, but in addition to a free scale parameter o, the process also has an additional free
parameter « € [0, 2] which controls the tails of the distribution. In particular, setting a = 2
causes our log price process to degenerate to a Brownian motion, so that the Black Scholes
model arises as a special case of our model. Setting o < 2 generates a fat left tail consistent

with the implied volatility smirk observed in the equity index options market.

Under our Lévy a-stable process, the slope of the implied volatility smirk is directly con-
trolled by the tail index parameter a. The fact that the implied volatility smirk does not flatten
out with increasing maturity is, in fact, a direct consequence of the self-similarity property of
the Lévy a-stable process. Under such a self-similar process, the tail behavior of the return

distribution is invariant under time aggregation.

The stochastic component of our log price process is a pure jump process with no continuous
component. This implies that in our model, the risk in an option position cannot be delta-
hedged away, although a riskless portfolio can be formed by dynamically trading in a continuum
of options. Since this form of dynamic trading must be regarded as a physical impossibility at
present, our model must in turn be interpreted as treating options as primary assets, which
serve a role in helping to complete the market. Given the increasingly popular view that
markets are fundamentally incomplete, there are many possible risk-neutral processes for stock
and option prices which are consistent with an assumed statistical process for the stock and
the absence of arbitrage. However, the selection of a particular risk-neutral process for the
stock price can be interpreted as a way to indirectly select a particular risk-neutral process and
a corresponding initial value for each member of the family of options written on the stock.
The validity of the choice can be measured by capturing the extent to which the model option
prices match the market option prices across all strikes, maturities, and dates. Thus, we regard
the Lévy a-stable process which we use to specify the risk-neutral process for stock returns
as a way to indirectly but exogenously impose a unique arbitrage-free stochastic process and

initial value for each member of the option family.

To show that our choice is validated by the time series and cross sectional behavior of
observed option prices, we calibrate our model and test it against a number of alternatives

using about one year’s worth of daily S&P 500 index option data. The results indicate that



(1) despite the parsimony of our model, it has superior explanatory power over all alternatives
tested, and (2) the key weakness in these alternative pure jump and jump-diffusion models is

their inability to simultaneously fit volatility smirks at different maturities.

The paper is organized as follows. The next section reviews the literature on existing
option pricing models and on the Lévy a-stable process. Section II documents in detail the
maturity pattern of the volatility smirk for S&P 500 index options. Section III introduces
our specification of the risk-neutral stock price dynamics and illustrates the procedure used
to determine option prices. Section IV deals with the design and results of our empirical
tests on S&P 500 index options. Section V illustrates how the model can be readily extended
to (1) include a diffusion component, (2) to refine the structure of the jump, and (3) to
incorporate stochastic volatility. Foe each case, we derive the closed form representation of
the characteristic function for the log return. We also calibrate these extended models and
discuss the merits of each extension. Section VI briefly summarizes the paper and suggests

some future research.

I. Literature Review

It is well known that at a given maturity, implied volatilities of index options slope down in
a slightly convex manner when graphed against various measures of moneyness. It is widely
agreed that the downward slope is a direct result of asymmetry in the conditional risk-neutral
distribution of returns from the underlying asset, while the curvature arises from fatter tails in
both ends of this distribution. In short, the moneyness bias is a direct result of conditional non-
normality in the underlying return’s risk-neutral density. Many processes have been proposed
to generate non-normality in asset returns. In discrete time, conditional non-normality can be
directly incorporated into the innovations via (i) expansions, e.g. Abadir and Rockinger (1997),
Backus, Foresi, and Wu (1997), Brenner and Eom (1997), Corrado and Su (1996), Corrado
and Su (1997), Jarrow and Rudd (1982), Jondeau and Rockinger (1998), Longstaff (1995),
Potters, Cont, and Bouchaud (1998), Abken, Madan, and Ramamurite (1996a), Abken, Madan,

and Ramamurite (1996b), and Rubinstein (1998); (ii) direct specification of more generalized



distributions, e.g. Aparicio and Hodges (1998), Bookstaber and McDonald (1987), Posner and
Milevsky (1998), Sherrick, Garcia, and Tirupattur (1995), Sherrick, Irwin, and Forster (1992),
and Sherrick, Irwin, and Forster (1996); and (iii) mixtures of distributions, e.g. Melick and
Thomas (1997) and Ritchey (1990). In continuous time finance, a popular way to generate
conditional non-normality at moderate to long maturities is through the use of stochastic
volatility models. These models also capture the well-documented volatility clustering feature
of the data. Prominent examples include the stochastic volatility models by Heston (1993),
Hull and White (1987) and Romano and Touzi (1997) and the GARCH option pricing models
by Duan (1995), Duan, Gauthier, and Simonato (1999), Duan and Simonato (2000), and Duan
and Wei (1999). A second popular way to generate non-normal innovations in continuous
time is to incorporate jumps into the asset price process. Examples include processes with
finite jump arrival rates such as in Merton (1976),Bates (1991) and Kou (1999), processes with
infinite jump arrival rates such as the variance-gamma model of Madan and Milne (1991) and
Madan, Carr, and Chang (1998), and processes that can have finite or infinite jump arrival
rates such as the CGMY model by Carr, Geman, Madan, and Yor (2000). Incorporating a

stochastic or GARCH-type volatility process not only

While many researchers have focussed on the volatility smirk across moneyness at one
fixed maturity, we argue that the maturity pattern provides us with an additional dimension
which can be used to design models and test their implications. Failing to take account of
the maturity dimension can lead to unreasonable and unstable parameter estimates in model
calibration and to erroneous and unwarranted conclusions in model comparisons. For example,
when calibrating a pure jump or jump-diffusion model with constant volatility, one obtains
rather different parameter estimates depending on the maturity or range of maturities for
the option data used in the calibration. The reason is simple: given the appropriate choice
of parameter estimates, a constant volatility jump-diffusion model is capable of fitting the
volatility smirk at any given maturity; but such a model cannot simultaneously fit smirks at
different maturities. Similarly, when comparing the performance of different option pricing
models, the particular maturities of the options used in the data set tends to determine the
conclusions reached. In particular, when using moderate to long maturity options, one often

finds that the contribution of a jump process is minimal, while the role of stochastic volatility



process is vitally important. However, the role of a jump process is much more important
when calibrating models to short maturity options, since all stochastic volatility models imply
that the conditional distribution of the stock return at the initial instant is normal, and are

thus incapable of capturing the deep smirk observed in overnight options.

Backus, Foresi, and Wu (1997) and Das and Sundaram (1999) illustrate how stochastic
volatility can interact with jumps to slow down the flattening of the volatility smile or smirk
with increasing maturity. These authors argue that both jumps and stochastic volatility com-
ponents are necessary to capture the variation in currency option prices across the whole
spectrum of maturities and strikes. A key parameter that controls the decay of the volatility
smile or smirk over maturity is the persistence of the stochastic volatility. The more persistent
the volatility process is, the more slowly the smile flattens out. Backus, Foresi, and Wu (1997)
give examples on how to calibrate the mean-reversion parameter for the volatility process to

the cross-sectional maturity pattern of currency implied volatilities.

While a jump-diffusion model with stochastic volatility can capture the moneyness and
maturity patterns of currency option implied volatilities, it cannot capture the corresponding
behavior of U.S. equity index volatilities. In particular, the maturity pattern of the volatility
smirk requires that the volatility process be non-stationary, while the time series data suggest

the opposite. The model which we propose defuses this inherent tension successfully.

Financial asset returns are often regarded as the cumulative outcome of a large number
of information arrivals occurring more or less continuously over time. According to a gener-
alization of the standard central limit theorem, if the sum of a large number of i.i.d. random
variables has a limiting distribution after appropriate shifting and scaling, then the limiting
distribution must be a member of the a-stable class (Lévy (1925) and Feller (1971)). It is
therefore natural to assume that asset returns are at least approximately governed by a stable
distribution if the accumulation is additive, or by a log-stable distribution if the accumulation

is multiplicative. °

SMittnik, Rachev, and Paolella (1998), for example, illustrate how different compounding schemes lead to
different stable processes in the limit.



The normal distribution is the most familiar and computationally tractable stable distri-
bution with a tail index o« = 2. It has routinely been postulated to govern asset returns.
However, since the pioneering work of Fama (1965), it has been known that returns are often
much more leptokurtotic than implied by normality. This naturally leads to the considera-
tion of non-Gaussian stable distributions with a < 2, as proposed by Mandelbrot (1963b),
Mandelbrot (1963a), and Fama (1965).

Because stable distributions are infinitely divisible, they are particularly attractive for
continuous time modeling, as emphasized by Samuelson (1965) and McCulloch (1978). The
stable generalization of the familiar standard Brownian motion is often called the Lévy a-
stable motion and is the subject of two recent monographs by Samorodnitsky and Taqgqu
(1994) and Janicki and Weron (1994). The relevance of stable motions for option pricing has
been recognized previously. For example, Janicki, Popova, Ritchken, and Woyczynski (1997)

and Popova and Ritchken (1998) derive option pricing bounds in an a-stable security market.

However, in the nondegenerate case of o < 2, any finite interval almost surely contains
an infinite number of discontinuities. This feature implies that the risk in an option position
cannot be delta-hedged away and that the variance and higher moments of asset returns are
not defined. In particular, the infinite variance may imply that the risk premium is not finite.
McCulloch (1987) and McCulloch (1996) circumvent this problem in pricing options by an

innovative specification of the marginal utility of the asset.

Our approach to the modeling of stock index returns is unique. In light of the extreme
negative skewness evidenced by equity index option prices, we incorporate maximum negative
skewness into the Lévy a-stable motion. This incorporation allows us to not only capture the
asymmetry of the risk-neutral distribution exhibited in stock option prices, but also to obtain
finite moments of all orders for the asset price. We are thereby assured of the finiteness of the

risk premium, and the corresponding finiteness of option prices.



II. Maturity Variation in the Volatility Smirk

A. Data and estimation issues

To document the maturity variation in the volatility smirk, we have obtained daily closing
bid and ask implied volatility quotes on out-of-the-money S&P 500 index options across all
strikes and maturities from April 6th, 1999 to May 31st, 2000 (290 business days). We also
have daily closing futures prices corresponding to each option maturity. Our exclusive use of
out-of-the-money options is an industry convention, arising from their greater liquidity and

model sensitivity than their in-the-money counterparts.

We apply the following filters to the data: (1) the time to maturity is greater than five
business days; (2) the bid implied volatility quote is positive; (3) the ask is no less than the bid.
After applying these filters, we also plot the mid implied volatility for each day and maturity
against strike prices to visually check for obvious outliers. After removing these outliers, we

have 62,950 option quotes left over a period of 290 business days.

B. The smoothed implied volatility surface

In Figure 1, we plot the average implied volatility surface across maturity and moneyness,

where the latter is defined as:
_In (K/F)

oT

for o as some measure of the average volatility of the index. K and F are respectively the

d (1)

strike price and the futures price corresponding to the implied volatility quote. The use of the
constant ¢ in the denominator of (1) is an industry convention designed to allow comparison
across stocks, and to allow a simple interpretation of this moneyness measure as roughly the
number of standard deviations that the log strike is away from the log forward price in the
Black Scholes model® . In Figure 1, we use o = 27.4%, which is the average of all the implied

volatility quotes.

SNote that d is also the average of —d; and —ds appearing in the standard Black Scholes put formula.



We use the mid point of the bid and ask for the implied volatility quotes. The implied
volatility (IV') curve as a function of moneyness and maturity is obtained via nonparametric
kernel regression. This smoothing method is especially suitable to cases where the functional
structure is unknown, but extensive data are available. The kernel regression estimator can be

expressed as:
YA
Z-NZIK(—‘ = ‘)IVZ-

1V (Z) = (2)
N Z-7;
2= K (‘—H|)
where K(-) is the kernel function, Z = (d,7) is the information set, N is the number of

observations, and H is called the bandwidth matrix. Equation (2) is essentially a weighted
average of the implied volatility quotes (IV;). The kernel K (-) assigns a weight to each implied
volatility quote I'V; based on the distance between the corresponding information Z; = (d;, 7;)
and the conditional information Z = (d,7): |Z — Z;|. The kernel is generally decreasing with
the distance. The bandwidth matrix H adjusts the sensitivity of the kernel (weight) to the

distance.

The choice of the kernel function typically has little influence on the end result. We use

the most popular one, the independent Gaussian kernel:
K(") 2 k(x;),  k(x;) . 7
7=1 :EJ ) :EJ /_271' €xXp 2 )

with ; = (2; — 2i;)/h; where z; is an element of Z and z;; is an element of Z;. With the
independent kernel, we choose a diagonal bandwidth matrix with the j-th diagonal element

given by h;.

The degree of smoothing depends to a large extent on the choice of the bandwidth matrix
H. The larger is the bandwidth, the greater is the degree of smoothing. The optimal choice is a
tradeoff between bias and variance, which is best captured by minimizing the mean integrated

squared error( MISE):

MISE =E UZ (Tv(z) - H/(Z))2 dz] .



In practice, MISE is expanded and attention is restricted to the contribution from only the
leading terms of the expansion, which is called the asymptotic MISE (AMISE). Assuming that
the explanatory variables (Z;) are multivariate normally distributed and applying a Gaussian
kernel, minimizing the AMISE gives the optimal bandwidth matrix,
1/(6+4)
I ( 4 ) $1/2 pr—1/(5+4)
d+2 ’
where X is the variance-covariance matrix of the the information set Z; and ¢ is the dimension

of Z. In the case of independent Gaussian kernels with 6 = 2, we have:
h;=a; N~V (3)

where o is the standard deviation of z;;. When the information set is not multivariate normal,
or when the time series are autocorrelated, the bandwidth choice changes accordingly. Some-
times, cross-validation is necessary to empirically determine an optimal bandwidth.” For our
purpose, (3) suffices as a benchmark choice for the bandwidth. We have experimented with
different bandwidths by applying a different multiplier to the bandwidth in (3). We have also
performed nonparametric smoothing with a local linear Gaussian kernel. In every case, the
basic features of the implied volatility surface remain the same, regardless of changes in the

bandwidth or the kernel.

The nonparametrically smoothed implied volatility surface is plotted in Figure 1. As ex-
pected, at each maturity, implied volatilities decline as moneyness increases: in fact, this
decrease is almost linear®. A striking feature of Figure 1 is the lack of variation in the slope
of this line as the maturity increases. This lack of variation stands in sharp contrast to the
flattening out effect observed in the currency options market. Figure 2 slices Figure 1 into
several two-dimensional graphs and overlays the volatility smirks at different maturities. As
maturity increases, the overall level of the volatility smirk rises slightly, but does not flatten

out at all. If anything, the slope for long maturity smirks is slightly steeper.

"See Simonoff (1996) for a detailed discussion on the choice of kernels and bandwidth.
8We recognize that this linear relation cannot be maintained asymptotically.
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Ait-Sahalia and Lo (1998) report a slightly flattening in their nonparametrically estimated
implied volatility smirk (see their Figure 4). However, the horizontal axis of their plot uses
moneyness defined as K/F. If the horizontal axis of our Figure 1 were changed to this money-
ness measure, then our volatility skew would flatten out due to the stretching of our original
horizontal axis as maturity increases. Thus, it is possible that their results would be consistent
with ours if they were plotted on the same axes. Consistent with this conjecture, their non-
parametrically estimated skewness becomes more negative as maturity increases, while their

kurtosis estimates increase with maturity (see their Figure 7).

C. A formal test of the maturity pattern

While Figure 1 is illustrative, it lacks statistically rigor. In this section, we perform a statistical
test to determine whether the slopes of the implied volatility smirk is flattening or steepening
with increasing maturity. Suppose that for each day, options have m different maturities
indexed by j = [1,2,---,m]. At each maturity, we regress implied volatility on the moneyness,
d,

IVj =a+bjd; + e,

where b; captures the slope of the smirk. As shown in Figure 1, the volatility smirk is approx-
imately linear within the observed moneyness range. However, as shown in Figure 2, the slope
in short term implied volatility does appear to change as the moneyness goes from negative to
positive. Including the implied volatilities generated from out-of-the-money calls would bias
the estimate of the slope, whose variation with maturity is our prime concern. Thus, for the
regression, we restrict the moneyness to be in the range d € [—2,0]. The lower bound on mon-
eyness is imposed because puts struck further out-of-the-money are not as liquid as at short
maturities, and quotes at these strikes are not available at long maturities. For the regression

to be robust, we further require at least five data points at each maturity.

For each day in our sample period, we obtained m regression slopes, one for each maturity.
The top panel of Figure 3 depicts the term structure of the smirk slope for each of the 290

business days tested. Visual inspection indicates that the term structure is in most cases (1)

11



not linear in maturity, and (2) downward sloping. Bearing in mind that smirk slopes are
negative, the downward sloping term structure implies that smirk slopes are becoming more
negative as maturity increases. To determine the statistical significance of this effect, on each
day we regress the smirk slope on the time to maturity to capture the overall slope of the term
structure:

bj = a+ [ + €.

The slope estimate ( is negative for most days, i.e. the smirk usually steepens with increasing
maturity, as suggested by the top panel in Figure 3. For 195 out of the 290 days tested, the
t-statistic for 3 is less than —1.96, while for no days is the t-statistic greater than 1.96. Figure
4 depicts the nonparametrically smoothed distribution of the t-statistics on the estimates of 8
over the 290 days tested. The t-statistic is overwhelmingly negative and skewed to the left. In

particular, the probability that the ¢-statistic is greater than 1.96 is less than 1%.

As a further test, we repeat the regression using the pooled term structure data for all days.
The slope estimate from the pooled data (/) is —0.6083, with a t-statistic of —19.32, which is
significantly negative for any reasonable confidence interval. The regression fit is depicted in

the bottom panel of Figure 3.

Both the smoothed implied volatility surface and the formal regression tests point to a
robust feature of the S&P 500 index options market. When graphed against the appropriate
measure of moneyness, the implied volatility smirk does not flatten out as maturity increases.
As a result, the risk-neutral density of the index return is NOT converging to normality as
maturity increases. The central limit theorem, which is used by Backus, Foresi, and Wu (1997)
to explain the long term behavior of almost all option pricing models with jumps and stationary
stochastic volatility, does not apply to the market for S&P 500 index options. Clearly, a new

class of models is required in order to account for the behavior of US equity index option prices.

12



ITI. The FMLS Process and Option Pricing

The key implication of the empirical results in the previous section is that stock returns exhibit
self-similar properties under the risk-neutral measure. The tail behavior of the risk-neutral
distribution is approximately invariant under time aggregation. Modeling the stock return
by a Brownian motion, as in the Black Scholes model, captures such a self-similar property:
stock returns remain normal under time aggregation. However, it is well-known that the
implied density of stock returns is highly non-normal, and in particular, is heavily skewed to
the left. The only process that possesses both non-normality and self-similarity is the Lévy
a-stable process with the tail index parameter @ < 2. When a = 2, the Lévy a-stable process

degenerates to a Brownian motion.

Unfortunately, a symmetric Lévy a-stable motion for log prices with o < 2 has infinite ex-
pected arithmetic return. This led Merton (1976) to conjecture that such a specification would
make a 5-minute call option worth 100 percent of its underlying stock. Merton (1976) further
conjectures that this specification for the market portfolio might also require the equilibrium

interest rate to be infinite.

To circumvent these difficulties, we model the stock return by a Lévy a-stable process with
mazximum negative skewness. Our use of a Lévy a-stable process retains the key advantages
of a non-normal return distribution and self-similarity. Our imposition of maximum negative
skewness is required to deliver finite conditional moments of all orders for the stock price,
relieving Merton’s concerns. As a result, we christen this process the Finite Moment Log
Stable (FMLS) process. Although our intent in maximizing negative skewness is to produce
finite option prices, our specification has the bonus of capturing the highly skewed feature of
the implied density for stock returns, a feature that cannot be captured by either a Brownian

motion or a symmetric Lévy a-stable process.

Formally, let S; denote the stock price at time . We assume that the risk-neutral measure

@ is such that under it, the stock price follows the log-stable process:

dS:)S; = (r — q)dt + odL¥™', ¢ e [0,T], (4)

13



where Lj' " denotes a Lévy a-stable process. The increment de’ﬁ is distributed a-stable with
zero drift, dispersion of dt'/®, and a skew parameter 3: L, (0, dt/e. 5 . In (4), we set B = —1
to achieve finite moments for stock prices and negative skewness in the return density. We

further restrict « € (1,2) in conformity with much empirical evidence.

In general, a stable random variable x ~ L,(6,0,3) with a € (0,2],0 € ®,0 > 0, and

B € [—1,1] can be represented by its characteristic function:

b (1) = Eeit® — exp [iuf — |u[*0c® (1 —if ( sgn u)tan 5*)] if a # 1, -

exp [iu@ — |u|o (1 + B2 ( sgn u)In|u] } if a=1
When « < 2, the tails are “fat” and the tail probabilities behave like A\™%:

1 1-—
Jim APz >)) = Ca ;ﬁaa, Jfm APz < —A) = Co—j ﬁa”‘,

where:

- -1 _lea
( / x% sin xda:) _ ) TE=a)cos(ra/2) if a#1,

Ca

The only exception is if |3| = 1. When § = —1, the right tail is a “thin” decaying faster than
AT As A — oo,

~a/(2(a-1)) a/(a—1)
1 (X . Py .
V2rala—1) (a&a exp( (a—1) (a&a ) if a>1,
Pz > \) ~ \/%_W exp (_% _ om/20)A-1 Foaol,
0 if a<l,

where:

-1/«
o =0 <cos g(Z - a)) .

The same formula applies to the left tail when 5 = 1 because P(x < —\) = P(—x > \) and
x ~ Ly(0,0,1) implies —z ~ L, (0,0, —1). See Zolotarev (1986), Theorem 2.5.3.

14



As a result of this tail behavior, the Laplace transform of an «-stable variable = ~

L(0,0,(3), is not finite unless 5 = 1. When (8 = 1, the Laplace transform is given by:

exp (—A%“sec ) if a=1,

R > 0. (6)
2
exp (—J;)\ln/\ if a=1,

L.(N)=E {e_)‘x} =

We are interested in the distribution of the log return In S7/S; over the horizon 7 =T —¢t:
_ a,—1 a,—1
stlnStJrT/St:,uT—Fa(LT — L ,

where p is determined by the no-arbitrage condition under the measure ). The conditional

characteristic function of the return s, can be inferred from (5):
us : . o To
os (u) = Ey [e T} = exp | tupt — 7 (iuo)” sec -5 ) l<a<2 (7)
Furthermore, the nth moment of Sz can be represented as a Laplace transform in (6):

E; [S7] = ST'E; [e"°7] = S} exp <n,u7' — 7 (no)” sec %) , (8)

which is finite for all n. Note that 3 = —1 is the only a-stable case with o < 2 where we have

finite moments for St.

Setting n =1 in (8), we have:
E; [ST] = Spexp <,u7' — 70 sec %) .
By no-arbitrage, E; [S7] = S;e"~97 under measure @, and so:

u:r—q—i-aasec%. 9)

Given the characteristic function in (7) and the no-arbitrage condition in (9), we can apply
the fast Fourier transform (FFT) method of Carr and Madan (1999) to simultaneously value

European calls at a whole spectrum of strike prices.
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Our parsimonious FMLS model has only two free parameters ¢ and «, but it can generate
a rich array of risk-neutral densities or volatility smirks. In particular, the model is capable of
generating the maturity pattern in the volatility smirk which is observed in US index options.
The top panel of Figure 5 illustrates that the implied volatility smirk computed from the FMLS
process does not flatten out significantly as maturity increases. In contrast, the bottom panel
depicts the case of a typical pure jump model, i.e. the variance-gamma model of Madan, Carr,

and Chang (1998). As maturity increases, the implied volatility smirk flattens out significantly.

Figure 6 illustrates that the slope of the smirk is directly linked to the tail index «. The
smirk becomes flatter as the tail index « becomes closer to its normal limit o = 2. The fact
that the tail index « is invariant under time aggregation (self-similarity) is the key reason that

volatility smirk does not flatten out as maturity increases.

IV. Model Calibration

In this section, we calibrate the FMLS model to the nonparametrically smoothed implied
volatility surface in Figure 1. In particular, we transform the smoothed implied volatility
surface to out-of-the-money option prices using a constant interest rate and dividend yield of
r = 7.33% and ¢ = 1.17% respectively. We then determine the parameters by minimizing the

sum of squared pricing errors (sse):

NC . 2 NP N 2
sse = m@%nZwiC (C’i - Cy(©) + ZWP (Pi - PF(e) | (10)
i=1 i=1

where C; and P, are realized out-of-the-money call and put prices quoted as a percentage of
spot, and C;(0) and P;(©) are their respective counterparts implied from the model given the
parameter vector ©. N¢o and Np are respectively the number of out-of-the-money call and put

options.

In a maximum likelihood framework, where errors attached to the observed prices are
assumed to be normally distributed with mean zero and variance V;, the weight would be

given by w; = 1/V;. Unfortunately, the error variance for each price quote is unknown. Bliss
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and Panigirtzoglou (2000) provide a detailed discussion on the sources of errors and their
implications for the weights. We used equal weights across option prices, assuming equal

variance for all pricing errors.

For the estimation, we use option prices on three maturities: 1, 6, and 12 months. For each
maturity, we choose 8 strikes which are evenly distributed in In K/S and fall roughly within

the moneyness range of [—2,1]. In particular,

—0.1841 —0.3682 —0.4909
—0.1534 —0.3068 —0.3988
—0.1227 —-0.2454 —0.3068
—0.0920 —0.1841 —0.2148
—0.0614 —0.1227 —-0.1227
—0.0307 —0.0614 —0.0307
0 0 0.0614
0.0307  0.0614  0.1534

In(K/S) =

The three columns correspond to the three maturities.

In addition to our two-parameter FMLS model, we also calibrate the popular three-parameter
variance-gamma (VG) model of Madan, Carr, and Chang (1998) and the traditional four-
parameter jump-diffusion (MJD) model of Merton (1976). Under the VG model, the risk-

neutral log price process is:
dIn Sy = (r — q+ p)dt + wdt + odW5,

where ¢ denotes a subordinated gamma time, i.e. d¢ is independently and identically gamma-

distributed: ~(dt : 1,a), where « is the variance rate. The parameter p arises from the

1 1
u:—ln[1—<w+—02)u].
« 2

concavity of the log:
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The characteristic function of s, is

T

. 1 = 1 ~a
bs(u) = Mr=O7 [1 - (w + §a2> a] {1 — (z’uw — 502u2> a] . (11)
The stock price process under the MJD model is, under measure @,
dS;/S¢ = (r — q — ag)dt + odW; + (ek -1 dJ(a),

where W, is a Wiener process capturing the continuous part of the price movement while
J(a) is a Poisson jump process with intensity . The jump magnitude is captured by the
normally distributed random variable k ~ N(w,n?). The parameter g = E {ek — 1} = ewtam’
is the mean percentage jump conditional on one jump occuring. The characteristic function of

Sr =InSy/Sy is

¢s(u) = exp [zu (7‘ —q—ag— %O‘z) T— %u2027 +a (ei““_%“%z -1 T} . (12)

Table I summarizes the calibration results and demonstrates that our FMLS model performs
best in having the smallest sum of squared pricing errors (sse), while it has the least number
of parameters (two). Figures 7, 8, and 9 depict their performance in matching the out-of-the-
money option prices and the implied volatility smirks at different maturities. The Achilles
heel of the MJD model and the VG model is that, for a given set of parameters, they cannot
simultaneously fit the implied volatility smirk at different maturities. The same weakness
holds for all pure jump Lévy processes with finite (but nonzero) skewness and kurtosis for
log stock returns, since these moments decrease with maturity by virtue of the central limit
theorem. Correspondingly, the volatility smirk flattens out as maturity increases. Our FMLS
model relieves the stress in the maturity pattern by adopting a self-similar process. It matches
the slope of the volatility smirk by an optimal choice of the tail index «, and guarantees no
arbitrage and finite option prices by incorporating maximum skewness to the Lévy a-stable

motion.
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V. Extensions

The FMLS model compares favorably over other jump models in preventing the implied volatil-
ity smirk from flattening out as maturity increases. It is a very parsimonious model that meets
three requirements needed to explain the US index options market: (1) self-similarity, (2)
non-normality and (3) martingality. The martingality condition implies, inter alia that the
risk-neutral mean of option prices should be finite. The Black-Scholes model delivers self-
similarity and martingality, but implies a normal distribution for asset returns. Many jump
or jump diffusion models generate the observed non-normality and meet martingality, but fail
to deliver self-similarity and thus fail to capture the maturity pattern of the implied smirk.
Previous work on a-stable motions violated the martingality condition and hence either gen-
erated suspicious results or had to resort to utility specifications to reconcile a reasonable risk
premium. The FMLS model is the first to capture all three features simultaneously, and does

so parsimoniously.

As the FMLS model is a pure jump model with iid Lévy increments, it does not capture
the often-documented “volatility” clustering. Thus, the FMLS model should be regarded as
a springboard for further extensions which capture this phenomenon. By treating the a-
stable process as a generalization of the standard Brownian driver extensions of our model
are straightforward. In what follows, we will briefly discuss some of these potential extensions
and their relative merits in practice. To save space, we do not report the the derivations and

calibration results of these extended models. However, these results are available upon request.

A. Pure Jump Versus Jump Diffusion

While the FMLS model is a pure jump model, a diffusion component can be added to the

model in a very straightforward manner:

dS,/S; = (r — q)dt + o dLY¥ ™ + o9dL?,
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where L? is a Brownian motion with variance 2t and is a degenerate case of an a-stable motion

with o = 2.

The characteristic function of the log return, s, = In Sy, /S, can be obtained as a direct

extension of (7):
os (u) = By [ei“sf} = exp (zu (7‘ —q+ of sec % - O'%) 7 — 7 (fuoy)” sec % - T(u02)2> .

Option pricing is therefore also straightforward. Repeated calibration exercises, however, in-
variably generate an estimate for oo that is indistinguishable from zero. This result coincides
with the recent empirical evidence of Carr, Geman, Madan, and Yor (2000), who also find
that the explanatory power of their pure jump process is not enhanced by the addition of a

diffusion component.

These results contrast sharply with empirical results on the traditional Poisson compound
jump-diffusion models such as Merton (1976) (MJD). Indeed, in our calibration of the MJD
model in Table I, the diffusion component is a significant component and accounts for 17.9%
of the variation.” The sharp contrast comes from the difference in the fine structure of the
jump specification in these models. In both the FMLS and CGMY models, as the jump size
approaches zero, the arrival rate for jumps of this size approaches infinity. As a result, the
aggregate arrival rate across jumps of all sizes is infinite. In contrast, in the Poisson compound
jump model (MJD), the aggregate arrival rate of jumps is constant and finite at a. The fact
that there are an “infinite” number of very small jumps in the FMLS and CGMY model relieves
their need for a diffusion component. This, however, is not the case for the MJD model. In
short, while adding a diffusion component to our FMLS model poses no difficulty in terms of
implementation, this component has no additional explanatory power in terms of determining

option prices.

9Under the MJD model, the variance of the log return is given by
Ko = [0'2 + a(w® + 772)] T.

The fraction of variation explained by the diffusion component is o2 /k2.
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B. Refining the Structure of Jumps

Under the FMLS model, the structure of jumps is controlled by a maximum negatively skewed

a-stable Lévy motion. The arrival rate of jumps of size z is given by its Lévy measure:

v(dr) = celz[707
where ¢y = 0 for z € (0,00) and ¢ = 1/T'(—a) for x € (—00,0]. Although the random
component of the process features only negative jumps, the predictable component of the
process compensates by so much that the support of the distribution for any positive time is

the entire real line.

Our calibration results indicate that the FMLS jump structure adequately captures the
non-normality of asset returns, i.e. the implied volatility smirk. Nonetheless, to improve the
fit of an implied smirk at any maturity, one can further refine the jump structure through
subordination:

Sp=(r—q+p)7+wr+oLd?

where the time length of the a-stable Lévy motion is subordinated by a subordinator 7. As
an example, we derive the direct a-stable counterpart of the VG model of Madan, Carr, and
Chang (1998), where we replace their gamma subordination of a standard Brownian motion
by a gamma subordination of a standard a-stable Lévy motion. That is, the subordinator 7
is assumed to follow an independent gamma process with unit mean rate and variance rate
n: v(7;1,m). As in Madan, Carr, and Chang (1998), we also add a free drift parameter w
to generate asymmetry. The parameter p is an adjustment term to guarantee no-arbitrage.
Under such a specification, the characteristic function of the log return s, is given by

bs(u) = eiu(r—g+u)r (1 - (z’uw — (tuo)® sec %) 77) ! )

1 o fye’
p=—-In|{l—|w—0c%sec— | n|.
7 2

with p given by:
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We calibrate this gamma-subordinated FMLS model to the implied volatility smirk. The
results (not reported) indicate that while its capability of fitting one implied volatility smirk
at a given maturity is improved, the self-similarity structure is lost and hence the stability

across maturities is actually not as good as the benchmark model.

C. Stochastic “Volatility”

Under the FMLS model, the variance of the log return is infinite. However, an analogous
parameter o is referred to as the a-dispersion and this statistic captures the “variability” of
the log return. Through the use of stochastic time change, a stochastic dispersion process can
be readily incorporated into the FMLS model in order to capture the “volatility clustering”

phenomenon.

As an example, we incorporate the extensively cited square-root model of Heston (1993)

into the FMLS framework:

dS;/S; = (r—q)dt+v/*dLd Y,
dve = k(0 — vy)dt + /PogdWy.

(13)

The characteristic function of the log return s, is now given by:

¢s(u) = exp [iu(r — q)7 — b(T)vy — (7))

with
2A (1 —e")
b(7) 2 — (1 —r) (1 — e—nr)a
c(r) = %f {2111 (1 - % (1- e_m)> +(n— R)T] )
with

n=1/K2+268\, X=[(iu)* — iu]sec %.
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The model has four free parameters: © = («, k, 0, 3) and two state variables (S, v;). Since
one cannot directly observe v, one needs to infer it from the option price data each day by

minimizing the sum of squared pricing errors, given a choice of the parameters.

We also calibrate this model to the nonparametrically smoothed mean implied volatility
surface. The results (not reported) indicate that, even with two more free parameters, the
model does not significantly outperform the FMLS benchmark in fitting the mean implied
volatility surface across dates. however, its greater flexibility does show up in fitting the

variation of the implied volatility smirk across maturity at each date.

V1. Final Thoughts

Modeling U.S. equity index returns with our FMLS process is very appealing because the
model-implied skewness and kurtosis of the index return are not finite, and hence do not
decrease over maturity. It thus provides a parsimonious way of capturing the implied volatility

surface along both the moneyness and maturity dimensions.

Further research should go into documenting the maturity pattern for other indices and for
individual stocks. Our preliminary investigations suggest that stochastic time change can be

profitably used to improve the fit of our model even further.
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Table I
Estimates of Jump(-Diffusion) Models

Entries are estimates (in the parentheses are standard errors) and sum square pricing errors
(sse) of the parameters of models: (i) the FMLS model, (ii) the VG model, and (iii) the MJD
model. The characteristic functions of the log stock return under these models are, respectively,

ormvrs(u) = exp [zu (r—q+a2 sec %) 7 — 7 (iuo)® sec %] ;
pve(u) = r—aT {1 - <w + %O’z> oz] ’ [1 - <z’uw - %02u2> oz] °
1 1 ,
omypu) = expliu|lr—qg—« AL P PRI PRSI P U B
2 2
Parameters FMLS VG MJD
Q 1.6145 0.7221 1.8604
(0.0110) (0.1384) (0.3523)
o 0.1486 0.1642 0.1003
(0.0010) (0.0168) (0.0079)
w — —0.1834 —0.0930
— (0.0527) (0.0117)
" — — 0.1271
— — (0.0196)
sse(x10°) 5.8004 18.2319 11.5350
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The surface is obtained

via nonparametric smoothing of daily closing implied volatility quotes (mid point of bid and
ask) on S&P 500 index options from April 4th, 1999 to May 31st, 2000 (62,950 observations).

Independent Gaussian kernels are used with bandwidth h; = ajn_l/ 6. Moneyness, d, is defined

Figure 1. Volatility Smirk in S&P 500 Index Options.

In (K/F) Jo\/T, where o = 27.4% is the average of all implied volatility quotes.
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Figure 2. Volatility Smirk in S&P 500 Index Options. Lines are two-dimensional
cuts from Figure 1 at maturities of 1 month (solid line), 6 months (dashed line), 12 months
(dash-dotted line), and 15 months (dotted line).
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Figure 3. Maturity Effect on Volatility Smirk. Lines in the the top panel are the
term structure of the estimated smirk slopes at each day. The dashed line in the bottom panel
depicts a linear regression fit to the stacked data of the term structure. At each maturity and
each day, the smirk slope is estimated by the following regression:

IVJ = ay + bjdj + €5,

where the moneyness d; is defined as in Figure 1.
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Figure 4. The Term Structure of Implied Volatility Smirk. Solid lines capture the
nonparametrically estimated (with Gaussian kernel) distribution (probability density at the
top panel and cumulative density at the bottom) of the ¢-statistics of the [ estimates for the
290 days from January 6th, 1999 to May 31sdt, 2000. The dot-dashed lines are implied by
the normal density with comparable mean and variance. 3 captures the term structure of the
implied volatility smirk slope b;:

bj = a+ B7; +ej,

where the slope b; is estimated from the regression:

IV; = a; + bjd; + e;,

at each day and maturity j.

33



(A) FMLS
50 T T T T T

Implied Volatility, %

(B) VG
50 T T T T T

-2 -15 -1 -0.5 0 0.5 1
Moneyness, d

Figure 5. Volatility Smirk Under (a) FMLS Model and (b) VG Model. Implied
volatilities are computed from the FMLS model (the top panel ) with parameters: o = 1.4
and 0 = 14% and from the VG model (the bottom panel) with parameters: o = 14%, n = 0.3,
and w = —0.3. We also set interest rate r = 7.33% and dividend yields ¢ = 1.17%. Maturity
7 equals 1 month (solid line), 6 months (dashed line), and 12 months (dash-dotted line).
Moneyness is defined as in Figure 1.
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Figure 6. Volatility Smirk Under FMLS Model. Implied volatilities are computed
from the FMLS model with « being 1.2 (solid line), 1.5 (dashed line), and 1.8 (dashed-dotted
line). We set interest rate r = 7.33% and dividend yields ¢ = 1.17%. Maturity is 1 month.
Money is defined as in Figure 1.
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Figure 7. Empirical Performance of the FMLS Model. Stars, circles, and crosses
are smoothed implied volatility quotes (top panel) and its corresponding call option prices (in
percentage of spot, bottom panel) with maturities of, respectively, 1 month, 6 months, and 12
months. Lines (solid, dashed, and dash-dotted, respectively) are implied by the FMLS model
with parameter estimates given in Table I. Interest rate and dividend yield are assumed to be
constant across maturities: r = 7.33% and ¢ = 1.17%. Money is defined as in Figure 1.
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Figure 8. Empirical Performance of the VG Model. Stars, circles, and crosses are
smoothed implied volatility quotes (top panel) and its corresponding call option prices (in
percentage of spot, bottom panel) with maturities of, respectively, 1 month, 6 months, and 12
months. Lines (solid, dashed, and dash-dotted, respectively) are implied by the VG model with
parameter estimates in Table I. Interest rate and dividend yield are assumed to be constant
across maturities: r = 7.33% and ¢ = 1.17%. Money is defined as in Figure 1.
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Figure 9. Empirical Performance of the MJD Model. Stars, circles, and crosses
are smoothed implied volatility quotes (top panel) and its corresponding call option prices (in
percentage of spot, bottom panel) with maturities of, respectively, 1 month, 6 months, and 12
months. Lines (solid, dashed, and dash-dotted, respectively) are implied by the MJD model
with parameter estimates given in Table I. Interest rate and dividend yield are assumed to be
constant across maturities: r = 7.33% and ¢ = 1.17%. Money is defined as in Figure 1.
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