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Abstract—We solve a multi-period portfolio opti­
mization problem using D-Wave Systems’ quantum
annealer. We derive a formulation of the problem,
discuss several possible integer encoding schemes, and
present numerical examples that show high success
rates. The formulation incorporates transaction costs
(including permanent and temporary market impact),
and, significantly, the solution does not require the
inversion of a covariance matrix. The discrete multi-
period portfolio optimization problem we solve is
significantly harder than the continuous variable
problem. We present insight into how results may be
improved using suitable software enhancements and
why current quantum annealing technology limits the
size of problem that can be successfully solved today.
The formulation presented is specifically designed to
be scalable, with the expectation that as quantum
annealing technology improves, larger problems will
be solvable using the same techniques. 

Index Terms—Optimal trading trajectory, portfolio
optimization, quantum annealing. 
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I. THE PROBLEM 

A. Introduction 

CONSIDER an asset manager wishing to invest 
K dollars in a set of N assets with an invest­

ment horizon divided into T time steps. Given a 
forecast of future returns and the risk of each asset 
at each time step, the asset manager must decide 
how much to invest in each asset at each time 
step, while taking into account transaction costs, 
including permanent and temporary market impact 
costs. 

One approach to this problem is to compute 
the portfolio that maximizes the expected return 
subject to a level of risk at each time step. This 
results in a series of “statically optimal” portfolios. 
However, there is a cost to rebalancing from a 
portfolio that is locally optimal at t to a portfolio 
that is locally optimal at t + 1. This means that 
it is highly likely that there will be a different 
series (or, a “trajectory”) of portfolios that will be 
“globally optimal” in the sense that its risk-adjusted 
returns will be jointly greater than the combined 
risk-adjusted returns from the series of “statically 
optimal” portfolios. 

Mean-variance portfolio optimization problems 
are traditionally solved as continuous-variable prob­
lems. However, for assets that can only be traded 
in large lots, or for asset managers who are con­
strained to trading large blocks of assets, solving 
the continuous problem yields an approximation, 
and a discrete solution is expected to give better 
results. For example, institutional investors are often 
limited to trading “even” lots (due to a premium 
on “odd” lots), that is, lots that are an integer 
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multiple of a standard lot size, in which case the 
problem becomes inherently more discrete as the 
trade size increases versus the lot size. This could 
occur, for example, due to the trading of illiquid 
assets. Two common examples of block trading are 
ETF-creation and ETF-redemption baskets, which 
can only be traded in large multiples, such as fund 
units of 100,000 shares each. 

The discrete problem is non-convex due to the 
fragmented nature of the domain, and is therefore 
much harder to solve than a similar continuous 
problem. Furthermore, our formulation allows the 
covariance matrix to be ill-conditioned or degener­
ate. This complicates the finding of a solution using 
traditional optimizers since a continuous relaxation 
would still be non-convex, and therefore difficult to 
solve. 

B. Previous work 

The single-period discrete portfolio optimization 
problem has been shown to be NP-complete, regard­
less of the risk measure used [1], [2]. Jobst et al. 
[3] showed that the efficient frontier of the discrete 
problem is discontinuous and investigated heuristic 
methods of speeding up an exact branch-and-bound 
algorithm for finding it. Vielma et al. presented a 
branch-and-bound algorithm and results for up to 
200 assets [4]. Heuristic approaches, including an 
evolutionary algorithm, were investigated by other 
authors [1], [5], [6]. 

Bonami and Lejeune [7] solved a single-period 
problem with integer trading constraints, minimiz­
ing the risk given a probabilistic constraint on 
the returns (with no transaction costs), and finding 
exact solutions via a branch-and-bound method for 
problems with up to 200 assets. They considered 
four different methods, of which one was able to 
solve the largest problems to optimality in 83% of 
the cases, but the other three failed for all problems 
(the average run time for the largest problems was 
4800 seconds). They found that solving the integer 
problem was harder than solving a continuous prob­
lem of the same size with cardinality constraints or 
minimum buy-in thresholds. 

Gârleanu and Pedersen [8] solved a continuous 
multi-period problem via dynamic programming, 

deriving a closed-form solution when the covariance 
matrix is positive definite, thereby offering insight 
on the properties of the solutions to the multi-period 
problem. A multi-period trade execution problem 
was treated analytically by Almgren and Chriss 
[9], motivating our inclusion of both temporary and 
permanent price-impact terms. 

The connection between spin glasses and 
Markowitz portfolio optimization was shown by 
Galluccio et al. [10]. The discrete multi-period 
problem was suggested by López de Prado [11] 
as being amenable to solving using a quantum 
annealer. The contribution of this paper is to inves­
tigate the implementation and solution of a similar 
discrete multi-period problem on the D-Wave quan­
tum annealer. 

C. Integer formulation 

The portfolio optimization problem described 
above may be written as a quadratic integer op­
timization problem. We seek to maximize returns, 
taking into account the risk and transaction costs, 
including temporary and permanent market impact 
(the symbols are defined in Appendix A), 

T  N γ 
w = argmax µ T wt − w T Σtwtw t t2 (1)

t=1  
 T T− Δwt ΛtΔwt +Δwt Λtwt , 

subject to the constraints that the sum of holdings 
at each time step be equal to K, 

NN 
∀t : wnt = K, (2) 

n=1 

and that the maximum allowed holdings of each 
asset be K ', 

∀t, ∀n : wnt ≤ K '. (3) 

The first term in Eq. 1 is the sum of the returns 
at each time step, which is given by the forecast 
returns µ times the holdings w. The second term is 
the risk, in which the forecast covariance tensor is 
given by Σ, and γ is the risk aversion. The third and 
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fourth terms encapsulate transaction costs. Specif­
ically, the third term includes any fixed or relative 
direct transaction costs, as well as the temporary 
market impact, while the fourth term captures any 
permanent market impact caused by trading activity. 
The transaction cost term is square in the change in 
the holdings, so it penalizes changes in the holdings 
if the corresponding entry in Λt is positive [8]. The 
permanent market impact term allows for the fact 
that increasing a large holding requires executing 
a large buy order, which increases the price, and 
hence the returns [9]. 

D. Extensions 

A straightforward extension can be made to solve 
optimal trade execution problems. For example, in 
order to solve a problem in which the asset manager 
has K units invested and would like to liquidate 
them over T time steps, the constraint in Eq. 2 
would change to 

NN 
∀t : wnt ≤ K (4) 

n=1 

and the sum in the transaction cost and permanent 
impact terms would extend to time step T +1 with 
wT +1 = 0 (the zero vector). 

The risk term in Eq. 1 requires the estimation 
of a covariance matrix for each time step. There 
are cases in which this is problematic: for example, 
if not enough data exists for a good estimate or 
if some of the assets were not traded due to low 
liquidity. An alternative and more direct way to 
quantify risk is via the variance of the returns 
stream of the proposed trajectory. This avoids the 
issues with the estimation of covariance matrices. 
An additional advantage of this method is that it 
does not assume a normal distribution of returns. 
The disadvantage is that if the number of time steps 
T is small, the estimate of the true variance of the 
proposed trajectory will be poor. A high variance of 
returns is penalized regardless of whether it occurs 
due to positive or negative returns. 

The variance is quadratic in the returns, so it is a 
suitable term to include in a quadratic integer for­
mulation. We use the identity Var(r) = (r2)−(r)2 , 

and note that the returns stream is given by the 
Tvector r[w] = diag(µ w). We find the alternative 

risk term  
T

γ N   2Trisk[w] = µt wt
T 

t=1 (5) N1 
T     

T T− µ wt µt .t wt
T 

t =1

II. SOLUTION USING A QUANTUM ANNEALER 

A. Quantum annealing 

Quantum annealing is a process which can be 
used to find the optimal solution to optimization 
problems, if these problems can be encoded as a 
Hamiltonian [12], [13]. To this end, the quantum 
system is first prepared such that it represents a 
trivial problem, and is in the ground state of that 
problem, which is an equally weighted superposi­
tion of all possible states. The system is then trans­
formed continuously to the point that it represents 
the optimization problem that we want to solve. If 
this process is done slowly enough, the adiabatic 
theorem guarantees that the system will remain in 
the ground state, as long as external disturbances 
are absent. The state of the system is then read, 
and in the ideal case it would correspond to the 
optimal solution of the optimization problem we 
wish to solve [14]. This process is referred to as 
“adiabatic quantum computation”. In a real device, 
external interference always exists to some degree, 
so the result is probabilistic, and annealing the same 
problem multiple times increases the probability of 
finding the optimum. Therefore, quantum annealers 
are effectively heuristic solvers. 

It has been argued that quantum annealing has 
an advantage over classical optimizers due to quan­
tum tunnelling. Quantum tunnelling allows an op­
timizer to more easily search the solution space of 
the optimization problem, thereby having a higher 
probability of finding the optimal solution. This 
might provide a speed improvement over classical 
optimizers, at least for certain problem classes [12], 
[13], [15]–[17]. 

D-Wave Systems has developed a scalable quan­
tum annealer. Mathematically, this is a device 
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which minimizes unconstrained binary quadratic 
functions, 

min x T Qx (6) 

s.t. x ∈ {0, 1}N , 

RN×Nwhere Q ∈ [18]–[20]. In order to keep 
external disturbances to a minimum, D-Wave Sys­
tems’ quantum annealer is cooled to 15 mK (about 
180 times colder than interstellar space), is shielded 
from RF signals due to its being housed inside a 
metal enclosure, is shielded from external magnetic 
fields larger than 1 nT (about 50,000 times less 
than Earth’s magnetic field), and operates in a high-
vacuum environment in which the pressure is 10 
billion times lower than atmospheric pressure [21]. 

There is strong evidence that the D-Wave ma­
chine is indeed quantum [22], [23]. Recently, there 
has been significant interest in benchmarking the 
D-Wave machines using different metrics, and of­
ten against classical solvers [24]–[29]. There is 
an ongoing debate on how to define quantum 
speedup, and on which problems a noisy quantum 
annealer would be expected to show such a speedup 
[30]–[32]. Recently, Denchev et al. claimed a 108 

speedup over simulated annealing when solving a 
specially constructed class of problems on a single-
core machine [33]. It is still an open question 
whether D-Wave Systems’ quantum annealer shows 
a quantum speedup. We expect new results to shed 
light on this in the near future. 

The connectivity of the qubits in D-Wave’s quan­
tum annealer is currently described by a square 
Chimera graph [34]. This hardware graph is com­
posed of a lattice of bipartite unit cells containing 
eight qubits. Qubits in adjacent unit cells are con­
nected if they are in the same position in the unit 
cell (see Fig. 1 for an example). 

If we label the number of unit cells along an edge 
as s, then the total number of qubits is q = 8s2. The 
hardware graph is sparse and in general does not 
match the problem graph, which is defined by the 
adjacency matrix of the problem matrix Q. In order 
to solve problems that are denser than the hardware 
graph, we identify multiple physical qubits with a 
single logical qubit (a problem known as “minor 
embedding” [35], [36]), at the cost of using many 

more physical qubits. For square Chimera hardware 
graphs, the size V of the largest fully dense problem 
that can be embedded on a chip with q qubits is √ 
V = 2q+1 = 4s+1, assuming no faulty qubits or 
couplers. For example, the latest chip is the D-Wave 
2X1, which has s = 12 unit cells along each side, 
giving q = 1152 qubits, for which we get V = 
49. Lower-density problems of significantly larger 
size can be embedded. For example, on one of the 
annealers used in this study, which has 1100 qubits, 
problems with Vb ' 140 and a density of ' 0.1 
were able to be embedded. 

B. From integer to binary 

To solve this problem using the D-Wave quantum 
annealer, the integer variables of Eq. 1 must be 
recast as binary variables, and the constraints must 
be incorporated into the objective function. We have 
investigated four different encodings: binary, unary, 
sequential, and partitioning. The first three can be 
described by writing the integer holdings as a linear 
function of the binary variables, ND  

wnt[x] = f(d)xdnt, (7) 
d=1 

Fig. 1: An example hardware graph, showing the 
connectivity of the qubits for a Chimera graph with 
s = 4 unit cells in each row/column, giving a total 
of q = 128 qubits. 

1as of April 2016 
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TABLE I: Encodings: f(d) is the encoding function 
and D is the bit depth. 

Encoding f(d) D 

Binary 2d−1 log (K ' 2 + 1) 
Unary 1 K ' √  

Sequential d 1 + 8K ' − 1 /2 

where xdnt ∈ {0, 1} and the encoding function f(d) 
and the bit depth D for each encoding are given in 
Table I. 

The fourth encoding involves finding all parti­
tions of K into N assets with K ' or less units in 
each asset, and assigning a binary variable to each 
encoding at each time step. 

We summarize the properties of each of the 
four encodings described above in Table II. Which 
encoding is preferred will depend on the problem 
being solved and the quantum annealer being used. 
Table III presents the number of variables required 
for some example multi-period portfolio optimiza­
tion problems for each of these encodings. 

For binary, unary, and sequential encodings, 
there is a trade-off between the efficiency of the 
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encoding—the number of binary variables needed 
to represent a given problem—and the largest inte­
ger that can be represented. The reason is that for 
an encoding to be efficient it will typically intro­
duce large coefficients, limiting the largest integer 
representable (due to the noise level in the quantum 
annealer). For example, the binary encoding is the 
most efficient of the three (that is, it requires the 
fewest binary variables); however, it is the most sen­
sitive to noise, and hence can represent the smallest 
integer of the three, given some number of qubits. 
Conversely, the unary encoding is the worst of the 
three in efficiency, but can represent the largest 
integer. An additional consideration is that some 
encodings introduce a redundancy that biases the 
quantum annealer towards certain solutions. Briefly, 
each integer can be encoded in multiple ways, the 
number of which is (in general) different for each 
integer. In this scenario, the quantum annealer is 
biased towards integers that have a high redundancy. 

The partition encoding is different in that it re­

quires an exponential number of variables; however, 
it allows a straightforward formulation of com­
plicated constraints, like cardinality, by excluding 
partitions that break the constraints, which also 
lowers the number of variables required. For the 
other three encodings, constraints can be modelled 
through the encoding (for example, a minimum or 
maximum holdings constraint), or through linear or 
quadratic penalty functions. We note that the actual 
number of physical qubits required could be much 
larger than the number of variables indicated in 
Table III due to the embedding (see Section II-A). 

In many cases, the maximum holdings K ', which 
is also the largest integer to be represented, will 
not be exactly encodable using the binary and 
sequential encodings. For example, using a binary 
encoding one can encode the values 0 to 7 using 
three bits, and 0 to 15 using four bits, but integers 
with a maximum value between 7 and 15 are 
not exactly encodable. In order to avoid encoding 
infeasible holdings, these can be penalized by an 
appropriate penalty function. However, this penalty 
function will typically be a high-order polynomial 
and require many auxiliary binary variables in order 
to reduce it to a quadratic form. Instead, we propose 
to modify the encoding by adding bits with the 
specific values needed. For example, {1, 1, 2, 2, 4}
represents a modified binary encoding for the values 
0 to 10. 

The constraints of Eq. 2 can be incorporated into 
the objective function by rearranging the equations, 
squaring them, and summing the result, obtaining 
the penalty term   2T NN N 

penalty[w] = −M K − wnt , (8) 
t=1 n=1 

where M > 0 is the strength of the penalty. In 
theory, M can be chosen large enough such that 
all feasible solutions have a higher value than all 
infeasible solutions. In practice, having an overly 
large M leads to problems due to the noise in 
the system (see Section II-D), so we choose it 
empirically by trial and error. In the future, it 
might be possible to include equality constraints of 
this form via a change in the quantum annealing 
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TABLE II: Comparison of the four encodings described in Section II-B. The column “Variables” refers to 
the number of binary variables required to represent a particular problem. The column “Largest integer” 
refers to a worst-case estimate of the largest integer that could be represented based on the limitation 
imposed the noise level N coefficients δ √by and the ratio between the largest and smallest problem and
n ≡ 1/ Nδ . 

Encoding Variables Largest integer	 Notes 
' Most efficient in number of variables; allows 

Binary TN log2(K + 1) l2n J − 1 representing of the second-lowest integer. 
Biases the quantum annealer due to differing 
redundancy of code words for each value; 

Unary TNK ' No limit	 encoding coefficients are even, giving no de­
pendence on noise, so it allows representing 
of the largest integer. 
Biases the quantum annealer (but less than  √  

1 ' unary encoding); second-most-efficient in
Sequential TN 1 + 8K  − 1 1 ln J (ln J + 1) 2	 2 number of variables; allows representing of 

the second-largest integer. 
Can incorporate complicated constraints eas­
ily; least efficient in number of variables;  

K+N−1
 only applicable for problems in which 

Partition ≤ T	 ln JN−1 groups of variables are required to sum to 
a constant; allows representing the lowest 
integer. 

process, allowing us to drop this term [37]. 
We note that an alternative approach, involving 

the tiling of the integer search space with binary 
hypercubes, was investigated by [38]; however, it 
requires an exponential number of calls to the 
quantum annealer. In addition, a 

C. Numerical Results 

The results for a range of portfolio optimization 
problems are presented in Table IV. For each prob­
lem 200 random instances were generated. Each 
instance was solved using one query to the quan­
tum annealer, with 1000 reads per query (which 
involved either 1 call or 5 calls if averaging over 
gauges)2. All results were obtained from chips with 
a hardware graph with either 512 or 1152 qubits. 
(The number of active qubits was a little smaller.) 

2We have observed that the success rate rises when increas­
ing the number of reads, for a fixed problem size. If the number 
of reads is fixed, the success rate is expected to decrease as 
problem size increases, as seen in the results. 

For validation purposes, each instance was also 
solved using an exhaustive integer solver to find 
the optimal solution. For the larger problems, a 
heuristic solver was run a large number of times 
in order to find the optimal solution with high 
confidence. 

As a solution metric, we used the percentage of 
instances for each problem for which the quantum 
annealer’s result fell within perturbation magnitude 
α % of the optimal solution, denoted by S (α ). This 
metric was evaluated by perturbing each instance 
at least 100 times, by adding Gaussian noise with 
standard deviation given by α % of each eigenvalue 
of the problem matrix Q . Each perturbed problem 
was solved by an exhaustive solver, and the optimal 
solutions were collected. If the quantum annealer’s 
result for that instance fell within the range of 
optimal values collected, then it was deemed suc­
cessful (within a margin of error). This procedure 
was repeated for each random problem instance, 
giving a total success rate for that problem. For the 
case α = 0, this reduces to defining success as the 
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TABLE III: Dependence of the number of binary variables required on the number of units K, number 
'of assets N , and the number of time steps T for some example values (here we assumed K = K/3). 

The number of variables is given for the three linear encodings: binary Vb, unary Vu, and sequential Vs. 
' N T K K Vb Vu Vs 

5 5 15 5 75 125 75 
10 10 15 5 300 500 300 
10 15 15 5 450 750 450 
20 10 15 5 600 1000 600 
50 5 15 5 750 1250 750 
20 15 15 5 900 1500 900 
50 10 15 5 1500 2500 1500 
50 15 15 5 2250 3750 2250 

TABLE IV: Results using D-Wave’s 512-qubit quantum annealer (with 200 instances per problem): N is 
the number of assets, T is the number of time steps, K is the number of units to be allocated at each time 

'step and the maximum allowed holding (with K = K), “encoding” refers to the method of encoding 
the integer problem into binary variables, “vars” is the number of binary variables required to encode 
the given problem, “density” is the density of the quadratic couplers, “qubits” is the number of physical 
qubits that were used, “chain” is the maximum number of physical qubits identified with a single binary 
variable, and S(α) refers to the success rate given a perturbation magnitude α% (explained in the text). 

N T K encoding vars density qubits chain S(0) S(1) S(2) 
2 3 3 binary 12 0.52 31 3 100.00 100.00 100.00 
2 2 3 unary 12 0.73 45 4 97.00 99.50 100.00 
2 4 3 binary 16 0.40 52 4 96.00 100.00 100.00 
2 3 3 unary 18 0.53 76 5 94.50 99.50 100.00 
2 2 7 binary 12 0.73 38 4 90.50 100.00 100.00 
2 5 3 binary 20 0.33 63 4 89.00 100.00 100.00 
2 6 3 binary 24 0.28 74 4 50.00 97.50 99.50 
3 2 3 unary 18 0.65 91 6 38.50 72.50 91.50 
3 3 3 binary 18 0.45 84 5 35.50 66.50 82.50 
3 4 3 binary 24 0.35 106 6 9.50 50.50 84.50 

finding of the optimal solution. 

The chosen approach relaxes the success metric 
in a problem-instance-specific way. An alternative 
would be to define success as finding a solution 
within N of the optimum. However this alternative 
success metric has the disadvantage that N could be 
small or large compared to the energy scale of a 
particular problem instance, and so the metric can 
be misleading for problems of the type being solved 
here. 

Although the variance of the success rate would 
also be interesting to observe, the number of exper­
imental runs required for this metric to be statisti­
cally significant were not able to be performed due 
to a limited availability of machine time. 

In order to investigate the quality of the solution 
on software enhancements, we replaced the “em­
bedding solver” supplied with the D-Wave quan­
tum annealer with a proprietary embedding solver 
developed by 1QBit, tuned the identification cou-
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TABLE V: Results using D-Wave’s 512-qubit quantum annealer, with custom-tuned parameters and 
software (with 200 instances per problem): an improved embedding solver, fine-tuned identification 
coupling strengths, and averaging over 5 random gauges (200 reads per gauge, giving a total of 1000 
reads per call). Columns are as in Table IV, and the hardware used was the same as in that table. 

N T K encoding vars density qubits chain S(0) S(1) S(2) 
2 3 3 binary 12 0.52 31 3 100.00 100.00 100.00 
2 4 3 binary 16 0.40 52 4 99.50 100.00 100.00 
3 2 3 unary 18 0.65 91 6 99.00 100.00 100.00 
2 3 3 unary 18 0.53 76 5 98.50 99.50 100.00 
2 5 3 binary 20 0.33 63 4 96.00 100.00 100.00 
2 6 3 binary 24 0.28 74 4 80.00 100.00 100.00 
2 4 3 unary 24 0.41 104 6 70.50 96.50 99.50 
3 4 3 binary 24 0.35 106 6 44.00 92.50 99.00 
3 3 3 binary 18 0.45 84 5 65.50 98.00 100.00 
3 6 3 binary 36 0.24 196 7 0.50 74.50 99.00 
4 4 3 binary 32 0.32 214 8 1.50 13.50 60.50 
4 5 3 binary 40 0.26 281 10 0.00 3.00 24.00 

TABLE VI: Results using D-Wave’s 1152-qubit quantum annealer (with 200 instances per problem), with 
lower noise and higher yield, and with custom-tuned parameters and software (as in Table V). Columns 
are as in Table IV. 

N T K encoding vars density qubits chain S(0) S(1) S(2) 
3 2 3 unary 18 0.65 86 5 99.50 100.00 100.00 
3 3 3 binary 18 0.45 61 4 83.50 99.00 100.00 
3 3 3 unary 27 0.46 146 7 81.50 92.50 97.00 
3 4 3 binary 24 0.35 87 5 75.50 100.00 100.00 
3 4 3 unary 36 0.36 209 8 40.50 52.50 60.50 
4 4 3 binary 32 0.32 157 6 27.00 46.50 64.50 
3 6 3 binary 36 0.24 143 5 15.50 59.00 78.50 
4 5 3 binary 40 0.26 210 7 4.00 34.50 64.00 
5 5 3 binary 50 0.25 321 8 4.00 13.00 27.00 
6 5 3 binary 60 0.24 492 10 2.00 20.50 49.50 
6 6 3 binary 72 0.20 584 11 0.00 6.50 21.00 

pling strength, and combined results from calls with 
multiple random gauges. A gauge transformation 
is accomplished by assigning +1 or −1 to each 
qubit, and flipping the sign of the coefficients in 
the problem matrix accordingly, such that the op­
timization problem remains unchanged. We found 
a large improvement for all problems. Results with 
these improvements are presented in Table V. 

To investigate the dependence of the success 
rate on the noise level and qubit yield of the 
quantum annealer, several problems were solved on 
two different quantum annealing chips. Results for 
the second chip, the D-Wave 2X, which has 1152 
qubits, a lower noise level and fewer inactive qubits 
and couplers, are presented in Table VI. We found 
an increase in all success rates, as well as the ability 
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to solve larger problems. 
These investigations highlight the importance 

of having an in-depth understanding of D-Wave’s 
quantum annealer in order to be able to achieve the 
best results possible. 

D. Discussion 
The success rate and the ability to solve larger 

problems are affected by certain hardware parame­
ters of the quantum annealer. First, there is a level of 
intrinsic noise which manifests as a misspecification 
error—the coefficients of the problem that the quan­
tum annealer actually solves differ from the problem 
coefficients by up to N. 3 For future chip generations 
the expectation is that N will decrease, and hence the 
success rate will increase by virtue of the quantum 
annealer solving a problem that is closer to the 
problem passed to it. In addition, the problem coef­
ficients on the chip have a defined coefficient range, 
and if the specified problem has coefficients outside 
this range, the entire problem is scaled down. This 
can result in coefficients becoming smaller than 
N, affecting the success rate. These factors are 
especially relevant for high-precision problems such 
as the multi-period portfolio optimization problem 
solved here. 

The quantum annealer has a hardware graph 
that is currently very sparse and in general does 
not match the problem graph. In order to solve 
problems that are denser than the hardware graph, 
multiple physical qubits are identified with a single 
binary variable, at the cost of using more physical 
qubits. In order to force the identified qubits to all 
have the same value, a strong coupling is needed. 
If the required coupling is outside of the range of 
the couplings in the problem, the result will be 
an additional scaling, possibly reducing additional 
coefficients to less than N, again impacting the 
success rate. Generally, the denser the hardware 
graph is, the fewer identifications are needed, and 
the weaker the couplings are required to be to 
identify the qubits. 

To solve larger problems, the number of qubits 
must be greater. More qubits would also allow the 

3The intrinsic noise for the current generation of chip is 
estimated to be around 2%–4% of the full scale. 

use of an integer encoding scheme that is less 
sensitive to noise levels (such as unary encoding 
versus binary encoding). The fabrication process is 
not perfect, resulting in inactive qubits and couplers. 
The more inactive qubits and couplers there are 
on a chip, the lower the effective density and the 
higher the number of identifications required, which 
typically reduces the success rate. 

In addition, custom tuning, through software, can 
be used to enhance the results. In particular, when 
the problem to be solved has a graph that differs 
from the hardware graph, a mapping, referred to as 
an “embedding”, must be found from the problem 
graph to the hardware graph. The development of 
sophisticated ways to find better embeddings (for 
example, with fewer identified qubits) would be 
expected to increase the success rate—often the 
structure of the problem can be exploited in order 
to find better embeddings. In addition, when an 
embedding is used, there are different ways in 
which the couplings of the identified qubits should 
be set, controlled by the “embedding solver”. For 
example, the strength of the couplings could be fine-
tuned further to give higher success rates, or tuned 
separately for each set of identified qubits [39]. 

The issue of which embedding properties are 
most desirable is still under active research. Here 
the pi-elite metric has been used to select the best 
scaling of the problem versus the strength of the 
qubit identification chains, and to choose the best 
embedding amongst the highest-ranked embeddings 
[39]. The pi-elite score is determined by comparing 
the mean energy of the best (“elite”) states (for 
example, the lowest 2%) found by using each 
scale/embedding. The embeddings were ranked us­
ing a scheme that combines equal weights based on 
the shortest of the longest chains, the total number 
of qubits, and the variance of the lengths of the 
chains, after which the highest-ranked embeddings 
were compared using their pi-elite scores. 

In addition it has been observed that there is 
a gauge transformation under which the problem 
and solution remain invariant, but the success rates 
vary strongly (due to imperfections in the annealing 
chip). Combining results from multiple calls to 
the solver with random gauges, as we did, could 
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provide a large improvement [39]. Software error 
correction, such as majority voting (which we em­
ployed) when the identified physical qubits do not 
agree, as well as calibration, could also lead to 
improved solutions [40]–[46]. We also note that it 
may be possible to use the quantum annealer to find 
good local minima, which could then be used to 
speed up deterministic or heuristic classical solvers 
[47], [48]. 

Although the core contributions of this paper are 
the formulation of the general multi-period opti­
mization strategy and discussion of the issues in­
volved in solving that problem using available quan­
tum annealing hardware, a brief comment regarding 
the time taken to calculate a solution is warranted. 
In general, benchmarking of the time to solution 
of a D-Wave quantum annealer against classical 
hardware is an area of ongoing and active research. 
For the small-scale problems solved in this study, 
the time to solution, on both classical hardware 
and using the quantum annealer, is comparable. The 
recent results by Denchev et al. [33], which show 
that for a specific class of problems the D-Wave 
machine has the potential to provide speedup over 
computations on classical hardware, are encourag­
ing. However, only after quantum speedup has been 
demonstrated for general problems, and specifically 
those requiring a high precision of couplings, is it 
expected that a quantum speedup for the optimal 
trading trajectory problem will be observed. 

III. CONCLUSIONS 

In this limited experiment we have demonstrated 
the potential of D-Wave’s quantum annealer to 
achieve high success rates when solving an impor­
tant and difficult multi-period portfolio optimization 
problem. We have also shown that it is possible 
to achieve a considerable improvement in success 
rates by fine-tuning the operation of the quantum 
annealer. 

Although the current size of problems that can be 
solved is small, technological improvements in fu­
ture generations of quantum annealers are expected 
to provide the ability to solve larger problems, and 
at higher success rates. 

Since larger problems are expected to be in­
tractable on classical computers, there is much 
interest in solving them efficiently using quantum 
hardware. 

APPENDIX A
 
DEFINITION OF SYMBOLS
 

The symbols used above are defined in Table VII. 
In addition, we use wt to denote the t-th column of 
the matrix w (and similarly for µ), and Σt to denote 
the covariance matrix (N × N ) which is the t-th 
page of the tensor Σ. For convenience of notation, 
the temporary transaction costs c are represented 
using the tensor Λ, where Λtnn = cntδnn (and 

'similarly for the permanent price impact c and 
Λ '). The difference in holdings between two time 
periods is defined as Δwt ≡ wt − wt−1. 
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