Publications

2018 

  1. Parthasarathy, A., & Rakheja, S. (2018). Reversal Time of Jump-Noise Dynamics for Large Nucleation. arXiv preprint. (arXiv: 1807.09922)

  2. Kani, N., Rakheja, S., & Naeemi, A. (2018). Analytic modeling of dipolar field requirements for robust coupling in a non-identical biaxial two-magnet system. Journal of Applied Physics, 124(2), 023901. (doi: 10.1063/1.5024821)

  3. Farzaneh, S. M., & Rakheja, S. (2018). Spin relaxation due to the D’yakonov-Perel’ mechanism in 2D semiconductors with an elliptic band structure. arXiv preprint.(arXiv: 1806.09488)

  4. Parthasarathy, A., & Rakheja, S. (2018). Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations. Journal of Applied Physics, 123(22), 223901. (doi: 10.1063/1.5025691)

  5. Li, K., & Rakheja, S. (2018). An analytic current-voltage model for quasi-ballistic III-nitride high electron mobility transistors. Journal of Applied Physics, 123(18), 184501. (doi: 10.1063/1.5025339)

  6. Patnaik, S., Rangarajan, N., Knechtel, J., Sinanoglu, O., & Rakheja, S. (2018, March). Advancing hardware security using polymorphic and stochastic spin-hall effect devices. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018 (pp. 97-102). IEEE. (doi: 10.23919/DATE.2018.8341986)

  7. Rakheja, S., Flattè, M. E., & Kent, A. D. (2018). Voltage-Controlled Topological-Spin Switch for Ultra-Low-Energy Computing–Performance Modeling and Benchmarking. arXiv preprint. (arXiv: 1802.07893)

  8. Li, K., & Rakheja, S. (2018). Analytic Modeling of Nonlinear Current Conduction in Access Regions of III-Nitride HEMTs. MRS Advances, 1-6. (doi: 10.1557/adv.2017.632)

2017

  1. Rakheja, S. (2017). Terahertz Band Communication Using Plasma Wave Propagation in Multilayer Graphene Heterostructures. IET Cyber-Physical Systems: Theory & Applications. (doi: 10.1049/iet-cps.2017.0073)

  2. Farzaneh, S. M., & Rakheja, S. (2017). Voltage tunable plasmon propagation in dual gated bilayer graphene. Journal of Applied Physics, 122(15), 153101. (doi: 10.1063/1.5007713)

  3. Rakheja, S., & Li, K. (2017, October). Graphene-based plasma wave interconnects for on-chip communication in the terahertz band. In Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S), 2017 Fifth Berkeley Symposium on (pp. 1-3). IEEE. (doi: 10.1109/E3S.2017.8246185)

  4. Sengupta, P., & Rakheja, S. (2017). Anisotropy-driven quantum capacitance in multi-layered black phosphorus. Applied Physics Letters, 111(16), 161902. (doi: 10.1063/1.4999380)

  5. Yarmoghaddam, E., & Rakheja, S. (2017). Dispersion characteristics of THz surface plasmons in nonlinear graphene-based parallel-plate waveguide with Kerr-type core dielectric. Journal of Applied Physics, 122(8), 083101. (doi: 10.1063/1.4991674)

  6. Rakheja, S., & Kani, N. (2017, July). Polymorphic spintronic logic gates for hardware security primitives—Device design and performance benchmarking. In 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (pp. 131-132). IEEE. (doi: 10.1109/NANOARCH.2017.8053726)

  7. Rangarajan, N., Parthasarathy, A., & Rakheja, S. (2017). A spin-based true random number generator exploiting the stochastic precessional switching of nanomagnets. Journal of Applied Physics, 121(22), 223905. (doi: 10.1063/1.4985702)

  8. Kani, N., Naeemi, A., & Rakheja, S. (2017). Non-monotonic probability of thermal reversal in thin-film biaxial nanomagnets with small energy barriers. AIP Advances, 7(5), 056006. (doi: 10.1063/1.4974017)

  9. Rakheja, S., & Kani, N. (2017). Spin pumping driven auto-oscillator for phase-encoded logic—device design and material requirements. AIP Advances, 7(5), 055905. (doi: 10.1063/1.4973390)

  10. Rangarajan, N., Parthasarthy, A., Kani, N., & Rakheja, S. (2017, April). Voltage-tunable stochastic computing with magnetic bits. In Magnetics Conference (INTERMAG), 2017 IEEE International (pp. 1-2). IEEE. (doi: 10.1109/INTMAG.2017.8008050)

  11. Rangarajan, N., Parthasarathy, A., Kani, N., & Rakheja, S. (2017). Energy-Efficient Computing with Probabilistic Magnetic Bits–Performance Modeling and Comparison against Probabilistic CMOS Logic. IEEE Transactions on Magnetics. (doi: 10.1109/TMAG.2017.2696041)

  12. Rakheja, S. (2017, March). Communication limits of on-chip graphene plasmonic interconnects. In Quality Electronic Design (ISQED), 2017 18th International Symposium on (pp. 45-51). IEEE. (doi: 10.1109/ISQED.2017.7918291)

  13. Pujari, R., & Rakheja, S. (2017, March). Performance evaluation of copper and graphene nanoribbons in 2-D NoC structures. In Quality Electronic Design (ISQED), 2017 18th International Symposium on (pp. 353-359). IEEE. (doi: 10.1109/ISQED.2017.7918341)

  14. Li, K., & Rakheja, S. (2017, February). Optimal III-nitride HEMTs–From Materials and Device Design to Compact model of the 2DEG Charge Density. In Proc. of SPIE Vol (Vol. 10104, pp. 1010418-1). (doi: 10.1117/12.2251582)

2016

  1. Rakheja, S. (2016). On the Gaussian Pulse Propagation Through Multilayer Graphene Plasmonic Waveguides—Impact of Electrostatic Screening and Frequency Dispersion on Group Velocity and Pulse Distortion. IEEE Transactions on Nanotechnology, 15(6), 936-946. (doi: 10.1109/TNANO.2016.2613820)

  2. Kani, N., Rakheja, S., & Naeemi, A. (2016). A probability-density function approach to capture the stochastic dynamics of the nanomagnet and impact on circuit performance. IEEE Transactions on Electron Devices, 63(10), 4119-4126. (doi: 10.1109/TED.2016.2594170)

  3. Ament, S., Rangarajan, N., & Rakheja, S. (2016). A practical guide to solving the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation for macrospin dynamics. arXiv preprint arXiv:1607.04596. (arXiv: 1607.04596)

  4. Rakheja, S., & Sengupta, P. (2016). The tuning of light-matter coupling and dichroism in graphene for enhanced absorption: Implications for graphene-based optical absorption devices. Journal of Physics D: Applied Physics, 49(11), 115106. (doi: 10.1088/0022-3727/49/11/115106)

  5. Rakheja, S., & Sengupta, P. (2016). Gate-Voltage Tunability of Plasmons in Single-Layer Graphene Structures—Analytical Description, Impact of Interface States, and Concepts for Terahertz Devices. IEEE Transactions on Nanotechnology, 15(1), 113-121. (doi: 10.1109/TNANO.2015.2507142)

2015

  1. Sengupta, P., Rakheja, S., & Bellotti, E. (2015). The optical response of mono-layer transition metal dichalcogenides in a Kerr-type non-linear dielectric environment. arXiv preprint arXiv:1512.06734. (arXiv: 1512.06734)

  2. Rakheja, S., & Antoniadis, D. (2015, December). Physics-based compact modeling of charge transport in nanoscale electronic devices. In Electron Devices Meeting (IEDM), 2015 IEEE International (pp. 28-6). IEEE. (doi: 10.1109/IEDM.2015.7409790)

  3. Rakheja, S. (2015, September). Engineering plasmons in graphene nanostructures in THz frequencies: Compact modeling and performance analysis for on-chip interconnects. In Simulation of Semiconductor Processes and Devices (SISPAD), 2015 International Conference on (pp. 165-168). IEEE. (doi: 10.1109/SISPAD.2015.7292285)

  4. Rakheja, S., Lundstrom, M. S., & Antoniadis, D. A. (2015). An improved virtual-source-based transport model for quasi-ballistic transistors—Part II: Experimental verification. IEEE Transactions on Electron Devices, 62(9), 2794-2801. (doi: 10.1109/TED.2015.2457872)

  5. Rakheja, S., Lundstrom, M. S., & Antoniadis, D. A. (2015). An improved virtual-source-based transport model for quasi-ballistic transistors—Part I: Capturing effects of carrier degeneracy, drain-bias dependence of gate capacitance, and nonlinear channel-access resistance. IEEE Transactions on Electron Devices, 62(9), 2786-2793. (doi: 10.1109/TED.2015.2457781)

  6. Yu, L., El-Damak, D., Ha, S., Rakheja, S., Ling, X., Kong, J., ... & Palacios, T. (2015, June). MoS 2 FET fabrication and modeling for large-scale flexible electronics. In VLSI Technology (VLSI Technology), 2015 Symposium on (pp. T144-T145). IEEE. (doi: 10.1109/VLSIT.2015.7223655)

  7. Rakheja, S., & Sengupta, P. (2015, June). Tunability of optical absorption in a heterostructure with an embedded graphene sliver. In Device Research Conference (DRC), 2015 73rd Annual (pp. 143-144). IEEE. (doi: 0.1109/DRC.2015.7175596)

  8. Rakheja, S., Ceyhan, A., & Naeemi, A. (2015). 15 Interconnect considerations. CMOS and Beyond: Logic Switches for Terascale Integrated Circuits, 381. (doi: 10.1017/CBO9781107337886.021)

2014

  1. Rakheja, S., Lundstrom, M., & Antoniadis, D. (2014, December). A physics-based compact model for FETs from diffusive to ballistic carrier transport regimes. In Electron Devices Meeting (IEDM), 2014 IEEE International (pp. 35-1). IEEE. (doi: 10.1109/IEDM.2014.7047172)

  2. Rakheja, S., Wu, Y., Wang, H., Palacios, T., Avouris, P., & Antoniadis, D. A. (2014). An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors. IEEE Transactions on Nanotechnology, 13(5), 1005-1013. (doi: 10.1109/TNANO.2014.2344437)

  3. Rakheja, S., & Sengupta, P. (2014, June). Graphene nanoribbon plasmonic waveguides: Fundamental limits and device implications. In Device Research Conference (DRC), 2014 72nd Annual (pp. 105-106). IEEE. (doi: 10.1109/DRC.2014.6872319)

  4. Naeemi, A., Ceyhan, A., Kumar, V., Pan, C., Iraei, R. M., & Rakheja, S. (2014, June). BEOL scaling limits and next generation technology prospects. In Proceedings of the 51st Annual Design Automation Conference (pp. 1-6). ACM. (doi: 10.1145/2593069.2596672)

  5. Bonhomme, P., Manipatruni, S., Iraei, R. M., Rakheja, S., Chang, S. C., Nikonov, D. E., ... & Naeemi, A. (2014). Circuit simulation of magnetization dynamics and spin transport. IEEE Transactions on Electron Devices, 61(5), 1553-1560. (doi: 10.1109/TED.2014.2305987)

2013

  1. Rakheja, S., Wang, H., Palacios, T., Meric, I., Shepard, K., & Antoniadis, D. (2013, December). A unified charge-current compact model for ambipolar operation in quasi-ballistic graphene transistors: Experimental verification and circuit-analysis demonstration. In Electron Devices Meeting (IEDM), 2013 IEEE International (pp. 5-5). IEEE. (doi: 10.1109/IEDM.2013.6724568)

  2. Rakheja, S., Chang, S. C., & Naeemi, A. (2013). Impact of dimensional scaling and size effects on spin transport in copper and aluminum interconnects. IEEE Transactions on Electron Devices, 60(11), 3913-3919. (doi: 10.1109/TED.2013.2282615)

  3. Rakheja, S., & Naeemi, A. (2013). Roles of doping, temperature, and electric field on spin transport through semiconducting channels in spin valves. IEEE Transactions on Nanotechnology, 12(5), 796-805. (doi: 10.1109/TNANO.2013.2274494)

  4. Kumar, V., Rakheja, S., & Naeemi, A. (2013, August). Review of multi-layer graphene nanoribbons for on-chip interconnect applications. In Electromagnetic Compatibility (EMC), 2013 IEEE International Symposium on (pp. 528-533). IEEE. (doi: 10.1109/ISEMC.2013.6670470)

  5. Rakheja, S., Kumar, V., & Naeemi, A. (2013). Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proceedings of the IEEE, 101(7), 1740-1765. (doi: 10.1109/JPROC.2013.2260235)

  6. Rakheja, S., Kumar, V., & Naeemi, A. (2013, June). Performance modeling for interconnects for conventional and emerging switches. In System Level Interconnect Prediction (SLIP), 2013 ACM/IEEE International Workshop on (pp. 1-9). IEEE. (doi: 10.1109/SLIP.2013.6681683)

  7. Rakheja, S., & Naeemi, A. (2013). Communicating Novel Computational State Variables: Post-CMOS Logic. IEEE Nanotechnology Magazine, 7(1), 15-23. (doi: 10.1109/MNANO.2012.2237314)

2012

  1. Kumar, V., Rakheja, S., & Naeemi, A. (2012). Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE transactions on electron devices, 59(10), 2753-2761. (doi: 10.1109/TED.2012.2208753)

  2. Rakheja, S., & Naeemi, A. (2012, August). Compact modeling of spin-transport parameters in semiconducting channels in non-local spin-torque devices. In Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on (pp. 1-6). IEEE. (doi: 10.1109/NANO.2012.6321912)

  3. Rakheja, S., & Kumar, V. (2012, March). Comparison of electrical, optical and plasmonic on-chip interconnects based on delay and energy considerations. In Quality Electronic Design (ISQED), 2012 13th International Symposium on (pp. 732-739). IEEE. (doi: 10.1109/ISQED.2012.6187573)

  4. Rakheja, S., & Naeemi, A. (2012, March). Interconnect analysis in spin-torque devices: Performance modeling, sptimal repeater insertion, and circuit-size limits. In Quality Electronic Design (ISQED), 2012 13th International Symposium on (pp. 283-290). IEEE. (doi: 10.1109/ISQED.2012.6187507)

  5. Rakheja, S., & Naeemi, A. (2012). Transport of Novel State Variables. In Graphene Nanoelectronics (pp. 113-136). Springer, Boston, MA. (doi: 10.1007/978-1-4614-0548-1_5)

  6. Rakheja, S., & Naeemi, A. (2012). Graphene nanoribbon spin interconnects for nonlocal spin-torque circuits: Comparison of performance and energy per bit with CMOS interconnects. IEEE Transactions on Electron Devices, 59(1), 51-59. (doi: 10.1109/TED.2011.21711865)

2011

  1. Rakheja, S., & Naeemi, A. (2011, August). On physical limits and challenges of interconnects for spin devices. In Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on (pp. 1389-1394). IEEE. (doi: 10.1109/NANO.2011.6144321)

  2. Rakheja, S., & Naeemi, A. (2011). Modeling interconnects for post-CMOS devices and comparison with copper interconnects. IEEE Transactions on Electron Devices, 58(5), 1319-1328. (doi: 10.1109/TED.2011.2109004)

  3. Kumar, V., Rakheja, S., & Naeemi, A. (2011, May). Modeling and optimization for multi-layer graphene nanoribbon conductors. In Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011 IEEE International (pp. 1-3). IEEE. (doi: 10.1109/IITC.2011.5940340)

  4. Rakheja, S., & Naeemi, A. (2011, May). Interconnect performance and energy-per-bit for post-CMOS logic circuits: Modeling, analysis, and comparison with CMOS logic. In Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011 IEEE International (pp. 1-3). IEEE.  (doi: 10.1109/IITC.2011.5940267)

  5. Rakheja, S., & Naeemi, A. (2011, March). Interconnection aspects of spin torque devices: Delay, energy-per-bit, and circuit size modeling. In Quality Electronic Design (ISQED), 2011 12th International Symposium on (pp. 1-9). IEEE.  (doi: 10.1109/ISQED.2011.5770811)

2010

  1. Rakheja, S., & Naeemi, A. (2010). Interconnects for novel state variables: Performance modeling and device and circuit implications. IEEE Transactions on Electron Devices, 57(10), 2711-2718. (doi: 10.1109/TED.2010.2062186)

  2. Rakheja, S., Naeemi, A., & Meindl, J. D. (2010, June). Physical limitations on delay and energy dissipation of interconnects for post-CMOS devices. In Interconnect Technology Conference (IITC), 2010 International (pp. 1-3). IEEE. (doi: 10.1109/IITC.2010.5510448)