EL 6653 Power System Stability
Francisco de Leon

Thursdays from 6:00 to 8:40 PM
September to December 2010

Official Program

- EL 6653 Power System Stability

Description:
Introduction to the study of power system dynamics: mathematical modeling of prime movers, power plants, synchronous machines, field exciters, transmission lines, relays, loads and stabilizers
Program

- Introduction to Power System Stability
 - Definitions
 - Importance
 - Types of instabilities
- Synchronous Machine
 - Physical description
 - Mathematical description
 - Parameters
- System Modeling
 - Transmission systems
 - Loads
 - Excitation systems
 - Primer movers

Program (Cont’d)

- System Stability
 - Steady state stability
 - Small-signal stability
 - Transient stability
 - Voltage stability
 - Subsynchronous oscillations
 - Mid-term and long-term stability
 - Improving stability

Technical Objectives

- At the end of the course the students should be able to assess the stability behavior of a large interconnected power system
- Gain understanding on the dynamic performance of a power system
- Propose remedial actions when a problem is encountered

Pre-requisites

- Graduate status
- **EL 5613 - Introduction to Electric Power Systems**
 - Basic concepts: single and three-phase circuits, power triangle; transmission lines parameters: resistance, inductance, capacitance, transformers, and generators; lumped-component pi-equivalent circuit representation; per-unit normalization; symmetrical phase components; load-flow program.
- **EE 3064 - Feedback Control**
 - Introduction to analysis and design of linear feedback control systems. Modeling of physical systems, performance specifications, sensitivity and steady-state error, Routh-Hurwitz and Nyquist Stability tests. The use of Root Locus and frequency-response techniques to analyze system performance, and design compensation (lead/lag and PID controllers) to meet performance specifications.
Pre-requisites

- **Power system steady state**
 - Modelling of components
 - Load-flow (power flow)

- **Dynamic systems**

\[\frac{dx}{dt} = Ax + Bu \]
\[y = Cx + Du \]

- **Numerical methods**
 - Numerical integration
 - Solution of systems of linear equations \(Ax = b \)
 - Solution of systems of nonlinear equations \(g(x) = 0 \)

- Can you solve an electric circuit in steady state?
- What do you do if the loads are not characterized as impedances, but as constant loads \(S = P + jQ \)?

Calendar

- **First Session:** September 9, 2010
- **Classes**
 - 9/9, 9/16, 9/23, 9/30
 - 10/7, 10/14, 10/21
- **Mid-term:** 10/28
- **Classes**
 - 11/4, 11/11, 11/18, 11/23 (Tuesday)
 - 12/2, 12/9
- **Final/Projects:** December 16, 2010
Course Evaluation and Details

Evaluation
- Weekly assignments: 10%
- Mid-term: 30%
- Project/Final: 60%

Consulting
- Thursdays 5-6 in Room LS 255 (before class)
- Phone: (718) 260 3961