Abstract—A comprehensive literature review shows that transformer based solutions are superior for the mitigation of inrush currents than external (to the transformer) solutions. The use of air gaps and low-permeability (iron) materials are known techniques for this propose. This paper investigates the effectiveness of these approaches for reducing inrush and phase-hop currents. Studies are carried out on toroidal transformers, due to their broad application in power electronics devices. Contrary to common belief, this paper demonstrates that air gaps do not reduce the inrush currents when a transformer is fully demagnetized. However, inrush currents can be mitigated by the use of low-permeability iron materials. It is also demonstrated that air-gaps significantly reduce inrush currents when transformers have residual flux, e.g. for phase-hop conditions. Analytical expressions are derived to compute the mitigation factor for a specific gap length. The results and formulae presented in this paper are verified with laboratory experiments, transient simulations with validated circuit models, and 2D finite element simulations.

Index Terms— Air-gap, inrush currents, low-permeability materials, phase-hop current, toroidal transformers, UPS.

I. INTRODUCTION

Inrush currents are usually observed when a transformer core is driven into very deep saturation at the time of energization. The magnitude of inrush currents could be 10 to 30 times larger than the rated current depending on the following parameters: switching angle, magnitude and polarity of the voltage, residual flux in the core, saturation inductance of the energized winding, winding resistance, impedance of the source, geometry of the transformer core, and the core material [1], [2].

Transformers can draw more destructive currents compared to inrush currents when the cores have residual flux, or when a phenomenon called “phase-hop” occurs [3]. The magnitude of phase-hop currents might be twice as large as the zero-crossing inrush currents. Phase-hop is not a commonly used term in the literature. However, it needs to be known by power engineers, since a wide range of power electronic devices may create operating conditions which lead a transformer to draw phase-hop currents. Possible reasons for the occurrence phase-hop current are the switching of Uninterruptible Power Supply (UPS) systems, voltage interruptions, voltage sags, and notching [3].

Phase-hop and inrush currents are undesirable transient phenomena in power systems. These abnormal events may result in significant voltage drops, which might cause false tripping of protections or produce mechanical stresses on power system components [4]. Thus, power quality, reliability, and stability of the system can be affected.

Several solutions (external to the transformer) have been proposed in the past to mitigate inrush currents; these include: pre-insertion resistors [1], NTC (Negative Temperature Coefficient) thermistors [5], controlled switching [6]-[9], transformer core demagnetization [10], sequential phase energization [11], [12], voltage sag compensators [13], [14], and the application of series dc reactors [15]-[18].

Pre-insertion resistors, controlled switching, and core demagnetization need additional control units and detection circuits. Therefore, these circuits reduce the reliability of the system, and increase the complexity and the final cost. Furthermore, they are not applicable for mitigating the phase-hop currents, because of the unpredictability of their occurrence and the lack of time to react even if detected.

Transformer-based solutions, such as reduced flux density designs, air-gaps, use of low permeability (unannealed) iron core, and virtual air-gaps are more robust and effective alternatives [3]. The infallible solution is to design transformers at sufficiently low flux densities so that they never saturate. However, transformers become larger, more expensive, and in some applications there may not be sufficient space to accommodate bulkier transformers. The virtual air-gap technique uses external dc windings on the core [19]. The iron core goes into a local saturation when the dc current is injected. Computer simulation studies in [20] show that the dc excitation creates the same effect as air-gap in the iron core.

It is believed that the use of unannealed cores gives similar performance to the air-gaps with additional advantages [21]. In this paper, the effect of air-gaps and low-permeability iron materials is investigated and the advantages and disadvantages are discussed. Numerous laboratory experiments accompanied with computer simulations indicate that air-gaps are not always capable to mitigate inrush currents especially when a transformer is fully demagnetized.

For the first time, solutions to mitigate the phase-hop currents are presented. It is shown via laboratory measurements that for the inrush cases with initial residual flux and phase-hop, the current amplitude reduces appreciably even with small air-gaps. It is also demonstrated that special designs with low-permeability iron materials could significantly reduce inrush and phase-hop currents. The principal advantage of these methods is their simplicity. These methods do not require any control unit or monitoring device to detect the phase-hop. Hence, they have perennial functionality.

The phase-hop current is produced by two consecutive semi-
cycles of voltage (see Fig. 1(a)). The first semi-cycle builds magnetic flux in the core, which is trapped as residual flux. This causes a higher value of inrush currents when the second semi-cycle of the voltage is applied to the transformer terminals. The air-gap drains the residual flux and consequently reduces the phase-hop current. Unannealed cores have reduced residual flux when compared to annealed cores. Less residual flux leads to diminished phase-hop currents.

The effectivity of the methods is demonstrated with validated time domain (transient) models using the EMTP-RV and also with Finite Elements (FEM) simulations using ANSYS Maxwell in 2D. Transient simulations are performed using the reversible model explained in Section IV. Laboratory experiments are performed on several transformers to corroborate the simulation results and the proposed solutions.

II. THE DESCRIPTION OF INRUSH AND PHASE-HOP CURRENTS

A. Inrush Currents

Inrush currents are transients that occur when transformers are connected to the source. They happen because the magnetic flux is driven by the voltage and the transformer iron core saturates. The peak of this phenomenon is a function of the time of switching, residual flux in the core, resistance and inductance of the system. The worst case happens when the transformer is in open circuit, residual flux is at maximum (see $\lambda r$ in Fig. 2), and the switching happens at voltage zero crossing with a polarity that increases the flux in the core.

After the transformer is disconnected from the source, the residual flux depends on the operating point before disconnection. As the result, at the moment of reconnection, the inrush currents may occur at different levels depending on the residual flux. Therefore, in this paper, inrush current experiments are performed on demagnetized transformers to obtain consistent measurements and to be able to validate the transient simulations. A zero-crossing sinusoidal voltage is applied to the transformer on the primary side when the secondary side is open circuit. The primary voltage is illustrated in Fig. 1(a). After a half cycle, the magnitude of the flux in the core is (theoretically) doubled when compared to the maximum flux of the steady state condition [4]. This high flux drives the core into saturation and inrush currents are drawn from the source.

B. Phase-hop Currents

Phase-hop currents occur when the transformer goes into super-saturation (more than double of rated flux). Super-saturation is observed when the transformer is energized with a zero-crossing voltage and simultaneously the core has maximum residual flux with the same polarity [3]. This could be explained from the transformer terminal voltage shown in Fig. 1(a). The first half cycle of voltage impresses a high level flux in the magnetic core. Then, the voltage is zero for a half cycle. Therefore, flux remains in the core at the moment the second voltage positive semi-cycle is applied. Hence, the flux magnitude becomes (theoretically) larger than double. This larger flux drives the core into much deeper saturation when compared with the inrush current condition, and thus, a larger current is drawn from the source (see the Fig. 1(b)).

The phase-hop condition is similar in nature to inrush currents with residual flux. However, there are some important differences when comparing the residual flux of phase-hop and inrush conditions. The magnitude of inrush currents depends on the initial conditions, before the zero voltage switching. If the transformer is disconnected from the circuit, then the operating point is on the $\lambda$ axis at the point of zero current on the magnetizing characteristic; $\lambda_0$ in Fig. 2. Therefore, the worst case scenario of inrush currents happens with the initial flux of $\lambda_0$ and at the moment of zero voltage switching, with a polarity of voltage which builds up the flux (in this case positive). On the other hand, phase-hop is a transient that happens when the transformer is magnetized higher than $\lambda_0$. For example, in the case of a fault at the primary terminals or when voltage sags happen, the terminal current will not jump to zero and will keep circulating in the primary winding. Therefore, magnetic flux will be trapped in the core for a period of time that depends on the time constant (total resistance and inductance of the system). The operating point in some cases may stay on the saturated section of the magnetizing curve; for example $\lambda_s$ in Fig. 2. In this condition, the worst case scenario also happens at the moment of zero voltage switching with the polarity of...
voltage which builds up flux. Therefore, phase-hop and the worst case of inrush current (with residual flux) are similar in nature, but the phase-hop condition yields higher currents since the core is at a higher initial flux.

To observe the phase-hop current, two consecutive semi-cycles of voltage (see Fig. 1(a)) is applied to the transformer on the primary side when the secondary side is open circuited and the transformer is demagnetized. The first half cycle of voltage impresses a high level flux in the magnetic core. The worst case of phase-hop occurs when there is a 0.5 cycle delay between two consecutive voltage semi-cycles of the same polarity [3]. If there is longer delay than a 0.5 cycle, the residual flux decreases. Therefore, all phase-hop experiments and simulations in this paper are performed based on a half cycle delay to assure the worst possible case.

Several operating conditions of electronic circuits create phase-hop currents. Phase-hop can happen by notching, voltage sags, mal-operation of UPS systems, and voltage interruptions in the network. These phenomena can be classified into two main categories:

- Phase-hop caused by a parallel switching action.
- Phase-hop caused by a series switching action.

1) Series Switching:

As discussed in [3], the mal-operation of off-line UPS systems may cause phase-hop currents. This phenomenon happens because of the series disconnection of the UPS system at the terminal of the transformers (see Fig. 3). When the main source is not available, the UPS is switched on to feed the load. The time delay between disconnection of the mains and connection of the UPS may create a phase-hop phenomenon. Therefore, this operation is modeled by series switching.

A interruption is defined as a complete loss of voltage for a specific period of time [22]. This time period could be momentary (from 0.5 to 180 cycles), temporary (from 180 to 3600 cycles), or sustained (more than 3600 cycles) in a 60 Hz system. Possible reasons for interruption are the opening of a line as the result of power system faults, equipment failures, and control systems malfunctions [23]. They all can be represented with a series switching as illustrated in Fig. 3. The only difference between interruption and mal-function of UPS scenarios is that in the interruption the utility power is recovered instead of UPS reconnection.

2) Parallel Switching:

Voltage sags are defined as a percentage magnitude value in terms of regular voltage level [23]. They are often the result of faults, typically single line-to-ground fault (SLG), in power systems. Therefore, this phenomenon could be simulated with the switching of a parallel resistance with the terminals of the transformer. This resistance represents the fault impedance (see Fig. 4).

![Fig. 4. Phase-hop caused by a short circuit. (a) Normal operating condition. The utility power is on; (b) short circuit; (c) short circuit is cleared and power is back.](image)

![Fig. 5. The toroidal transformer under study (T1).](image)

### TABLE I

<table>
<thead>
<tr>
<th>Core Dimensions (mm)</th>
<th>Winding Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Diameter</td>
<td>Outer Diameter</td>
</tr>
<tr>
<td>85.7</td>
<td>149.2</td>
</tr>
</tbody>
</table>

Notching is a disturbance of opposite polarity to the voltage waveform which is frequently caused by mal-functions of the electronic switches or power conditioners [24]. Voltage notching is primarily caused by three-phase rectifiers or converters. Voltage notches happen when the current commutates from one phase to another. Subsequently, a momentary short circuit between two phases will occur during this period [23]. The worst case is when the fault resistance is negligible. Also, it should be noted that this phenomenon last at most for half a cycle. Therefore, notching is a particular situation of the voltage sag case when \( R_f \) is equal zero and can be represented with parallel switching as shown in Fig. 4.

### III. EFFECT OF AIR-GAP AND LOW-PERMEABILITY MATERIAL ON THE ELECTROMAGNETIC BEHAVIOR OF TRANSFORMERS

In this paper several toroidal transformers are studied for the mitigation of inrush and phase-hop currents. All transformers are geometrically similar, single-phase, same voltage (120 V), and have 1 kVA rated power. The core dimensions and windings characteristics are shown in Table I. The first prototype (T1) shown in Fig. 5 does not have an air-gap and is wound on an annealed iron core. Prototypes T2 to T7 are wound on annealed iron cores and have 2 mil, 4 mil, 8 mil, 16 mil, 32 mil, and 64 mil total air-gaps (=2g), respectively. The last transformer (T8) is manufactured on an unannealed core of the same material (M4), thus having a different magnetic permeability than the rest since the manufacturing stresses have not been relieved.
Toroidal transformers have very sharp hysteresis curves when compared to standard transformers because they do not have air-gaps in the core. The sharp hysteresis curve results in large residual flux because the magnetizing curve crosses at a higher value of flux when the current is zero. The use of air-gaps and low-permeability materials change this characteristic as demonstrated in the following subsections.

A. Air-gap Effect on the Magnetizing Characteristics of Transformers

Open-circuit tests are performed on transformers with different air-gap lengths according to the IEEE Std. C57.12.91-1995 [25]. Hence, the open circuit tests are performed with 120 V applied to the primary terminal. The primary current and secondary voltage are measured. The linkage flux is derived from the integration of the secondary voltage [26]. As a result, the hysteresis curves for uncut and all six gapped transformers are shown in Fig. 6. The measured residual fluxes (flux corresponding to zero terminal current) for each transformer are presented in Table II (see Fig. 6 as well). Measurements demonstrate dramatic changes in the magnetic behavior of the transformers with different air-gap lengths. One can observe that the flux follows different magnetizing paths depending on the length of the air-gap. Most importantly, the residual flux reduces noticeably. Therefore, for a transformer with an air-gap, when the terminal current tends to zero at the moment of disconnection from the source, the flux also tends to zero, and the core will be demagnetized.

Theoretically, a larger gap results in a lower slope (see Fig. 6). The reason can be explained from the reluctance circuit of the toroidal transformer shown in Fig. 7 and a piecewise linear approximation of the hysteresis curve (see Fig. 8).

According to the principle of duality between magnetic and equivalent electrical circuits, the air-gap can be represented with a parallel linear inductance with the non-linear magnetizing branch as shown in Fig. 7 [27]. The parallel connection of the linear inductance (Lg), changes the slope of the magnetizing curve (L) that is shown in Fig. 8. According to this figure, the following expressions can be written for λ=0:

\[
0 = L_m (I_c) + \lambda_{r1} \Rightarrow I_c = \lambda_{r1} / L_m
\]

\[
0 = L_m (I_c) + \lambda_{r2} \Rightarrow I_c = \lambda_{r2} / L_m
\]

where \( I_c \) is the coercive current [28]. Therefore we get:

\[
\lambda_{r2} = \frac{L_m (I_c)}{L_m (I_c)} \lambda_{r1}
\]

The magnetizing inductance of the transformer with air-gap \((L_{m2})\) is smaller than the magnetizing inductance of the uncut transformer \((L_{m1})\). Therefore, the air-gap decreases the residual flux from \(\lambda_{r1}\) to \(\lambda_{r2}\) according to (3). Note from Fig. 7 that, \(L_{m2} \parallel L_s\), hence substituting \(L_{m2}\) in (3) yields:

\[
\lambda_{r2} = \frac{L_s}{L_m (I_c) + L_s} \lambda_{r1}
\]

Neglecting the fringing effects and assuming a uniform magnetic field (see Fig. 9):

![Fig. 6. Hysteresis characteristic of uncut and all gapped transformers obtained by measurements.](image)

![Fig. 7. Dimensions and the magnetic equivalent circuit of the core with air-gap. Note that g is half of the total air-gap. To create air-gaps in the iron core, transformer manufacturers diametrically cut the core into two halves. Then the surfaces are ground, burned, and kept apart with Mylar or epoxy fiberglass laminates glued and banded to keep the separation distance well controlled. Finally the transformer is wound as usual.)](image)

![Fig. 8. Hysteresis characteristic (L) of transformer iron core represented by two constant slopes; the effect of the gap (Lg) on the hysteresis curve is shown.](image)

<table>
<thead>
<tr>
<th>Transformer</th>
<th>( \lambda_{residual} ) [mWb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncut (T1)</td>
<td>541</td>
</tr>
<tr>
<td>2 mil (T2)</td>
<td>57</td>
</tr>
<tr>
<td>4 mil (T3)</td>
<td>51</td>
</tr>
<tr>
<td>8 mil (T4)</td>
<td>45</td>
</tr>
<tr>
<td>16 mil (T5)</td>
<td>28</td>
</tr>
<tr>
<td>32 mil (T6)</td>
<td>19</td>
</tr>
<tr>
<td>64 mil (T7)</td>
<td>17</td>
</tr>
</tbody>
</table>
The reluctance of one of air-gaps is:

$$R_{g1} = \frac{g}{\mu_0 (OD-ID) HT}$$  \hspace{1cm} (5)

$$R_{g2} = \frac{2g}{\mu_0 (OD-ID) HT}$$  \hspace{1cm} (6)

$$L_{g1} = L_{g2} = \frac{N^2 \mu_0 (OD-ID) HT}{4g}$$  \hspace{1cm} (7)

where $L_{g1}$ and $L_{g2}$ are the equivalent magnetizing inductances of the air-gap. $N$ is the number of turns of the energized winding, $g$ is half of the total air gap (i.e. for the 2 mil transformer, $g=1$ mil), and $R_{g1}$ is the reluctance of one of air-gaps. Parameters $HT$, $ID$, $OD$, and $l_m$ stand for height, inner diameter, outer diameter, and the mean length of the flux path in the core, respectively (see Fig. 7). Also, $\mu_0$ is the permeability of vacuum $4\pi10^{-7}$ H/m, and $\mu_r$ is the relative permeability of the iron core measured as $4000$ H/m at the operating voltage ($120$ V). The inductance of the total air-gap is:

$$L_s = L_{g1} \parallel L_{g2} = \frac{L_{g1}}{2} = \frac{N^2 \mu_0 (OD-ID) HT}{4g}$$  \hspace{1cm} (8)

Therefore we have:

$$\lambda_{s2} = \frac{N^2 \mu_0 (OD-ID) HT}{4gL_{m1} + N^2 \mu_0 (OD-ID) HT} \lambda_{s1}$$  \hspace{1cm} (9)

where $L_{m1}$ is calculated from the open circuit test on the uncut core transformer [29] as:

$$L_{m1} = \frac{(V_{OC} - R_s I_{OC})^2}{2\pi f Q_{OC}}$$  \hspace{1cm} (10)

where, $V_{OC}$, $I_{OC}$ are the rms values of open circuit voltage and current, $Q_{OC}$ is the open circuit reactive power and $R_s$ is the resistance of transformer winding. The following formula is used to calculate the maximum inrush current [30]:

$$I_{max} = \frac{V_m}{\sqrt{\omega L_s}} \left(1 + \cos \theta + \frac{\lambda_{s1}}{\lambda_{s2}} \right)$$  \hspace{1cm} (11)

where, $V_m$ is the peak of the voltage, $\omega$ is the angular frequency, $L_s$ is the deep saturation inductance, $R$ is the total resistance ($R=R_s+R_{oc}$), $\theta$ is the switching angle, $R_{oc}$ is the short circuit resistance of the system, $\lambda_{s}$ is the residual flux, $\lambda_{h}$ is the flux at saturation instant, $\lambda_{n}$ is the nominal magnetic flux ($V_{m}/\omega$). Assuming that the hysteresis loss (area of the hysteresis loop) remains the same for the cut and uncut cores and that variations of the saturation flux are negligible ($\lambda_{s1} = \lambda_{s2}$), for the same switching conditions the relative mitigation of phase-hop current is calculated by combining (9), (10), and (11) yielding:

$$\text{Mitigation}(\%) = \frac{100(I_{max1} - I_{max2})}{I_{max1}}$$

$$= \frac{400g(V_{OC} - R_s I_{OC})^2 \lambda_{s2}}{[2\pi f Q_{OC} N^2 \mu_0 (OD-ID) HT + 4g(V_{OC} - R_s I_{OC})^2][2\lambda_n + \lambda_{s1} - \lambda_{s2}]$$  \hspace{1cm} (12)

Note that, the method of [30] includes approximations to derive the simple equation (12) for the calculation of the inrush currents. Our experience shows that this is the most practical formula for the purpose of this study. It is noteworthy to mention that (12) may fail to predict inrush currents especially for transformers with sharp hysteresis curves. We have proposed new analytical methods to compute the maximum inrush and phase-hop currents [31]. This new procedure is based on several formulas and calculation steps, and thus not applicable to the study presented in this paper. Nevertheless, laboratory measurements and simulation studies in this paper show that (12) works accurately enough for the purposes of this paper. The validation of (12) is presented in Section V.

The use of large air-gaps is not practical because the magnetizing current increases and becomes comparable to the nominal current of the transformer. The magnetizing current of the transformers with the air-gap ($l_{ms}$) could be estimated with the following equations:

$$R_{core} = \frac{\pi (OD + ID)}{\mu_0 \mu_r (OD - ID) HT}$$  \hspace{1cm} (13)

$$L_{tot} = \frac{N^2}{R_{gap} + R_{core}}$$  \hspace{1cm} (14)

$$I_{rms} = \frac{V_{rms}}{L_{tot} \omega}$$  \hspace{1cm} (15)

where $L_{tot}$ is the total inductance value of the transformer, $\omega$ is the fundamental frequency in rad/s, and $V_{rms}$ is the $rms$ voltage of the primary. A comprehensive study on the effect of the gap length and the proper selection of this parameter is carried out below.

Fig. 9. Magnetic flux lines for a 64 mil gap transformer obtained from 2D FEM simulations.

B. Unannealed Core Effect on the Magnetizing Characteristics of the Transformers

During core manufacturing, the last step is to anneal the core to fix the molecular structure and reduce the power loss [32]. If the last step is not applied to the core, the iron core has lower permeability and is called an unannealed core. The difference between the magnetizing characteristic of the annealed and unannealed cores is shown in Fig. 10. The unannealed core presents two knees and the annealed core only one.

The unannealed iron core transformer (T8) starts saturating (first knee) at a lower flux density 0.95 T (0.29 Wb) when compared to an annealed iron core transformer (T1) that saturates at 1.77 T (0.54 Wb). The residual fluxes of the two cores are different as well. However, at high saturation, beyond the second knee of the unannealed core, after 1.9 T (0.6 Wb) the two cores behave in the same way. The different magnetic
characteristics result in different magnetizing currents and losses in steady state. T8 has a magnetizing current of 1.7 A and 15 W loss, while T1 draws only 0.07 A with 6 W loss. Because of the special behavior of the magnetizing curve of the unannealed iron cores (lower residual flux), transformers built with them draw substantially reduced inrush currents. This can be advantageous if the design calls for a reduced flux density; see the experimental results below.

To identify other parameters of the model, standard short circuit and open-circuit tests are performed as per IEEE Std. C57.12.91-1995 [25]. The total series resistance \( R_1 + R_2 \) of transformers and the leakage inductances \( L_s \) are obtained from the impedance measurements. The measured ac resistance is broken into primary and secondary sides proportionally to the dc resistances of the windings [26].

The open-circuit test is performed to obtain the transformer magnetizing branch parameters consisting of magnetizing resistances \( R_1 \) and \( R_2 \) and non-linear inductances \( L_1 \) and \( L_2 \). The non-linear inductors correspond to the magnetic behavior of the core. Furthermore, the deep saturation characteristic of the transformer is very important to get precise results during transients drawing very large currents from both windings. Hence, saturation inductance (frequently called the air-core inductance) tests are performed for the transformers according to the guidelines presented in [33]. The geometry of the windings and the number of turns are the same for all transformers, thus, the measured saturation inductances of all transformers are almost identical. In this paper, the small differences between the saturation inductances in different transformers are neglected. The measured value of the saturation inductance is 274 \( \mu \)H. All transformer parameters are presented in Table III. A piece-wise linear approximation of the magnetic characteristics with two slopes is used in the transient simulations (see Table IV).

![Fig. 10. Annealed (T1) and unannealed (T8) cores hysteresis characteristics, \( \lambda = 0.6 \) Wb corresponds to \( B = 1.9 \) T, \( \lambda = 0.54 \) Wb corresponds to \( B = 1.71 \) T, and \( \lambda = 0.29 \) Wb corresponds to \( B = 0.91 \) T.](image)

**IV. TRANSFORMER MODELING AND PARAMETER IDENTIFICATION**

For accurate transient simulations, the reversible \( \pi \) model is selected instead of the traditional \( T \) model [26]. Although both \( T \) and the reversible \( \pi \) models give the same result during steady state, the reversible \( \pi \) model gives more accurate results in transients involving deep saturation. The reversible model is more accurate and physically meaningful when compared to \( T \) model to represent the single-phase transformers. In addition, it is capable to accurately represent transients from both primary and secondary windings.

The reversible \( \pi \) model can be directly used to represent the unannealed transformer (T8) without air-gap. The only difference between the annealed (T1) and unannealed (T8) transformers in terms of modeling is their different magnetizing characteristics which should be measured from the open circuit tests and modeled in time domain [25]. However, time domain models for air-gap transformers require modifications.

According to principle of duality (see Fig. 7), for a gap transformer, a linear inductance shall be added in parallel to the magnetizing inductance. Since two non-linear magnetizing branches exist in the reversible \( \pi \) model, the air-gap inductance \( L_g \) is also divided into two linear parts \( L_{g1} \) and \( L_{g2} \) (see Fig. 11). The value of these inductances can be calculated based on (7). The computed values of \( L_{g1} \) and \( L_{g2} \) are presented in Table III for all transformers.

![Fig. 11. Reversible \( \pi \) model of transformer including the representation of the air-gap.](image)

**TABLE III**

<table>
<thead>
<tr>
<th>Transformer</th>
<th>( R_1 ) [m( \Omega )]</th>
<th>( R_2 ) [m( \Omega )]</th>
<th>( L_s ) [( \mu )H]</th>
<th>( R_1 ) [( \Omega )]</th>
<th>( R_2 ) [( \Omega )]</th>
<th>( L_{g1} = L_{g2} ) [( \mu )H]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncut (T1)</td>
<td>257</td>
<td>271</td>
<td>305</td>
<td>3400</td>
<td>3400</td>
<td>-</td>
</tr>
<tr>
<td>2 mil (T2)</td>
<td>251</td>
<td>266</td>
<td>270</td>
<td>3262</td>
<td>3262</td>
<td>3064</td>
</tr>
<tr>
<td>4 mil (T3)</td>
<td>255</td>
<td>270</td>
<td>270</td>
<td>3220</td>
<td>3220</td>
<td>1532</td>
</tr>
<tr>
<td>8 mil (T4)</td>
<td>252</td>
<td>272</td>
<td>224</td>
<td>3192</td>
<td>3192</td>
<td>766</td>
</tr>
<tr>
<td>16 mil (T5)</td>
<td>250</td>
<td>265</td>
<td>260</td>
<td>2880</td>
<td>2880</td>
<td>383</td>
</tr>
<tr>
<td>32 mil (T6)</td>
<td>255</td>
<td>267</td>
<td>262</td>
<td>1904</td>
<td>1904</td>
<td>191</td>
</tr>
<tr>
<td>64 mil (T7)</td>
<td>252</td>
<td>275</td>
<td>258</td>
<td>1278</td>
<td>1278</td>
<td>95</td>
</tr>
<tr>
<td>Unannealed (T8)</td>
<td>260</td>
<td>273</td>
<td>259</td>
<td>1921</td>
<td>1921</td>
<td>-</td>
</tr>
</tbody>
</table>

**TABLE IV**

| Non-linear Inductance Curve for Transient Simulations of Annealed Core |
|-----------------|----------------|
| Current [A]     | \( \lambda \) [Wb] |
| -160            | -0.71          |
| -0.004          | -0.6           |
| 0               | 0              |
| 0.004           | 0.6            |
| 160             | 0.71           |

**V. LABORATORY MEASUREMENTS AND VALIDATION**

To evaluate the effect of the air-gap and low-permeability iron material, experiments are conducted in two stages. First, the effect of the two methods on the ordinary zero-crossing inrush currents is tested and then the mitigation of the phase-hop current phenomenon is investigated.
A. Inrush Current Experiments

A programmable microcontroller switch is designed to emulate the inrush current conditions described in Section II. This switch consists of two parallel and two series MOSFETs with the terminal of the transformer and a control unit as shown in Fig. 12. Note that the core is completely demagnetized before each experiment. The measurement results for the all transformers are shown in Fig. 13(a). The peak values of the zero-crossing inrush currents are between 325 A and 335 A. The results demonstrate that the air-gap has no significant effect on the zero-crossing inrush currents when the core is demagnetized. This is so because the dominant effective factors on the inrush current peak value are the saturation inductance and the terminal resistance [26]. Furthermore, the same transformers are analyzed with transient simulations (EMTP-RV) to validate the \( \pi \) model. These simulations are shown in Fig. 13(b). Almost exactly the same results are obtained with simulations (inrush currents between 328 A and 330 A). The peaks of the inrush current for T1, T2, T7, and T8 are shown in Table V.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>336</td>
<td>330</td>
<td>1.8</td>
<td>330</td>
<td>1.7</td>
</tr>
<tr>
<td>T2</td>
<td>330</td>
<td>330</td>
<td>0</td>
<td>330</td>
<td>0</td>
</tr>
<tr>
<td>T7</td>
<td>325</td>
<td>329</td>
<td>1.1</td>
<td>328</td>
<td>0.9</td>
</tr>
<tr>
<td>T8</td>
<td>310</td>
<td>308</td>
<td>0.6</td>
<td>289.5</td>
<td>6.6</td>
</tr>
</tbody>
</table>

B. Phase-hop Current Experiments

As discussed in Section II, there are two general conditions that cause phase-hop currents: series switching and parallel switching. These conditions are emulated with the power electronic device presented in Fig. 12:

1) Voltage Interruption and UPS system Cases

To create the voltage interruption and UPS system disconnection cases in laboratory, the parallel MOSFET of the switch needs to be deactivated. Hence, only the series MOSFET opens and closes when the controller sends the command.

The first set of experiments is carried out on the air-gapped transformers. In this section, only three transformers (T1, T2, and T7) are tested under the phase-hop condition for the series transient cases. All of the three transformers are demagnetized before phase-hop tests. Therefore, the result is not affected by the residual flux. The laboratory test setup is also implemented in transient and FEM simulations. The peaks of the phase-hop current for these three transformers are shown in Table VI. The results of simulations and measurements are compared for T1 and T2 in Fig. 14 and Fig. 15. In these figures, the first peak of the current reflects the zero crossing inrush current for the demagnetized transformer. The second peak is the phase-hop condition. These results show that the phase-hop current magnitude is reduced by even a small air-gap (T2) to the zero crossing inrush current magnitude with zero residual flux. Also, the excellent agreement between the simulations and experiments demonstrates the validity of the simulations.

![Fig. 12. Circuit diagram of switches.](Image)

![Fig. 13. Inrush currents of all transformers; (a) measurements; (b) transient simulations (EMTP-RV).](Image)
peak seen in Fig. 15. This means that the linkage flux is reduced in the cut transformer when the switch is open. Therefore, the air-gap transformer restores the energy to the source. As a result, the residual flux decreases and the core is demagnetized. This is demonstrated in Fig. 16 where the linkage flux of the two transformers is compared with transient simulations.

### Table VI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>490</td>
<td>484.0</td>
<td>1.22</td>
<td>480.0</td>
<td>2.0</td>
</tr>
<tr>
<td>T2</td>
<td>330</td>
<td>329.8</td>
<td>0.06</td>
<td>325.6</td>
<td>1.4</td>
</tr>
<tr>
<td>T7</td>
<td>330</td>
<td>330.0</td>
<td>0</td>
<td>328.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2015.2459032, IEEE Transactions on Power Electronics

2) Design Considerations for Mitigation of the Phase-hop Currents

The second set of experiments is carried out on the annealed, 2 mil, and the unannealed core transformers that are designed for different flux densities (1.5 T, 1.25 T, 1.12 T, 1 T, 0.87 T, and 0.75 T). The results are presented in Table VII. The annealed core transformers draw a considerably higher phase-hop currents than the 2 mil and unannealed core at the rated 1.5 T. This is so because the residual fluxes of these transformers are smaller than in the annealed core ones (see Fig. 6 and Fig. 10). Overall, the phase-hop current of the annealed core transformers is larger than that of the 2 mil and unannealed core transformers.

Assuming that transformers are designed with the same flux densities, the gapped transformer performs better to reduce the phase-hop currents. The active power losses are the same for the unannealed and the gap transformers. However, the gapped transformer draws larger magnetizing current which is the indication of a higher reactive power required by this transformer. Assuming the same mitigation factor, the transformer designed with unannealed core draws less reactive and active power; however, it is larger and heavier because it should be designed for lower flux density. For example to reduce the phase-hop about 75%, the unannealed transformer consumes almost 50% less reactive and 30% less active power, but the transformer needs to be designed at about 10% lower flux density when compared to the gapped transformer, which increases the size and weight; see Table VII.

The results presented in Table VII indicate that gapped transformers are more efficient reducing inrush and phase-hop currents, but with higher Capital Cost (CAPEX) and Operation Costs (OPEX). However, for a space or weight restricted application, where the acquisition cost is a less important factor than size and weight, gapped transformers are superior.
transformers in a wide variety of industries. Users have different requirements, constraints, preferences, and specifications.

3) Validation of (12) and (15)

The analytical formulae (12) and (15) derived above for the calculation of the optimum air-gap length and the calculation of magnetizing current, respectively, are validated with laboratory experiments and transient simulations next.

Some of the parameters are obtained from the open circuit test of uncut transformer (T1). These are, \( l_{\text{nl}} = 0.54, \quad l_{\text{h}} = 0.59, \quad Q_{\text{OC}} = 7.33 \text{ var}. \) The mitigation factor is calculated by substitution of the parameters in (12) and varying the air-gap length. The calculated results are compared to measurements and transient simulations in Fig. 17. Note that, measurements results only include 2, 4, 8, 16, 32, and 64 mil gapped transformers. As one can observe the mitigation factors computed by (12) are in agreement with measurements and simulations (the maximum difference is about 7% for large gaps). The corresponding magnetizing currents for all transformers are shown in Fig. 17 with the comparison of (15) and simulations (as reference, the rated current is 8.33 A). As one can observe the magnetizing currents computed by (15) are in agreement with measurements and simulations as well.

![Fig. 17. Parametric study of (12) and (15) in terms of air-gap distance.](image)

Note that, measurements and simulation results show that the mitigation factor of a transformer does not change by increasing the length of the air-gap after some point (in this case \( g > 2 \text{ mil} \)). However, the magnetizing current increases with \( g \). Therefore, the minimum air-gap that satisfies the design conditions should be used. We remark that gaps smaller than 2 mil are difficult to control during manufacturing.

4) Voltage Sags and Notching Examples

This section is dedicated to evaluate the effect of the solutions on the parallel switching. To create voltage sags and notching in the laboratory, the parallel MOSFETs of the switch need to be activated. First, the series switch closes. After 0.5 of a cycle the parallel MOSFETs are closed. Then to clear the fault the parallel switches are opened.

The effect of the air-gap for parallel switching conditions is different when compared to the voltage interruption and UPS systems. Laboratory measurements show that even for the 64 mil transformer, the air-gap is not effective to reduce the phase-hop currents. Similar results were found from experiments with the unannealed transformer.

For phase-hop currents caused by parallel switching, the only effective solution is to reduce the operating flux density at the design stage.

VI. CONCLUSIONS

In this paper the effect of air-gaps and low-permeability iron core materials on inrush currents has been investigated. The following conclusions are confirmed with numerous laboratory experiments, FEM calculations, and time domain simulations:

- Air-gaps are capable of controlling the magnetizing curve of transformers. Formulae are provided in this paper to compute the required air-gap length for a given application.
- Air-gaps are capable of demagnetizing the transformer core when it is disconnected from the source and open circuited.
- This paper proves that the use of air gaps does not reduce the inrush currents when transformers are fully demagnetized.
- The air gap produces a significant reduction on the inrush currents when the transformer has residual flux, e.g. in the phase-hop conditions. It reduces the level of the phase-hop currents to the magnitude of the common inrush currents when phase-hop currents are caused by interruption and mal-function of UPS systems.
- Air-gaps are not efficient mitigating phase-hop currents caused by notching and voltage sag.
- Inrush current can be mitigated to the transformer nominal current level with a carefully designed low permeability iron core transformer.
- Low-permeability cores are effective mitigating the phase-hop current; however, this mitigation is not as effective as air-gap for transformers designed with the same flux density. For the same mitigation capability, low-permeability materials consume less active and reactive losses (lower OPEX) and are less expensive (CAPEX is about half).
- For space or weight restricted applications where price is not as important, air-gaps are recommended. For other applications, low-permeability iron materials are superior for inrush and phase-hop current mitigation. Because the occurrence of phase-hop currents is unpredictable, a transformer-based solution, e.g. air-gaps or low-permeability iron core material, is needed. With these methods, there is no need of additional control and monitoring devices. Therefore, the proposed transformer-based solutions are reliable, simple, and cost-effective ways to mitigate the phase-hop currents. To avoid excessive magnetizing currents caused by large air-gaps, the minimum gap length that can effectively mitigate the phase-hop currents is calculated with analytical formulae.

VII. REFERENCES


