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 
Abstract—This paper presents a novel online diagnostics 

method capable of detecting winding deformations in two-winding 
single-phase transformers. The main idea is to identify changes in 
the short-circuit impedance. The combination of 3-D Lissajous 
curve methods with a Butterworth low-pass filter allows for the 
accurate determination of winding deformation of large power 
transformers in real time. The method is very robust and capable 
of detecting deformations at the early stage even when the meas-
urements are noisy. Only information already available to the 
differential protection relay is needed. The proposed diagnostics 
method has been validated with circuit and finite element simula-
tions plus a lab experiment. Results show that the proposed online 
diagnostics technique has the ability to identify winding defor-
mation problems under severe conditions, such as non-sinusoidal 
input, nonlinear loading, and measurement noise. Under ideal 
conditions (no signal noise), the inductive identification error of 
the proposed online diagnostics method identifies the parameters 
with less than 0.09% error. When accepting measurement noise of 
1%, the error on the identification of inductance is less than 
0.13%.  
 

Index Terms— Lissajous curve methods, measurement noise, 
non-sinusoidal excitation, nonlinear loading, two-winding sin-
gle-phase transformers, winding deformation detection. 
 

I. INTRODUCTION 

RID modernization is a major task in today’s power in-
dustries. Implementing smart technologies in power sys-

tems is a prime objective. Apart from smart power electronics 
equipment, monitoring and detection systems for already in-
stalled equipment should be updated. Transformers are critical 
components of power systems. Consequently, the monitoring 
and protection systems for modern transformers play key roles 
in the improvement of their reliability and as a consequence 
that of modern power systems.  

Transformer windings are subjected to strong electromag-
netic forces when faults occur. The electromagnetic force in-
creases with the short circuit current level. As time passes and a 
transformer endures large short-circuit currents, its windings 
gradually deform. Once the windings start to deform, the 
damage accumulates. To avoid crucial damage, it is necessary 
to detect the winding deformation at an early stage.  

There exist various reliable offline test methods, such as the 
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Frequency-Response Analysis (FRA), the Short Circuit Im-
pedance Analysis (SCIA), and the Low Voltage Impulse 
(LVI) test [1]-[4]. Offline tests provide full freedom to perform 
reliable condition testing. Among the offline detection methods, 
FRA is the most used since it is able to identify both electrical 
and mechanical abnormalities of a transformer accurately 
[4]-[6]. However, it is impractical to take a transformer offline 
frequently. This is particularly true for transformers of large 
capacities. Thus the aim to develop online diagnostics tech-
niques has sprouted out recently. 

In the past decades, a variety of online diagnostics methods 
have been proposed. The majority of those methods can be seen 
as extensions of offline diagnostics methods [4]. Since FRA is 
more accurate and reliable than the other detection methods, 
online FRA methods have been proposed in [6]-[9]. According 
to [6]-[9], the healthy data of the transformer, extra 
high-frequency signal generator, and linear loading condition 
are three key factors for successfully implementing online FRA 
in the field.  

Although the online FRA methods have higher accuracy than 
online SCI methods, the capital investment of online SCI 
methods is less than that of online FRA. Hence, several online 
SCI methods are proposed for solving the transformer defor-
mation or inner fault detection problems [10]-[11]. A novel 2-D 
Lissajous curve (2DLC) method is proposed in [10]. This is the 
first paper that links the Lissajous curve method with trans-
former winding abnormality detection. The relationship 
between the short circuit impedance of a transformer and the 
winding abnormality has been validated by simulation and 
experimental studies.  

With the development of modern power grids, the loads in 
power systems become nonlinear. Correspondingly, the input 
voltage may not be a pure fundamental sine wave. In [11], an 
online diagnostics method considering the impact of voltage 
harmonics has been proposed. The method is another applica-
tion of the 2DLC method. However, 2DLC method is only a 
part of the complete Lissajous curve method. Useful infor-
mation hidden in the terminal measurements is not fully utilized 
for identification [12].  

A practical and implementable online diagnostics method 
should consider nonlinear loading conditions and input voltage 
distortion. Additionally, the impacts from measurement noise 
are important for practical implementations. In this paper, a 
novel data-driven online diagnostics technique based on the 
3-D Lissajous curve (3DLC) method [12] is proposed for 
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transformer winding deformation detection. Since the 3DLC is 
a more powerful graphical tool which utilizes more information 
from the terminal measurements, the deformation detection 
method is robust even under very severe conditions (variable 
load, non-sinusoidal excitation, and noisy measurements). The 
proposed method is an application and improvement of the 3-D 
Lissajous method described in [12]. Several simulation studies 
are provided in this paper to validate the advantages and ac-
curacy of the proposed method for the detection of winding 
deformation or abnormality.  

The scope of this paper is to detect deformations and ab-
normalities (on-line) of two-winding single-phase transformers 
operating under normal conditions. The purpose of the method 
is to send an alarm to the operator indicating that the trans-
former needs to be examined to prevent severe damage. The 
method is not aimed at sending disconnecting signals to the 
protective relays to take the transformer off-line instantly. 
Reliability over detection speed is favored to prevent false 
positives.   

II. THEORETICAL CONSIDERATIONS OF TRANSFORMER 

WINDING DEFORMATION DIAGNOSTICS 

Theoretically, the short-circuit impedance is an indicator of 
transformer winding deformations. Hence, the proposed 
method is in essence an online leakage impendence identifica-
tion process. It is worth to point out that this paper does not 
focus on investigating the relationships between winding de-
formation types and the impact on the change of the short cir-
cuit impedance.   

To measure the short-circuit impedance online, we start by 
analyzing the steady state model of a transformer. In the liter-
ature, there are two transformer equivalent circuit models: the 
classic T model and the π model. The structures of those two 
models are shown in Figs. 1(a) and (b). The proposed online 
diagnostics approach is obtained from the analysis of the T 
equivalent circuit and validated with the π equivalent and finite 
element models in Sections III and IV. In the following dis-
cussion, we assume that all electrical parameters are referred to 
the primary side of a transformer. 

 

i1(t)
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Fig. 1.  Two equivalent circuits for a transformer: (a) T equivalent circuit; (b) π 
equivalent circuit. 

A. Theoretical Background 

From the T equivalent circuit of a transformer shown in Fig. 
1(a), we can obtain: 
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where v1(t) and i1(t) are the instantaneous voltage and current of 
primary side; v2(t) and i2(t) are the instantaneous voltage and 
current of secondary side; R1 and L1 are the equivalent winding 
resistance and leakage inductance of primary; R2 and L2 are the 
equivalent winding resistance and leakage inductance of 
secondary; vm(t) is the voltage of the magnetizing branch 
(representing the core flux). vm(t) does not exist physically, but 
is very useful for analysis. 

For the purpose derivations only, we assume that R1 = R2 = 
0.5 RT and L1 = L2 = 0.5 LT. The assumption is not a requirement 
for the implementation of the identification method; see Sec-
tion III for more details. From (1) and (2), we have: 
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where v12(t) is the voltage across the leakage impedance, 
i12(t) is the sum of i1(t) and i2(t). Using the theory presented in 
[12] we can plot the 3-D Lissajous curve with axes i(t), di(t)/dt 
and v(t) of (3). An example Lissajous curve for a 300 MVA 
transformer is plotted in Fig. 2. One can easily find that the 3-D 
Lissajous curve is located in plane A. The parameters RT and LT 
describing plane A can be computed using three measurement 
points (say points a1, a2, and a3 in Fig. 2).  

We note that the 3-D Lissajous curve method proposed in 
[12] is sensitive to measurement noise. To improve its 
robustness, additional measurements are collected and the 
plane identification problem is converted into an optimization 
problem. 
 

Fig. 2.  3-D Lissajous curve for a 300 MVA transformer. 
 

To illustrate the data-driven online diagnostics process, we 
start with the discussion of the discretized data acquisition 
system. The sampling frequency is fs and the corresponding 



 Paper accepted in May 2017 for publication in the IEEE Transactions on Power Delivery  
 

3

sampling time is Δt. The kth data set obtained from the acquisi-
tion system is denoted as {v12[k], i12[k]}, where v12[k], i12[k] are 
discretized v12(t) and i12(t) of the kth sample. Each data set sat-
isfies (3). After N data sets are collected, we have: 
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where N is the observation window length; t0 is the initial time 
and assumed to be zero in this paper. When the measurements 
are sufficiently accurate, the current derivative can be ap-
proximated by a first-order difference to save computational 
power. Yielding: 
 ݀
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For simplicity, we convert (4) into a matrix as follows: 
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where ࢂଵଶ is a N × 1 column vector containing the information 
of instantaneous voltage measurements; ࡵଵଶ is a N × 2 matrix 
containing the information of instantaneous current measure-
ments and its derivative. By minimizing the 2-norm of the 
difference between the left and right sides of (6), we obtain: 
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Solving problem (7) as a standard ridge regression, the fol-
lowing analytical solution is obtained [13]: 
 ൤
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൨ ൌ 2ሺࡵଵଶ
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where ߣ  is a regulation factor used in cases when ࡵଵଶ
் ଵଶࡵ  is 

ill-conditioned; E is the identity matrix of the same dimension 
as ࡵଵଶ

் ଵଶࡵ . Based on our experience, ࡵଵଶ
் ଵଶࡵ  normally has an 

acceptable condition number. Hence, ߣ is set to zero for most 
cases. Under the extreme situation when the condition number 
of ࡵଵଶ

் -is set to 0.01. Based on our ex ߣ ,ଵଶ is larger than 105ࡵ
perience this solves all problems with ill-conditioned matrices. 

Note that (8) is a very simple equation which can be calcu-
lated directly based only on online measurements regardless the 
shapes of voltage and current waveforms. Different from most 
of the previous studies, the proposed online diagnostics method 
has no strict requirements on the quality of the input voltage 
and the load connected to the transformer.   

B. Application to Transformer Diagnostics 

According to the IEEE Std. 62 [14], changes in total winding 
resistance within 5% are considered satisfactory. This means 
that the maximum allowable deviation of the winding re-
sistance is 5%. Meanwhile, the maximum allowable deviation 
of the leakage inductance is 3% [14]. As a result, the error of 
the online diagnosis process should be much smaller than 
3% for leakage inductance and 5% for winding resistance. 
Hence, numerical errors are critical especially when the de-
formation has just occured (minor change in the short-circuit 
impedance).  

The leakage impedance (inductance) of large power trans-

formers is usually much larger than the winding resistance. 
Therefore, it is crucial to compute the derivatives of the current 
accurately. When the measurements are not accurate (have 
noise), the inaccuracies will be magnified by taking derivatives. 
According to (5), the standard deviation of the error introduced 
by white noise will be amplified by √2/Δt times. Hence, merely 
increasing the sampling rate fs (using a faster data acquisition 
system) will reduce the numerical measurement error, but 
magnify the error introduced by noise. 

Using a high order differentiation method is a sensible choice 
to solve the problem. An 8-point stencil central differences 
(SCD) method is applied in this paper to reduce the effect of 
noise. The mathematical expression of the 8-point SCD method 
at the kth sample is [15]: 
݀
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where i is the target current function; the subscript is the sample 
index. To calculate the initial derivative of the current, the 
current measurement from previous observation window can be 
used. 

C. De-Noising Implementation 

Measurement noise is a nuisance for all online diagnostics 
methods. As mentioned before, the noise is amplified when 
taking the derivatives during the numerical computation pro-
cess. To minimize the impact from measurement noise, it is 
better to select a larger observation window length N at the cost 
of a slower response time to the system dynamics.  

The winding deformation monitor is a system for protecting 
transformers in steady state. Hence, the dynamic performance 
can be sacrificed a little to improve accuracy and robustness to 
measurement noise. The relationship between sampling fre-
quency fs and the observation window length N is: 
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ଵ݂
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where Nc is the number of the samples per cycle and f1 is the 
fundamental frequency of the target power system; α is a posi-
tive integer. According to (10), the diagnostics system performs 
leakage impedance identification every ߙ cycles. 

Instead of selecting a large observation window length N, a 
low-pass filter has been attached after the identification process. 
The transfer function of a digital Butterworth low-pass filter of 
m-order can be expressed as: 
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where a(k) and b(k) are the transfer function coefficients which 
can be obtained from the cutoff frequency of the low-pass filter 
[16]. According to (11), the output of the low-pass filter at the 
(k+1)th sample is: 
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x[k+1], y[k+1] are the input and output of the low-pass filter at 
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the (k+1)th time step; ri[k] has the information of the past, which 
can be used to set the output initial value of the low-pass filter.  

In this paper, the input and output of the low-pass filter are 
the total winding resistance or total leakage inductance ob-
tained from (8). The initial values of the low-pass filter are set 
to be the leakage impedance obtained from the factory im-
pedance test. The initial value of the winding resistance needs 
to be constantly adjusted because it changes with temperature. 
The IEEE Std. 62 [14] gives the following expression: 
 

்ܴሾ0ሿ ൌ ்ܴ,௧బ
௧ܶ ൅ ௖ܶ௢௣௣௘௥

௧ܶ଴ ൅ ௖ܶ௢௣௣௘௥
 (13) 

where ்ܴሾ0ሿ is the initial value of the winding resistance to be 
entered to the low-pass filter, Tt is the temperature at which the 
resistance was measured in ˚C, Tt0 is the reference temperature 
in ˚C, ்ܴ,௧బ is the winding resistance measured at Tt0; Tcopper is a 
constant equals to 234.5˚C for copper windings. If temperature 
measurements are not available, the winding resistance cannot 
be used as an indicator for winding deformation and one must 
rely only on the changes in inductance. In the following dis-
cussion, we assume that temperature measurements are avail-
able and the initial value of the winding resistance has been 
adjusted accordingly. The flow chart of the proposed online 
diagnostics method is shown in Fig. 3. 
 

 
Fig. 3.  Flowchart of the transformer winding diagnostics process. 
 

D. Discussion of Assumptions 

Most of the existing online SCI methods assume that the 
input voltage is sinusoidal and the load connected to the 
transformer is linear. In comparison, the proposed method has 
no requirements on the input voltage or load behavior. How-
ever, several assumptions were made during the derivation of 
the proposed online diagnostics method. We assumed that a 
transformer could be modeled by a T equivalent circuit with 
identical equivalent winding resistance and leakage inductance 
of the primary and secondary windings. The T equivalent cir-
cuit is not the best choice for modeling single phase trans-
formers in the presence of saturation [17]. Additionally, 
winding resistances of primary and secondary depend on the 
wire gauge, the number of turns, winding dimensions, manu-
facturing process, etc.  

The assumptions mentioned above are not strict require-
ments for the implementation of the proposed method. In the 
following section, the winding resistance and leakage induct-
ance are distributed in a realistic fashion, meaning R1 ≠ R2 and 
L1 ≠ L2. A hysteretic inductor represents the core (nonlinear 
magnetizing current and losses) in the simulation studies. The 
simulations are made as realistic as possible.   

III. NUMERICAL EXAMPLE WITH TRANSFORMER EQUIVALENT 

MODEL 

Sinusoidal voltage excitation and supplying linear loads are 
the expected working conditions of a transformer. However, 
loads are increasingly becoming more nonlinear because of the 
widespread use of power electronics supplies. To validate the 
accuracy and robustness of the proposed online diagnostics 
method, several numerical examples are provided in this sec-
tion.  

A. Evaluation of the Identification Error using Simulated 
Terminal Data from Different Transformer Models 

Based on the simulated measurement data, the proposed di-
agnostics method is applied to identify the short-circuit im-
pedances when the transformer is loaded at rated condition. 

The equivalent circuits of T and π models shown in Fig. 1 are 
built in EMTP-RV [18]. The corresponding circuit parameters 
of the T and π models are listed in Table I. All the parameters 
are obtained from a real 300 MVA transformer from [19] and 
referred to the primary side. The medium voltage winding is not 
used in this study. The magnetizing inductances are modeled 
using hysteresis curves.  

TABLE I 
CIRCUIT PARAMETERS FOR T AND π CIRCUITS 

R1  
[Ω] 

R2  
[Ω] 

Ls1  
[mH] 

Ls2  
[mH] 

Rm  
[kΩ] 

Ls  
[mH] 

Rm1, Rm2 
[kΩ] 

0.26 0.2605 15.1 20 53 35.1 106
 

The voltage sources for the two circuits are cosine functions: 
ሻݐሺݒ  ൌ ௠ܸ cosሺ߱ଵݐሻ (14) 
where Vm equals to 281.7 kV and ω1 equals to 120π. The sim-
ulation time step is 20 s. The sampling frequency of the data 
acquisition system is 2.5 kHz which means 50 data points per 
cycle. Several commercial transformer monitors or digital 
differential relays claim that they can provide faster sampling 
frequencies [20]-[21]. Hence, additional investment in data 
acquisition systems is not needed for the proposed method. The 
rated load with unity power factor is connected to the two 
transformer models, namely ZL = 131.92 [Ω].  

The maximum identification error in percent between the 
identified RT and its reference is calculated as: 
 

∆்ܴ ൌ
maxห்ܴሺݐሻ െ ்ܴ

௙ห

்ܴ
௙ ൈ 100% (15) 

where ∆்ܴ is the maximum identification error in percent; ்ܴ
௙ 

is the reference winding resistance obtained from the imped-
ance test (and considering variations with temperature). The 

maximum identification error of leakage inductance ∆்ܮ  is 
calculated in a similar manner. 

The time sequence identification errors are shown in Fig. 4. 
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The maximum identification errors on the winding resistance 
and leakage inductance are summarized in Table II. According 
to the results shown in Table II, the maximum error in total 
winding resistance RT is 0.196% and the maximum error in 
leakage inductance LT is only 0.074%. The error in the identi-
fication process comes from the computation process of deriv-
atives and nonlinear currents from the nonlinear magnetizing 
branches.  

 

 
(a) (b) 

Fig. 4.  Identification errors when using simulated terminal measurements: 
(a) Identification error in total winding resistance RT (0.5206 Ω); (b) Identifi-
cation error in total leakage inductance LT (35.1 mH). 

 

TABLE II 
MAXIMUM ERROR IN PERCENT UNDER RATED LOADING 

 [%] ்ܮ∆ [%] ்ܴ∆ 
T model 0.196 0.074 
π model 0.020 0.059 

 

Comparing ∆்ܴ and ∆்ܮ, one can appreciate that the iden-
tification error is not equally distributed between RT and LT 
since ω1LT is much larger than RT; see Table I. This phenom-
enon brings significant problems to the identification of the 
winding resistance when measurement noise is considered. For 
now, the identification results of the leakage impedance with 
the two models are small and acceptable. According to Fig. 4, 
the identification results of T and π models are close to each 
other. The maximum deviation of the identification results 
between T and π models is 0.18%. Although the derivation of 
(8) is obtained using the T equivalent circuit, the identification 
accuracy is higher when the π equivalent circuit is used to 
simulate transformer terminal measurements. According to 
[17] and [22], the π model is more accurate than the T model for 
the representation of transformers. Hence, the π model is used 
to simulate the transformer terminal measurements in the next 
four numerical studies.  

 

B. Evaluation of the Identification Error when Changing 
Loading 

The load is modeled as constant impedance during at least 
one fundamental period in this example. Changes in the loading 
conditions are defined as changes in the amplitude of the cur-
rent and power factor. Without magnetizing branch, the iden-
tification process is independent of the changes in the loading 
conditions. However, the magnetizing branch current cannot be 
neglected in practice. In this subsection, the impacts coming 
from the loading condition are discussed in detail.  

In the following examples, several loading scenarios are 
simulated with the π equivalent circuit. The loading conditions 
are summarized in Table III. For a normal power system, the 

power factor is commonly larger than 0.8. Hence, both the 
normal operation (power factor = 0.985) and the worst condi-
tion (power factor = 0.707) are considered. 

When the transformer is loaded at rated current, the accuracy 
of the identification results is affected by the changes in power 
factor; see Fig. 5. The maximum identification errors from 
cases 1 to 8 are summarized in Table IV. Accordingly, the 
identification error of the winding resistance is larger when a 
capacitive load is connected to the transformer. In contrast, the 
maximum inductive identification error occurs when the 

transformer is loaded by a lightly inductive load. Although ∆்ܴ 

is almost 5 times larger than ∆்ܮ (see Table IV), the simulation 
results show that the proposed method still can be used for 
identifying transformer winding deformations. 

 

TABLE III 
LINEAR LOADING CONDITIONS (RLC IN SERIES) 

 |ZL| [Ω] RL [Ω] LL [mH] CL [μF] Power Factor 
Case 1 

131.92 
(rated) 

131.92 0 0 1 
Case 2 129.92 60.76 0 0.985 (lagging) 
Case 3 93.28 247.4 0 0.707 (lagging) 
Case 4 93.28 0 28.4 0.707 (leading) 
Case 5 129.92 0 115.8 0.985 (leading) 
Case 6 

263.84 
(half) 

263.84 0 0 1 
Case 7 186.56 494.87 0 0.707 (lagging) 
Case 8 186.56 0 14.2 0.707 (leading) 

 
 

(a) (b) 
Fig. 5.  Identification errors for a fully loaded transformer. (a) Identification 
errors in RT (0.5206 Ω) from cases 1 to 5; (b) Identification errors in LT (35.1 
mH) from cases 1 to 5.  
 
 

(a) (b) 
Fig. 6.  Identification errors for a half loaded transformer. (a) Identification 
errors in RT (0.5206 Ω) from cases 1 and 6 to 8; (b) Identification errors in LT 
(35.1 mH) from cases 1 and 6 to 8.  
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TABLE IV 

MAXIMUM DIFFERENCES IN PERCENT FOR CASES 1 TO 8 
Case 1 2 3 4 5 6 7 8 

∆்ܴ [%] 0.02 0.32 0.35 0.55 0.12 0.00 0.39 0.46 

 0.04 0.05 0.06 0.06 0.04 0.05 0.07 0.06 [%] ்ܮ∆
 

When the transformer is supplying half load, the maximum 
identification errors of the total leakage inductance and the total 
winding resistance do not change significantly. Comparing 
with Figs. 5 and 6, we conclude that the impact of the power 
factor is larger than the impact of the amplitude of the current. 
It worth to point out that the impact of the loading level be-
comes dominant when the transformer is lightly loaded. The 
maximum identification error will rise to 3% on winding re-
sistance and 2.4% on leakage inductance when the transformer 
is loading at 20% of the rated capacity. Hence, to detect 
winding deformation one needs to have a significant current 
flowing in the windings (much larger than the magnetizing and 
capacitive currents), situation that will happen during a typical 
day in the normal operation of a transformer. 

C. Evaluation of the Identification Error Considering Meas-
urement Noise 

In practice, all measurements are imperfect. Noise can 
pollute the measurements and introduce errors to the diagnos-
tics method. In all the following examples measurement noise 
is considered. The settings for Cases A to F are summarized in 
Table V. In this study, Case A corresponding to the worst case 
scenario (half loaded with 0.707 leading power factor) is sim-
ulated with noise to evaluate the robustness of the proposed 
method.  

 
TABLE V 

EXAMPLE SETTINGS FROM CASES A TO F 

 
Loading 

Condition 
Change [%] 

Noise [%] 
Digital filter 

RT LT Order Cutoff 
Case A Case 8 0 0 1 3 25 Hz 
Case B Case 8 5 3 1 3 25 Hz 
Case C Case 8 -5 -3 1 3 25 Hz 
Case D Case 8 5 3 1 5 5 Hz 
Case E Case 8 5 -5 1 3 25 Hz 
Case F Fig. 9(b) 5 -5 1 3 25 Hz 

 

To simulate noisy measurements, white noise is added to the 
measurements as follows: 
௜ݒ 

ᇱሾ݇ሿ ൌ ௜ሾ݇ሿݒ ൅ ݅			෤௜ߙ ൌ 1,2 
(16) 

 ݅௜
ᇱሾ݇ሿ ൌ ݅௜ሾ݇ሿ ൅ 	෨௜ߚ 			݅ ൌ 1,2 

and 
,෤௜~ࣨሺ0ߙ ,෨௜~ࣨሺ0ߚ ௩ଶሻߪ ௜ߪ

ଶሻ 
where ݒ௜

ᇱሾ݇ሿ and ݅௜
ᇱሾ݇ሿ are the kth voltage and current with noise; 

σv and σi are the standard deviations of the noise added to 
voltage and current, respectively. In the following examples, 
3σv is set to 1% of the amplitude of the primary voltage (2 
kV) and 3σv equals to 1% of the amplitude of the primary cur-
rent (22 A). A three-order digital Butterworth low-pass filter 
with a cutoff frequency of 25 Hz is applied to enhance the 
robustness of the online diagnostics method. 
 
 

 
(a) (b) 

Fig. 7.  Identification error considering 1% measurement noise; (a) Error in 
winding resistance RT; (b) Error in leakage inductance LT. 
 

According to the simulation results shown in Fig. 7, the 
identification results are polluted by the measurement noise. 
For 1% noise on all voltages and currents, the maximum dif-
ference of the total leakage inductance is 0.13% and the 
maximum difference of the total winding resistance is 1.5%. 
The accuracy of the proposed diagnostics process is weakened, 
when the amplitude of the noise increases. For 3% noise level 
(6 kV and 66 A) on the measurements, the largest identification 
errors are 5% for the resistance and 0.5% for the inductance. 
Even with heavily polluted measurements, the accuracy of the 
leakage inductance is still acceptable. However, the error on the 
winding resistance is too large. This is so because the resistance 
is usually much smaller when compared with the leakage re-
actance of the transformer as mentioned in Section III.A. 
However sometimes it is possible that only a change of winding 
resistance can be observed (i.e. tap-changer contact oxidation). 
Hence, we still analyze the changes of winding resistance in the 
rest of the paper. 

One way to enhance the accuracy is to increase the order of 
the low pass filter and reduce its cutoff frequency. With a 
five-order low-pass filter with 5 Hz cutoff frequency, the iden-
tification error on the winding resistance can be reduced to 
3.03% with 3% noise. However, increasing the order and re-
ducing the cutoff frequency of the low-pass filter will impact 
the dynamic performance of the filter. An example can be 
found in the next subsection. 

D. Deformation Diagnostics with Sinusoidal Input and Linear 
Load 

Leakage impedance identification is only half of the diag-
nostics process. A suitable diagnostics system should have the 
ability to identify both normal leakages and abnormal leakages. 
In this example, the transformer deformations are simulated by 
changing its leakage impedance. As mentioned before, ac-
cording to the IEEE standard [14], transformer deformations 
are defined as 3% change of the leakage inductance and 
5% change of the winding resistance. Hence, to capture the 
winding deformation successfully, the proposed method should 
be sensitive enough to the leakage impedance changes. 

Three simulations with 1% measurement noise are 
performed in this example. In the first two simulations, a 
three-order low-pass filter with 25 Hz cutoff frequency is 
applied. In case B, the winding resistance and leakage induct-
ance are increased by 5% and 3%, respectively. The winding 
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resistance and inductance are reduced by 5% and 3% in case C. 
In the third simulation (case D), we first simulate the case using 
a five-order low-pass filter with 5 Hz cutoff frequency. The 
three simulation results are shown in Fig. 8.  
 

(a) (b) 
Fig. 8.  Winding deformation diagnostics with linear load: (a) deviation of the 
winding resistance RT; (b) deviation of leakage inductance LT.  
 

In all three simulations, the initial values of the low-pass 
filter are equal to the leakage impedance obtained from 
short-circuit test. Hence, explicit dynamic responses can be 
found in Figs. 8(a) and (b). It takes 20 s for the stabilization of 
the low-pass filter when winding deformations occur (the 
oscillations in Figs. 8(a) and (b) are created by the measurement 
noise). As mentioned before, if the order of the low-pass filter is 
increased and the cutoff frequency is reduced, the identification 
results become more robust to noise, but the stabilization time 
increases; see the dotted lines in Figs. 8(a) and (b).  

After the output of the low-pass filter is stable, the defor-
mations on both resistance and inductance can be found in Fig. 
8. Although the identification results on the winding resistance 
are heavily polluted by measurement noise, one still can find 
resistive deformation looking at Fig. 8(a). In comparison, the 
proposed method is very accurate for inductive deformation 
detection. Since inductive deformation is the major defor-
mation that occurs in practice, the proposed method can 
effectively detect incipient winding deformations.   
 

 
(a) (b) 

Fig. 9.  (a) Normalized measurements of v1 and i2 for case E, the base voltage is 
306.6 kV and the base current is 1.897 kA; (b) Normalized nonlinear behavior 
of the load resistor and inductor; the base voltage and current of the resistor are 
280 kV and 1.698 kA, the base flux and current of the inductor are 747 Wb and 
0.5 kA. 
 

E. Distorted Input Voltage with Linear and Nonlinear Loads 

In the previous study cases, we assumed that the input 
voltage is a sinusoidal function and the load fed by the 
transformer is linear. However, these two assumptions may not 
be correct in practice. Different from previous online diagnos-

tics methods, the proposed method in this paper has no re-
quirements of voltage quality or linear load behavior. Two 
numerical examples are provided next to validate this state-
ment.  
 

 
(a) (b) 

Fig. 10.  Winding deformation diagnostics with non-sinusoidal excitation and 
nonlinear load: (a) deviation of the winding resistance RT; (b) deviation of 
leakage inductance LT. 
 

The input voltage of the transformer is a combination of 
fundamental frequency and 3rd harmonic. The mathematical 
description of the voltage source is: 
ሻݐሺݒ  ൌ ௠ܸ cosሺ߱ݐሻ ൅ 0.1 ௠ܸ cos ቀ3߱ݐ ൅

ߨ
6
ቁ (17) 

The amplitude of the 3rd harmonic is set to be 10% of the fun-
damental frequency to produce an extremely bad input voltage. 
Two cases are simulated in this section. In the first case (case E), 
the transformer carries half load with a 0.707 leading power 
factor. The second case (case F) has the transformer connected 
to a nonlinear resistor and nonlinear inductor. The normalized 
primary terminal voltage and secondary current for case E are 
shown in Fig. 9(a). The normalized nonlinear behavior of the 
resistor and inductor are shown in Fig. 9(b). Similar to the 
previous studies, a 1% noise is added to the measurements in 
both simulation studies. The winding resistance is increased by 
5% and the leakage inductance is reduced by 5% to create a 
different example. The results can be found in Fig. 10. One can 
observe that both resistive and inductive deformations can be 
detected under very severe circumstances (including input 
voltage harmonics, nonlinear loads, and noise). Although errors 
can be found in the identification results, the diagnosis results 
are still trustable. 

IV. VALIDATION BY FINITE ELEMENT SIMULATIONS AND LAB 

EXPERIMENTS 

A. Finite Element Simulations 

In the previous section, T equivalent and π equivalent circuits 
were used to generate the voltage and current measurements of 
a transformer with deformations. In this section, a Finite Ele-
ment Model (FEM) of a 167 kVA commercial transformer is 
built in Ansoft Maxwell environment to simulate the voltage 
and current measurements; see Fig. 11(a).  

The geometrical assumptions of the transformer model are 
discussed next. Both primary and secondary windings and the 
core are assumed to be solid bodies. The winding resistance 
measured at 60 Hz (taken from the datasheet) was used. All 
tests mentioned in this paper are done at 60 Hz. The sur-
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rounding domain is padded to about 3 times in all the directions 
to ensure that all the flux remains inside the solution domain. 
We verified that a negligible error is introduced by the termi-
nation of the domain. A Neumann boundary condition is used 
as the external boundary. A magnetostatic analysis was carried 
out to determine the sensitivity of magnetizing and leakage 
inductance (calculated using the magnetic energy meth-
od) changing mesh size. Based on this analysis, appropriate 
mesh setting (70,831 elements) was chosen and used for the 
time-domain simulations. The online measurements are 
obtained from the voltmeter and ammeter available in the cir-
cuit interface of Ansys Maxwell. A cosine excitation is used in 
the circuit interface to avoid transformer inrush transients. The 
simulation time is 0.1 s and the time step is 1/3000 s.  
 

 
(a) (b) 

Fig. 11.  FEM of a 167 kVA transformer; (a) transformer model with no de-
formation; (b) transformer model with deformation (the winding has moved 
down 4 in).  
 

 
(a) (b) 

Fig. 12.  Winding deformation diagnostics of the finite element model; NoFull 
stands for transformer without deformation at full load, DeFull stands for 
deformed transformer at full load, NoShort stands for transformer with no 
deformation under short-circuit test, DeShort stands for deformed transformer 
under short-circuit test. (a) Winding resistance RT; (b) Leakage inductance LT. 
 

The dimensions of the transformer and test results were 
obtained from a transformer manufacturer. The electrical pa-
rameters obtained with FEM simulations were validated with 
the data sheet of the transformer originally obtained experi-
mentally.  

Due to the electromagnetic forces on the low voltage wind-
ings, perhaps caused by an external short-circuit, the winding 
has fallen 0.4 in; see Fig. 11(b). We assume that the deformed 
and not deformed transformers are working at full load. The 
results of implementing the proposed online diagnostics 
method are shown in Fig. 12.  

The results are compared with the short circuit tests for both 
deformed and not deformed transformers. According to Fig. 
12(a), the maximum difference of the winding resistance is 

1.3% which will not create a resistive deformation alarm. In 
contrast, a large difference (9.4%) on the leakage inductance 
can be found in Fig. 12(b). As a result, the inductive defor-
mation alarm is created to inform the operator.  

B. Experimental Validation 

The proposed method has been validated with a lab experi-
ment. The secondary of a small transformer (see Fig. 13) has 
been moved down to almost touch the yoke to create a winding 
deformation. The primary voltage and current recorded with a 
LabVIEW data acquisition module are shown in Fig. 14(a). The 
sampling frequency is 2.5 kHz. One can see from Fig. 14(a) that 
the primary voltage and current are not perfect sinusoidal 
waveforms. Fig. 14(b) presents the detection results without the 
use of a low-pass filter. As shown in Fig. 14(b), the proposed 
method can identify the transformer winding deformation when 
the transformer is loaded. The leakage inductance of the 
transformer has increased 18% when the secondary winding 
falls down. One can see that the differences between the cal-
culated inductances (Lissajous method) and the standard 
short-circuit test results are negligible. With the help of a 
low-pass filter, the impact of the measurement noise can be 
eliminated; see Fig. 15.  

 

Support
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winding

Primary 
winding

 
(a) (b) 

Fig. 13.  Experimental setup for winding deformation diagnostics system test; 
(a) normal transformer; (b) deformed transformer. 
 

 
(a) (b) 

Fig. 14.  (a) Primary voltage and current; (b) Winding deformation diagnostics 
of leakage inductance LT.  
 

Fig. 15.  Deviation of leakage inductance LT obtained from winding defor-
mation diagnostics results. 
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V. CONCLUSION  

In this paper, a data-driven online diagnostics method for the 
detection of transformer winding deformation has been pro-
posed. The method is robust even under extremely severe 
working conditions such as: noisy measurements, load changes, 
input harmonics, and system nonlinearities. 

Several numerical examples illustrate the virtues of the 
proposed method. FEM simulations and a lab experiment con-
firm that the method can successfully detect the change of 
short-circuit impedance created by winding deformations. The 
results provided in this paper demonstrate that the novel 
method is implementable in practice for detecting transformer 
winding abnormality. Only information already available to the 
differential protection relay is needed. According to the case 
studies from cases D to E, the proposed method is more noise 
resistive for identifying the change in the leakage inductance 
which is usually caused by winding deformation. Hence, the 
proposed method is a promising candidate for detecting wind-
ing deformations. 
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