Combined Effect of CVR and DG Penetration in the Voltage Profile of Low Voltage Secondary Distribution Networks

Abdullah Bokhari, Member IEEE, Ashhar Raza, Marc Diaz-Aguiló, Francisco de León, Fellow, IEEE, Dariusz Czarkowski, Member, IEEE, Resk Ebrahem Uosef, Member, IEEE, and David Wang, Senior Member, IEEE

Abstract—In this paper the voltage profile of secondary networks under conservation voltage reduction (CVR) and distributed generation (DG) penetration is studied for the first time. Three networks in New York City, modeled in detail, are used as study cases. Interconnection of DG is proposed to eliminate localized low voltage violations due to voltage reduction of 4%, 6%, and 8% from the normal schedule. The selection of the type of DG is based on the requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulations. It is found that a small percentage of DG penetration would alleviate voltage violations. The study shows that DG installed in distributed networks improve voltage regulation, allowing utilities to use deeper voltage reductions during critical conditions. It is also shown that the network power factor reduces when penetration of DG is high and thus the line drop compensation needs to be adjusted for the new power demand.

Index Terms— Conservation voltage reduction (CVR), distributed power generation (DG), DG allocation, DG penetration, energy conservation, load model, secondary network, voltage profile, ZIP coefficients.

I. INTRODUCTION

As the penetration of Distributed Generation (DG) in Electric Power System (EPS) increases, so the reliability and economic benefits. Utility regulators have been a driving force toward accelerating the implementation of DG [1]. The DG interconnection requirements began with the IEEE Standard 929 in 1988 [2]. Uniform mandatory interconnection requirements at the point of common coupling (PCC) were developed in 2003 for all types of DG in the IEEE Standard 1547 [3]. Due to the large variations in distribution system configurations and situations where DG may be connected, a series of standards were developed as the guide on impact studies for DG interconnection [4], [5]. The recommendations for DG interconnection with secondary networks are given in the IEEE Std. 1547.7 [4].

Penetration is a percentage/dynamic measure of the amount of power delivered/generated by interconnected DG compared with the total generation resources on a power system for a specific time of loading [1]. Penetration is not a static measure as small percentage of DG penetration during peak load could be a high level of penetration under light load conditions. Different types of DG have the potential to substantially affect system performance. For instance, conventional type synchronous generators can have a greater effect on customer voltage than inverter-based DG or induction generators. However, regulation, cost, and reliability impose limitations on synchronous DG deployments in distribution systems as the short-circuit capacity of the installed breakers may be exceeded.

The compromise between DG interconnection requirements for the avoidance of islanding and the security of the EPS have been studied in [6]–[8]. Numerous studies have investigated the optimal placement of distributed generation in power systems [9]–[11]. Benefits of DG interconnection can be summarized as [1], [9], [10]:

• Standby/backup power availability and reliability,
• Peak load shaving,
• Combined heat and power,
• Sales of power back to utilities or other users,
• Renewable energy,
• Power quality, such as reactive power compensation and voltage support,
• Dynamic stability support.

Voltage variation studies when a significant portion of the total generation is DG have been performed in [11]–[15]. Previous efforts introduced a comprehensive analysis of the possible impacts of different penetration levels of DG on voltage profiles in low-voltage secondary distribution networks [16]. The work was aimed to explore the maximum amount of DG that secondary distribution networks can withstand in a probabilistic fashion. A field-validated load model for the calculation of Conservation Voltage Reduction (CVR) in several secondary networks was presented in [17]. Both studies ([16]–[17]) concluded that the implementation of DG or CVR will provide energy and economic savings for the utility and the customers. Many power utilities are moving towards implementing CVR [18]–[22]. Benefits of CVR in terms of
energy savings and loss reduction have been studied in [23]–[25] while different implementation methods of CVR are described in [26]–[27].

A recent study on peak demand reduction and energy conservation favored volt/var optimization via power factor correction over CVR via active voltage regulation [28]. The study used load model-based approaches for the application of CVR using two load categories: with and without thermal cycles. A comparison of the polynomial static load model against physical load model gave credit to the later model when the dynamic load behavior is considered. Another study highlighted the role of feeder characteristics for CVR application [29]. It was concluded that short feeders on a densely populated networks would be most convenient to achieve the economical goal of CVR. A counter opinion was presented in [30]. Reference [31] shows that CVR provides energy and economic savings for the utility and the customer. The results of [16] and [17] led to a challenge to study the behavior of low-voltage distribution networks with a combined effect of CVR and DG penetration.

The interaction of DG implemented in a secondary grid can become more challenging when the EPS is under different operating voltage conditions; for example, CVR or in periods of stress in the network due to contingencies. This becomes more pronounced with a higher DG penetration as the network power factor reduces. This causes further reduction in the line drop compensation (LDC) setting compromising the voltage limits. Thus, research on the integration of customer generation in a distributed network with different types of interconnected DG is needed to determine the impact on the steady state behavior of the system.

The main contribution of this paper is to show how a small portion of DG penetration can alleviate voltage violations when CVR is applied. This allows further reducing the voltage and therefore increasing the energy savings. The study is performed on several secondary networks in New York City taking into account the behavior of different types of DG distributed in realistic scenarios.

All simulations are performed with the open source simulation package developed by EPR: OpenDSS [32]. The networks and DG models were validated against New York City utility records and the models developed in previous studies [16]–[17].

II. NETWORK MODELING

A. Topology of the Networks under Study

The networks under study are: Madison Square, Sutton, and Yorkville, all located in Manhattan. The selection of networks was made to test different load compositions and varied number of customers. Some details of the networks are described in Table I.

Power is fed into the low voltage grid network serving low tension (LT) customers at 120/208 V and a small percentage of high tension (HT) local building buses (spot networks at 460 V). Detailed description of the load composition of the three networks is given in Table II. Fig. 1 shows a simplified topology of the network with loads, transformers, and the typical structure of an isolated spot network. For reliability purposes, the distribution system of New York City and the downtown core of many cities in North America, use large interconnected low voltage (208/120 V) networks to supply loads of hundreds of MW. This is different from most other locations where the systems are mostly radial and supply loads of only a few hundreds of kW.

Table I

<table>
<thead>
<tr>
<th>Network</th>
<th>Sutton</th>
<th>Madison Sq.</th>
<th>Yorkville</th>
</tr>
</thead>
<tbody>
<tr>
<td>High voltage</td>
<td>69 kV</td>
<td>138 kV</td>
<td>138 kV</td>
</tr>
<tr>
<td>No. of subst. transformers</td>
<td>7 (69/13.8 kV)</td>
<td>5 (one spare) (138/13.8 kV)</td>
<td>4 (3-winding transformers) (138/13.8 kV)</td>
</tr>
<tr>
<td>No. of breakers</td>
<td>27</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>No. of network transformers</td>
<td>224</td>
<td>462</td>
<td>542</td>
</tr>
<tr>
<td>No. of primary feeders</td>
<td>12</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>Light load demand</td>
<td>47 MW</td>
<td>90.7 MW</td>
<td>118.4 MW</td>
</tr>
<tr>
<td>Peak load demand</td>
<td>141.7 MW</td>
<td>307 MW</td>
<td>250 MW</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Network</th>
<th>Sutton</th>
<th>Madison Sq.</th>
<th>Yorkville</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT loads (120/208V)</td>
<td>284</td>
<td>1102</td>
<td>2272</td>
</tr>
<tr>
<td>HT loads (460V)</td>
<td>27</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Load composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small residential</td>
<td>63.3 %</td>
<td>11.1 %</td>
<td>16.3 %</td>
</tr>
<tr>
<td>Large residential</td>
<td>3.9 %</td>
<td>9.7 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Small commercial</td>
<td>1.9 %</td>
<td>3.8 %</td>
<td>16.4 %</td>
</tr>
<tr>
<td>Large commercial</td>
<td>87.9 %</td>
<td>75.3 %</td>
<td>61.2 %</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.0 %</td>
<td>0.0 %</td>
<td>6.1 %</td>
</tr>
</tbody>
</table>

Fig. 1. Illustration of a LV secondary network including: high voltage, substation, loads, transformers, DG, and a typical structure of an isolated spot network. In NYC the low voltage networks operate at 208/120 V and isolated spot networks are fed at 460 V.

The three networks selected are of varied sizes and demands: a small network (Sutton), a medium network (Madison Square), and a large network (Yorkville) with different load compositions.
B. Network Model

In a previous study carried out by the authors, a polynomial static load model with ZIP coefficients was used to represent the power consumed by a load as a function of voltage [17], [33]. ZIP parameters are the coefficients of a load model comprised of constant impedance \(Z \), constant current \(I \), and constant power \(P \) loads. ZIP based load models were developed for residential, commercial and industrial loads [33]. The models were validated in the field for the networks under study. Experimentally validated network models are used to analyze the behavior of the distribution networks under the combination of CVR and DG penetration. The DG models used in the study are selected from the OpenDSS library and, also, they have been validated against EMTP results in [16].

Using actual data, the network model was built in OpenDSS. The data includes primary feeders, transformers, network protectors, and secondary mains with each customer represented as a ZIP coefficients load. The behavior of the DG (synchronous generators and inverter-based DG) is considered using the existing models from the OpenDSS library. Capacitors are modeled based on the network load demand. As an example, Sutton network has two switching capacitors, one of them is connected at medium load (50% to 75% of demand), two are connected at peak load, and no capacitors are connected at light load.

The network voltage is controlled exclusively from the area substation on-load tap changer transformers. CVR is implemented by reducing voltage at the substation by controlling line drop compensation (LDC) mechanism. A lower LDC setting at the substation allows voltage reduction to be implemented. Table III shows a sample voltage schedule with the voltage reduction level for various network demands.

C. Load Models

To obtain reliable results, a voltage-sensitive load model was used for all networks. Both watts and vars vary with voltage based on typical residential, commercial, and industrial customers in New York City. The loads connected on the secondary network are represented as static load model with their polynomial ZIP coefficients. The models have been obtained from numerous voltage reduction tests performed in the laboratory on many domestic appliances performed on typical residential, commercial, and industrial customers in New York City. These experiments are described and documented in [33].

The polynomial expressions for active and reactive powers of the ZIP coefficients model are:

\[
P = P_0 \left[Z_p \left(\frac{V}{V_0} \right)^2 + I_p \left(\frac{V}{V_0} \right) + P_p \right] \quad (1)
\]

Subject to \(Z_p + I_p + P_p = 1 \) \quad (2)

\[
Q = Q_0 \left[Z_q \left(\frac{V}{V_0} \right)^2 + I_q \left(\frac{V}{V_0} \right) + P_q \right] \quad (3)
\]

Subject to \(Z_q + I_q + P_q = 1 \) \quad (4)

where \(P \) and \(Q \) are the active and reactive powers at operating voltage \(V \); \(P_0 \) and \(Q_0 \) are the active and reactive powers at rated voltage \(V_0 \); \(Z_p \), \(I_p \), and \(P_p \) are the ZIP coefficients for active power; \(Z_q \), \(I_q \), and \(P_q \) are the ZIP coefficients for reactive power.

The networks under study are highly integrated with diverse residential, commercial, and industrial loads. Each load is classified into one of the four following categories: small or large residential, commercial, or industrial. Each load is then represented with the appropriate ZIP coefficients model.

III. DG STUDY UNDER CONSERVATION VOLTAGE REDUCTION

A. Network Model Validation

The analysis presented here is based on the detailed three-phase model developed in [17] using network characteristic and real data records (for 2010). The results of steady state (power flow) simulations under DG penetration were verified against EMTP time-domain simulations reported in [16]. Reproduction of several events and DG penetrations of the same network were compared and validated. Fig. 2 shows the voltage profile comparison between OpenDSS and EMTP for the base case (with no DG) and the worst case scenario reported in [16].

B. Voltage Violation Study

The application of CVR in highly meshed secondary networks is known to have a satisfactory impact on energy savings and losses [17]. However, voltage reduction can produce under-voltage violations at some loads. Utilities are mandated to keep voltage values within acceptable ranges across all the nodes in the network, both on the primary and secondary sides. For the purpose of this study, voltage reduction simulations of each network were performed to identify all loads/structure points with violations on the peak hour of the year. Voltage reduction operations are performed for voltage levels of 2.25\%, 4\%, 6\% and 8\% and voltage violation of 5\%
(under 114 V) and 10% (under 108 V) are monitored for all loads.

Fig. 2 Comparison of results for customer voltage profile at 120 V from OpenDSS and EMTP for the worst case scenario (left) and base case with no DG (right) reported in [16].

![Comparison of results for customer voltage profile at 120 V from OpenDSS and EMTP for the worst case scenario (left) and base case with no DG (right) reported in [16].](image)

Fig. 3 Geographical voltage distribution in the Yorkville network for 4% voltage reduction during the peak hour of the year. Twenty Six voltage violations are detected exceeding 5% (under 114 V) out of 2282 structure points. Underlying map ©2014 by Google.

The utility of New York City regulates the minimum voltage on distribution feeders so that the delivery voltage at the customer’s meter will stay within ±5% of nominal (i.e. 120 V ± 5% or 126 V to 114 V) during normal operating conditions and 10% below nominal voltage (108 V) for emergency conditions [34]. The national standard related to these voltage levels is ANSI C84.1 where 114 V (95%) is defined as the minimum service voltage and 108 V (90%) is defined as the minimum utilization voltage [35]. In this study, we have computed voltage violations for both of these levels for loads with a voltage base of $V_{LN} = 120$ V.

The investigation aimed at identifying voltage violations of 5% and 10% under different voltage reduction levels for the three networks. Fig. 3 shows the voltage violations exceeding 5% (under 114 V) when a 4% voltage reduction is applied.

Fig. 4 shows voltage violations exceeding 10% (under 108 V) when 8% voltage reduction is used. These figures are shown for the peak-load hour of the year. The plots show that the voltage violations are localized in small geographical areas. Then an investigation was launched to find if the problems can be solved with a small percentage of DG penetration. This stems from the fact that the interconnection of DG is known to produce localized overvoltages. A win-win situation is expected since both techniques (CVR and DG) save energy, but their potential bad side effects may cancel each other.

![Geographical voltage distribution in the Yorkville network for 8% voltage reduction of the peak hour of the year. Eight voltage violations are detected exceeding 10% (under 108 V) out of 2282 structure points. Underlying map ©2014 by Google.](image)

C. Overview of DG Interconnection under CVR

The operation of DG has an influence on the distribution system voltage levels by changing the current levels on the system [8]. This influence is defined by the size, type, and location of the DG, the network topology, DG operation strategy, and the characteristics of the distribution system. The operation of the generator should not cause the distribution system voltage (utilization voltage) to go outside of the steady state voltage limits specified by ANSI Std. C84.1. The Public Utilities Commission establishes service voltage (customer voltage) limits for the utility. However, during severe voltage reduction (or contingency), service voltage supplied by the utility could go below specified limits for customers connected at the end of feeder due to voltage drop.

The interconnection of DG must meet the basic requirements imposed by the various standards, most notably IEEE 1547 [3]-[5], public service commission [36], and local utility regulation [37], while providing a foundation on which higher levels of penetration can be built. As dictated by Consolidated Edison Inc. of New York, the default voltage operating range
for DG shall be from 88% to 110% of nominal voltage magnitude and be operated in a manner that does not cause the voltage regulation to go outside the applicable limits. DG allocation with constraints of maximum 2 MW output power or less on each DG is considered in this study. Note that no power can be exported from the secondary network to primary because network protectors will trip.

D. DG Allocation Approach

Following are the key operations performed to obtain the minimum DG penetration required to solve localized voltage violations:
1) Look up for the geographical and electrical location of structures under low voltage violation.
2) Low voltage structures that are electrically close to each other are treated together.
3) One DG is installed for a group of structures to reduce the overall number of DG.

Only two types of DG systems are used; inverter type and synchronous machine type. The inverter type DG is operated at a unity power factor, and the synchronous machine type DG is operated at power factor 0.9 leading. Structure points that have lower demands of less than 100 kW are allocated inverter type DG, with lowest DG size not less than 50 kW. Structure points with heavier loads are allocated synchronous machines, with a limit of 2 MW. Low voltage structures that are electrically connected are not allocated separate DGs, rather a single DG is installed for all the structure points that are electrical neighbors. This helps reducing the overall number of DGs, and also reducing the cost of installation and maintenance. However, if a particular group of electrically close structure points have a combined load value more than 2 MW, more than one DG of similar type are connected in order to improve the voltage profile.

For Yorkville network, nine DGs were allocated in the low voltage distribution network with a total power of 1.25 MW representing 0.5% of the total peak demand. Voltage reduction of 4% and 8% were simulated with DG penetration to solve voltage violations exceeding 5% (under 114 V) and over 10% (under 108 V). A similar DG allocation approach was applied on the Madison Square network to solve the over 5% and 10% voltage violations resulted from the 4% and 8% voltage reduction. This network is robust to voltage violation with only 3 voltage violation clustered in one location. Fig. 5 shows the voltage map with voltage violation over 5% (under 114 V) in the Madison Square network when 4% voltage reduction operation is conducted. Only one DG of 250 kW (0.08% of peak demand) was needed to remove the 5% and 10% voltage violations. Finally, the smallest network (Sutton) has a weak characteristic with 62 voltage violations of over 5% (under 114 V) when 6% voltage reduction was applied. 29 DGs with a total power of 3.4 MW (2.3% of the total peak demand) were used to solve voltage problems. Results for Sutton network are shown in Fig. 6. The results for the three networks under study and allocated DGs are summarized in Table IV.

E. Simulation Results of the Proposed DG Allocation

In this section, load-flow simulation results showing the voltage profile of all loads for each network are presented. The results are obtained for the voltage violation study (with no DG) described in Subsection III. A, and compared with the results with DG penetration presented in Subsection III. C. In addition, these simulations are done for all voltage reduction levels. With proper DG allocation, the utility can implement reduction in voltage that was not acceptable (due to voltage violations) for the case without DG implemented. For example, some medical equipment such X-ray and MRI machines have a small range of operating voltage which makes them sensitive to voltage variations. DG could be an inexpensive solution to health care facilities and hospitals since no medical equipment will dropout due to CVR implementation during emergency situations.

<table>
<thead>
<tr>
<th>Network</th>
<th>No. of violation (CVR %)</th>
<th>Voltage violation level</th>
<th>% of DGs to peak load demand</th>
<th>No. of allocated DGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yale</td>
<td>26(4%) 8(8%)</td>
<td>5% (114V), 10% (108V)</td>
<td>0.08%</td>
<td>9</td>
</tr>
<tr>
<td>Sutton</td>
<td>29(6%)</td>
<td>5% (114V)</td>
<td>2.3%</td>
<td>1</td>
</tr>
<tr>
<td>Madison Sq.</td>
<td>1(4%)</td>
<td>5% (114V)</td>
<td>0.08%</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. Geographical voltage distribution in Madison Square network for 4% voltage reduction of the peak hour of the year with three voltage violations detected exceeding 5% (under 114 V). Only one DG allocated on the structure point under voltage violation. Underlying map ©2014 by Google.

Fig. 6. Geographical voltage distribution in Sutton network for 6% voltage reduction of the peak hour of the year with 62 voltage violations detected of over 5% (under 114 V). Twenty nine localized DG allocated on structure points under voltage violation. Underlying map ©2014 by Google.
Fig. 7(a) shows the voltage profile of all loads in Yorkville network. With 0.5% (1.25 MW) DG penetration of the total network peak demand (250 MW), 26 violations of 5% (under 114 V) and 8 violations of 10% (under 108 V) for 4% and 8% voltage reduction levels, respectively, are now removed. Similar analysis is shown for Madison Square network during peak demand (307 MW) with one DG to solve violations of 5% and 10% occurred in 4% and 8% voltage reductions. Finally, the proposed DG allocation is also applied to Sutton network (141.7 MW peak demand) to solve 62 violations of under 114 V for the 6% voltage reduction using only 2.3% DG penetration.

Fig. 7 Comparison of voltage profile for loads at 120 V without DG penetration (dash dotted lines) and with DG penetration. Results are shown for the base case with no voltage reduction; 4% and 8% CVR; (a) for Yorkville; (b) Madison Square; (c) Sutton with no voltage reduction and 6% CVR.

Fig. 7(b) shows improvements in the voltage profile for the same DG allocation by modifying the tap setting such that it considers the new power factor of the load in addition to the active power demand. The aforementioned cases show that distribution networks have not been designed for connecting large percentages of DG. This issue reveals that modification of the substation transformers setting is needed to achieve the desired results for large DG penetrations.

IV. EFFECT OF HIGH DG PENETRATION ON POWER FACTOR

In [16], it was shown that high penetration of randomly allocated DG results in over voltage and under voltage violations. It was also shown that 100% of the load could be fed from DGs when allocated in a way that the load is negated. In this section, it is shown how voltage reduction can be applied under high DG penetration.

With no DG, the total peak load demand of the Sutton network is 141.7 MW and the reactive power demand is 72.74 Mvar, giving a power factor of 0.89 lagging. The substation transformers setting is at 13.6 kV (see Table III). Let us assume a total power supplied by DGs at 24.73 MW and 3.17 Mvar at a power factor of 0.99 leading (which corresponds to 50% of light load). The new power demand seen by the substation is 116.97 MW and 69.57 Mvar at a power factor of 0.86. The power factor of the network has lowered from 0.89 to 0.86 due to the high penetration of DGs. The substation transformer setting for this demand is 13.5 kV (see Table III). However, the original tap settings were designed assuming a power factor of 0.89. At 0.86 power factor, more reactive power is supplied (in proportion) than originally foreseen, which causes a larger voltage drop in the feeders and offsets the effect of DG.

From Fig. 8(a) it can be seen that the voltage profile at this DG penetration level is becoming flatter, i.e. structure points that had lower voltages previously have a higher voltage now, while the structure points which had higher voltages previously now have a lower voltage. The decrease in voltage of structure points that were previously higher is caused by the lowering of transformer taps. This scenario is more favorable for a utility since the difference between highest voltage and lowest voltage is reduced, which allows the utility to control the voltage of the loads more effectively. The phenomenon of flattening of voltage profile is favorable at normal operation with no voltage reduction. However, when 8% voltage reduction on peak load demand hour is applied, more structure points violate the low voltage limit as can be seen in Fig. 8(a). Therefore, adding more DG will not improve voltage profile if no modification is made to the LDC settings.

Fig. 8(b) shows improvements in the voltage profile for the same DG allocation by modifying the tap setting such that it considers the new power factor of the load in addition to the active power demand. The aforementioned cases show that distribution networks have not been designed for connecting large percentages of DG. This issue reveals that modification of the substation transformers setting is needed to achieve the desired results for large DG penetrations.

Fig. 9 shows the power triangle of the network and the increase of the power angle due to high DG penetration. The original tap setting was designed assuming a power factor of 0.89. With DG penetration, the power factor of the system becomes smaller; hence a higher voltage at the substation is needed to compensate for the increased proportion of reactive power. This effect is further pronounced when the DG penetration is increased.
The study has also revealed new issues related to line drop compensation (LDC) settings when DG penetration increases. When the network’s power factor is reduced under high DG penetration, mitigation of the effects of the previous tap scheduling is needed to control the voltage of the loads efficiently.

VI. REFERENCES

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2015.2422308, IEEE Transactions on Power Delivery