The core of the major is a general, calculus based introductory sequence, followed by an introduction to modern physics, and then intermediate courses in the fundamentals, e.g., classical mechanics, electromagnetism, thermal physics and statistical mechanics, and quantum physics. You will be provided with a solid grounding in mathematics, in the humanities and social sciences, and have an ability to round out your education with 2 free electives. You will select the balance of your major courses from available elective offerings.

### Typical Course Schedule for the Bachelor of Science in Applied Physics

(for students who have entered prior to the fall 2009 semester)

#### Freshmen Year

*Fall Semester *

- 4 Credits Calculus I for Engineers MA-UY 1024
- This course covers library of Functions: functions of one variable. Limits, derivatives of functions defined by graphs, tables and formulas, differentiation rules for power, polynomial, exponential and logarithmic functions, derivatives of trigonometric functions, the product and quotient rule, the chain rule, applications of the chain rule, maxima and minima, optimization. MA 1324 is for students who wish to take MA 1024 but need more review of precalculus. MA1324 covers the same material as MA1024 but with more contact hours a week, incorporating a full discussion of the required precalculus topics.

Prerequisite: Placement Exam or MA-UY 912 or MA-UY 914. Corequisite: EX-UY 1 - 4 Credits General Chemistry for Engineers CM-UY 1004
- This is a one-semester introductory course in general chemistry. It covers chemical equations, stoichiometry, thermodynamics, gases, atomic and molecular structure, periodic table, chemical bonding, states of matter, chemical equilibrium, organic, inorganic and polymeric materials and electrochemistry.

Corequisite: EX-UY 1

EG 1004 Introduction to Engineering and Design, Credits: 4.00

- 4 Credits Writing & Humanities 1 EN-UY 1014
- Freshmen Seminar SL-UY 1010

*Spring Semester*

- 4 Credits Calculus II for Engineers MA-UY 1124
- This course covers definite integrals, theorems about integrals, anti-derivatives, second fundamental theorem of calculus, techniques of integration, introduction to ordinary differential equations, improper integrals, numerical methods of integration, applications of integration, sequences, series, power series, approximations of functions via Taylor polynomials, Taylor series.

Prerequisites: MA-UY 1024 or MA-UY 1324 (B or better) or MA-UY 1022 or MA-UY 1322 (B or better).

Corequisite: EX-UY 1. - 4 Credits Introductory Physics I PH-UY 1004
- This course is the first of a two-semester integrated lecture and laboratory sequence in general physics for science and engineering students. One-dimensional motions. Vectors and two-dimensional motions. Newton’s laws of motion. Conservation of energy and momentum. Rotational motions. Gravity. Statics and elasticity. Fluids. Oscillations. Heat and the laws of thermodynamics.

Prerequisite: MA-UY 1024 or an approved equivalent. Co-requisite: MA-UY 1124 or an approved equivalent, and EX-UY 1 - 4 Credits Introduction to Programming & Problem Solving CS-UY 1114
- This course introduces problem solving and computer programming and is for undergraduate Computer Science and Computer Engineering majors who have limited prior experience in programming in any language. The course covers fundamentals of computer programming and its underlying principles using the Python programming language. Concepts and methods introduced in the
course are illustrated by examples from various disciplines. ABET competencies: a,b,c, e, f, g, k

Corequisite: EX-UY 1 - 4 Credits Writing & Humanities 2 EN-UY 1204

#### Sophomore Year

*Fall Semester*

- 2 Credits Elements of Linear Algebra I MA-UY 2012
- This course introduces vector concepts. Linear transformations.Matrices and Determinants. Characteristic roots and eigenfunctions.

Prerequisite: MA-UY 1124 or equivalent. - 2 Credits Ordinary Differential Equations MA-UY 2132
- This course covers first order differential equations: modeling and solving. Stability of autonomous equations. Higher order linear ordinary differential equations: Solution bases, Wronskian and initial value problems. Linear system of first-order differential equations with constant coefficients: Elimination and eigenvalue method of solution. Elementary concepts of numerical analysis. Numerical solution of initial value problems for ordinary differential equations.

Prerequisite or Corequisite: MA-UY 2012. - 4 Credits Introductory Physics II PH-UY 2004
- This is the second course of a two-semester, integrated lecture and laboratory sequence in general physics for science and engineering students. Electric forces and fields. Electric potential and capacitance. Electric current. Magnetic forces and fields. Faradays law and inductance. Maxwell’s equations. Mechanical and electromagnetic waves. Geometrical optics. Interference and diffraction.

Prerequisites: PH-UY 1004, MA-UY 1124 or an approved equivalent. Corequisite: EX-UY 1

HU 2104 Modern World History, Credits: 4.00

Free Elective

- Chemical Laboratory Safety CM-GY 5040
- This course discusses problems of health and safety in chemical laboratories, including how to work safely with dangerous chemicals. This course must be completed by graduate and undergraduate chemistry students before they begin laboratory research.

*Spring Semester*

- 2 Credits Multivariable Calculus A MA-UY 2112
- This course introduces Multivariable Calculus. Analysis of functions of several variables, vector valued functions, partial derivatives and multiple integrals.

Prerequisite: MA-UY 2012. - 2 Credits Multivariable Calculus B MA-UY 2122
- This course continues Multivariable Calculus. Optimization techniques, parametric equations, line integrals, surface integrals and major theorems concerning their applications.

Prerequisite: MA-UY 2112. - 4 Credits Introduction to Modern and Solid State Physics PH-UY 2344
- Special theory of relativity, Michelson Morley experiment. Planck’s quantum hypothesis, photoelectric effect, Compton effect, Rutherford scattering, Bohr’s atom, DeBroglie wavelength, electron diffraction, wave function, uncertainty principle, Schrodinger equation. Application to: square well potential, one electron atom. Atomic nucleus, fission and fusion. Energy bands in a periodic lattice, Kronig Penney model, valence, conduction bands, impurity states, electron mobility. Semiconductor properties. Introduction to superconductivity; electron pairs, energy gap, Josephson effect.

Prerequisites: PH-UY 2023 and MA-UY 2034; Co-requisite: PH-UY 2033. - 4 Credits Analytical Mechanics PH-UY 2104
- The course covers statics by virtual work and potential energy methods. Stability of equilibrium. Particle dynamics, harmonic oscillator and planetary motion. Rigid body dynamics in two and three dimensions. Lagrangian mechanics. Dynamics of oscillating systems.

Prerequisite: PH-UY 2023; Co-requisite: MA-UY 2034

PH 2/3*** PH Elective

#### Junior Year

*Fall Semester*

- 2 Credits Data Analysis I MA-UY 2212
- This course covers basic theory of probability. Random variables. Distributions. Expectation. Functions of a random variable. Descriptive statistics. Data description. Sampling distributions. Use of statistical software is integrated with previous topics.

Prerequisite: MA-UY 1124 or equivalent. - 2 Credits Data Analysis II MA-UY 2222
- This course covers point and interval estimation. Hypothesis testing. Linear regression. One-way analysis of variance. Use of statistical software is integrated with the previous topics.

Prerequisite: MA-UY 2212. - 4 Credits Electricity and Magnetism PH-UY 3234
- The course covers properties of the electrostatic, magnetostatic and electromagnetic field in vacuum and in material media. Maxwell’s equations with applications to elementary problems.

Prerequisites: PH-UY 2033 and MA-UY 2114.

PH 2/3*** PH Elective

HuSS Elective

*Spring Semester*

MA 3*** Math Elective

PH 3/4*** PH Elective

Free Elective

HuSS Elective

#### Senior Year

*Fall Semester*

MA 3/4*** Math Elective

- 4 Credits Introduction to the Quantum Theory PH-UY 4364
- The course introduces quantitative introduction to the quantum theory, which describes understanding light, electrons, atoms, nuclei and solid matter. Superposition principle, expectation values, momentum operator and wave function, duality, current vector, Hermitian operators, angular momentum, solution of the radial equation, electron in a magnetic field, perturbation theory, WKB approximation, identical particles. Applications include alpha decay, electrons in a periodic lattice, hydrogen spectrum, helium atom, neutron-proton scattering, and quark model of baryons.

Prerequisites: PH-UY 2344, MA-UY 2114, and MA-UY 2224. - 2 Credits Introduction to Senior Project in Physics PH-UY 4902
- A qualified senior physics student or group of students work with a faculty member (and possibly graduate students) on an advanced problem in physics. In this introductory phase the student(s) and adviser select a suitable theoretical or experimental problem in the subject area and use various resources to solve it.
- 2 Credits Senior Seminar in Physics PH-UY 4912
- Senior physics students, in consultation with the instructor, study and prepare presentations on several current research topics in the general area of interdisciplinary physics. Students’ performance is based on the mastery of the material chosen and also on the quality of the presentation made to the instructor and the seminar members.

PH 3/4/5*** PH Elective

*Spring Semester*

- 4 Credits Thermodynamics and Statistical Physics PH-UY 4124
- The course covers fundamental laws of macroscopic thermodynamics, heat, internal energy and entropy. Topics include an introduction to statistical physics, and applications of Maxwell, Fermi-Dirac and Bose-Einstein distributions.

Prerequisites: PH-UY 2344, MA-UY 2114, and MA-UY 2224. - 4 Credits Senior Project in Physics PH-UY 4904
- In the project’s concluding phase, senior physics students or group of students work with a faculty member (and possibly graduate students) to solve an advanced problem in interdisciplinary physics. The conclusion of the project is a written report and an oral presentation made to the supervising faculty.

PH 4/5*** Elective

HuSS Elective

**Total credits required for graduation: 128**

Follow Us:Facebook Twitter InstagramYouTube