Low-frequency noise in irradiated graphene FETs
Ting Wu, Abdullah Alharbi, Takashi Taniguchi, Kenji Watanabe, and Davood Shahrjerdi

Citation: Appl. Phys. Lett. 113, 193502 (2018); doi: 10.1063/1.5051658
View online: https://doi.org/10.1063/1.5051658
View Table of Contents: http://aip.scitation.org/toc/apl/113/19
Published by the American Institute of Physics
Low-frequency noise in irradiated graphene FETs

Ting Wu, Abdullah Alharbi, Takashi Taniguchi, Kenji Watanabe, and Davood Shahrjerdi

Department of Electrical and Computer Engineering, New York University, Brooklyn, New York 11201, USA
Advanced Materials Laboratory, National Institute of Materials Science, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan
Center for Quantum Phenomena, Physics Department, New York University, New York, New York 10003, USA

(Received 10 August 2018; accepted 22 October 2018; published online 7 November 2018)

We present a quantitative analysis of the low-frequency noise in irradiated monolayer graphene. In this study, we repeatedly irradiate a back-gated graphene transistor with argon ions at 90 eV and measure its low-frequency noise and channel conductivity after each irradiation. Our results indicate that the noise amplitude decreases monotonically with the increasing density of vacancy defects. The combination of our low-frequency noise measurements and carrier transport studies reveals that the mobility fluctuation model can explain this observation and that the density of vacancy defects, the density of charged impurities, and the mean free path of charge carriers determine the noise amplitude. Published by AIP Publishing. https://doi.org/10.1063/1.5051658

Owing to its unique properties, graphene has been explored for a variety of device applications from radio-frequency (RF) transistors to biochemical sensors. In almost all applications, the low-frequency noise characteristics of graphene are central to the device performance. For example, an up-conversion of the low-frequency noise in a RF transistor can contribute to the phase noise at the carrier frequency. Furthermore, the amplitude of the low-frequency noise determines the detection limit of transistor-based biochemical sensors. Therefore, to reduce its detrimental effect on the device performance, previous studies have extensively investigated the sources of low-frequency noise in graphene transistors. Among those, a recent study has shown that creating defects through electron-beam (e-beam) irradiation of monolayer graphene can reduce the amplitude of the low-frequency noise and that the mobility fluctuation model can explain this observation. This method of noise reduction can particularly be an attractive choice for some device applications, where the graphene mobility is not a critical factor, e.g., in biochemical sensors. Obtaining quantitative insights into this phenomenon is therefore essential for using this method in a device technology.

Here, we present a quantitative study of the low-frequency noise in irradiated graphene. To create vacancy defects, we bombarded monolayer graphene using low-energy (90 eV) argon (Ar) ions. Our device characterization results confirm that this irradiation process uniformly creates neutral defects that are short-range resonant-like scatterers in monolayer graphene. To mitigate the effect of charged-impurity Coulomb (long-range) scattering originating from an oxide substrate (e.g., SiO2), we fabricated the graphene devices on a hexagonal boron nitride (h-BN) support substrate. To analyze the measured low-frequency noise of the irradiated graphene, we examined the carrier transport at different defect densities and then applied those findings to the mobility fluctuation model. Our analysis reveals that the density of vacancy defects, the density of charged impurities, and the mean free path of charge carriers determine the noise amplitude in our irradiated graphene.

In our experiments, we fabricated four-point back-gated field-effect transistors (FETs) from monolayer graphene, where graphene was grown on a copper foil by chemical vapor deposition (ACS material). Figure 1(a) shows the schematic of the device cross-section. The fabrication process began with the chemical removal of the copper foil, followed by the graphene transfer onto a p-type Si substrate covered with 285 nm SiO2. Using nanofabrication, the transferred graphene film was then patterned into small islands. In parallel, h-BN flakes were mechanically exfoliated onto another SiO2/Si substrate. Next, we used a stamp-assisted transfer method for constructing graphene-BN structures onto a fresh SiO2/Si substrate from the samples containing individual graphene islands and h-BN flakes. After the stacking process, we performed ultrahigh vacuum annealing at 300 °C. C/Cu (5/50 nm) metal electrodes were then formed using a combination of e-beam lithography, e-beam evaporation, and metal lift-off. Finally, the active region of the FETs was defined by e-beam lithography, followed by patterning the excess graphene in an oxygen plasma. Figure 1(b) shows the top-view optical image of a final device.

After the fabrication process, we repeatedly bombarded a candidate graphene device with low-energy Ar ions at 90 eV. Previous studies have shown that this ion energy generates mostly single vacancies in graphene and that those defects add localized energy states at the Dirac point. Each irradiation treatment increased the density of vacancy defects in the graphene FET. We then measured the electrical characteristics (specifically, intrinsic channel conductance and low-frequency noise characteristics) of the device in between each treatment. Through these experiments, we obtained a comprehensive set of conductivity and noise data for irradiated graphene with different defect densities. We analyzed this dataset to gain quantitative insights into the low-frequency noise characteristics of the irradiated graphene.

To quantify the defect density after each irradiation, we used Raman spectroscopy. Figure 1(c) shows the Raman

Electronic mail: davood@nyu.edu
spectra taken from the channel region of our candidate graphene device after each irradiation. We estimated the average density of point defects \(n_D \) using the theoretical method by Cancado et al.\(^{23} \) Specifically, this method estimates the average distance between point defects \(L_D \) from the area ratio of the D and G peaks and the line width of the G-band. In our study, we covered a wide range of point defect densities \(n_D = L_D^2 \) from \(D_1 = 4 \times 10^{10} \) to \(D_6 = 1 \times 10^{12} \, \text{cm}^{-2} \). Moreover, in our CVD graphene films, the density of line defects (e.g., grain boundaries) is small and falls below the measurable limit of the Raman technique. Therefore, in this study, we ignored the effect of the line defects on the transport properties of the charge carriers and on the low-frequency noise characteristics of our graphene devices.

Next, we measured the low-frequency noise characteristics of the candidate graphene FET after each irradiation. Figure 2(a) shows the normalized current noise power density \(S_{n}/f^2 \) measured at the Dirac point voltage \((V_{\text{BG, Dirac}}) \). Consistent with a previous report by Hossain et al.,\(^{15} \) we observed a monotonic reduction of \(S_{n}/f^2 \) with the increasing defect density. Furthermore, the measured noise characteristics of the device showed a 1/f dependency. We then calculated the noise amplitude \(A \) from the measured spectral noise density of the irradiated graphene at different defect densities using\(^{15,17} \)

\[
A = \frac{1}{M} \sum_{j=1}^{M} f_j \times \left(\frac{S_j}{f^2} \right),
\]

where \((S_{n}/f^2) \) is the normalized noise power density measured at the frequency \(f_j \) and \(1 \leq f_j \leq 100 \, \text{Hz} \). From the noise measurements, we found that the noise amplitude of the graphene FET gradually reduces after each irradiation, as shown in Fig. 2(b). Previous research suggests that the mobility fluctuation model of the low-frequency noise can explain this phenomenon.\(^{15} \) Therefore, we used the mobility fluctuation model, discussed next, to analyze the observed reduction of the noise amplitude.

In our noise analysis, we assumed that the mobility fluctuation in the channel of the irradiated graphene FET is the only major source of the measured 1/f noise. Therefore, we neglected the contribution from the other possible sources of noise (e.g., contact resistance). We show the validity of this assumption later in this study. Accounting for the two-dimensional structure of graphene in the mobility fluctuation model,\(^{24} \) we can write the following expression for the normalized spectral noise density of an elemental fluctuation event with a characteristic time of \(\tau \)

\[
\frac{S_{k}}{f^2} = \frac{4N_{\mu} \tau \psi (1 - \psi)}{W \cdot L \cdot 1 + (2\pi f \tau)^2} \left(\sigma_2 - \sigma_1 \right)^2,
\]

where \(N_{\mu} \) is the density of a given scattering center per unit area that causes the change in the capture radius \(\sigma_1, \psi \) is the probability of the scattering center to be in a state with a capture radius of \(\sigma_1 \), \(W \cdot L \) represents the channel area of the FET, and \(l_0 \) is the mean free path of the charge carriers in graphene. From Eq. (2), each fluctuation event is described by a Lorentzian. The superposition of these elemental events with different time constants yields the 1/f noise due to the mobility fluctuation. To gain quantitative insights into the noise amplitude, next we examined the transport properties of our irradiated graphene.

To analyze the carrier transport in the irradiated graphene, we used a combination of four-point measurements and modeling of the intrinsic channel conductivity. From this exercise, we aimed to find two important details about the transport properties of the carriers. The first one is to determine the type of the dominant scattering center in the irradiated graphene device. Having identified the type of those scattering centers, the second goal is to estimate the mean free path of the carriers. In Fig. 3(a), the solid curves are the measured intrinsic channel conductivity \([G^{-1} = (W/L) \cdot (V_X - V_Y)/I_x] \), see Fig. 1(a)] of the graphene FET after each irradiation step. Two key observations can be made from the conductivity plot. First, the minimum conductivity, which occurs at the Dirac point voltage,
Consequently, should not break the electron-hole charge symmetry. Wave vector, and charged impurities also create electron-hole puddles in graphene. Moreover, previous studies have shown that resonant-like characteristics. By modeling each vacancy in graphene, resulting in a conductivity. Defects estimated from the Raman measurements. Furthermore, we evaluated the effects of both charged impurities and vacancy defects on the graphene conductivity, we used the Matthiessen rule

$$G = \left(\frac{1}{G_C} + \frac{1}{G_D} \right)^{-1} \cdot$$

We then used the above equation to fit the measured channel conductivity curves in Fig. 3(a). To do so, we used R and n_C as the fitting parameters and replaced n_D with the density of defects estimated from the Raman measurements. Furthermore, we evaluated n_{tot} using

$$n_{tot} = \sqrt{(n_{min}^2 + n[V_{BG}])^2},$$

where $n[V_{BG}]$ was obtained from

$$V'_{BG} = V_{BG} - V_{BG,Dirac} = \frac{e}{C_{ox}} n + \frac{\hbar v_F \sqrt{n}}{e}.$$

In this equation, n, C_{ox}, and v_F represent the charge carrier density induced by the back-gate bias, the oxide capacitance, and the Fermi velocity. In our calculations, we used $C_{ox} = 1.2 \times 10^{-8}$ F/cm2 and $v_F = 1.1 \times 10^6$ cm/s. We obtained reasonable fits to the measured conductivity data using Eq. (5), the symbols in Fig. 3(a).

Table I shows the summary of the curve fitting results for the different irradiation conditions. From the data, it is evident that while n_D of the graphene FET was varied by almost 25 times, n_{min} changed only by about a factor of 3, indicating that the defects generated by the irradiation process are neutral. In particular, n_{min} remained nearly unchanged for the irradiation conditions of D1–D4, but the gradual increase in n_{min} beyond D4 is noticeable. We speculate that beyond this irradiation condition, the Ar bombardment began to damage the underlying h-BN substrate, creating additional charged impurities. Furthermore, we found that all the measured conductivity curves can only be fitted using a scattering range (R) of 0.9–1.2 Å, which satisfies the requirement of the resonant impurity model, i.e., $a \approx R \ll 1/k_F$. These two observations validate our use of Eq. (4) for estimating the graphene conductivity due to the defects generated by the irradiation process.

Having established that the carrier transport in our irradiated graphene device, at least at low carrier densities, is have a range much shorter than the Fermi wavelength and possibly on the order of the graphene lattice constant a, i.e., $a \approx R \ll 1/k_F$.

In the case of the irradiated graphene, one must also account for the effect of vacancy defects on the conductivity. Previous theoretical studies have predicted that vacancies in monolayer graphene yield scattering centers that have resonant-like characteristics. By modeling each vacancy defect as a potential well of radius R, the conductivity of graphene due to these defects can be obtained from

$$G_D = \frac{2e^2 n_D}{\pi \hbar n_D} \ln^3(k_F R),$$

where n_D is the defect density, $k_F (= \sqrt{\pi n_D})$ is the Fermi wave vector, and R is the range of the scattering center. To apply this resonant impurity model, defects must satisfy two requirements. First, defects must be neutral, that is, they should not break the electron-hole charge symmetry. Consequently, n_{min} remains unchanged with the increasing defect density. Second, the resulting scattering centers must

![Graph](image)

FIG. 3. (a) Intrinsic conductivity of the irradiated graphene device for six different defect densities. Solid lines represent the measured data. The symbols are the fits to the experimental data using Eq. (5). (b) Mean free path of carriers decreased with the increasing defect density.

<table>
<thead>
<tr>
<th>Condition</th>
<th>n_D (cm$^{-2}$)</th>
<th>n_C (cm$^{-2}$)</th>
<th>n_{min} (cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.4×10^{11}</td>
<td>0.9×10^{12}</td>
<td>2.3×10^{11}</td>
</tr>
<tr>
<td>D2</td>
<td>1.7×10^{11}</td>
<td>1.1×10^{12}</td>
<td>2.6×10^{11}</td>
</tr>
<tr>
<td>D3</td>
<td>2.0×10^{11}</td>
<td>1.6×10^{12}</td>
<td>3.4×10^{11}</td>
</tr>
<tr>
<td>D4</td>
<td>3.6×10^{11}</td>
<td>1.7×10^{12}</td>
<td>3.5×10^{11}</td>
</tr>
<tr>
<td>D5</td>
<td>5.9×10^{11}</td>
<td>2.5×10^{12}</td>
<td>4.5×10^{11}</td>
</tr>
<tr>
<td>D6</td>
<td>10×10^{11}</td>
<td>4.4×10^{12}</td>
<td>7.1×10^{11}</td>
</tr>
</tbody>
</table>
can explain the noise amplitude of our irradiated graphene. This observation suggests that the mobility fluctuation model of graphene, resulting in

\[I_0 = \sqrt{\frac{n_{\text{min}}}{\pi}} \left(\frac{\pi n_D}{\ln^2(k_F n_R)} + n_C \Gamma(2r_f) \right)^{-1} \].

Figure 3(b) shows the calculated mean free path for the irradiation conditions D1–D6. In this plot, \(G_{\text{min}}\) is the measured conductivity at the Dirac point and \(k_F n_{\text{min}} = \sqrt{\pi n_{\text{min}}}\) was calculated using the corresponding \(n_{\text{min}}\) data in Table I. As expected, the mean free path decreased monotonically with the increasing defect density in graphene.

Next, we revisited the noise amplitude data in light of the above analysis of the carrier transport in the irradiated graphene. Assuming that the mobility fluctuation is the dominant source of noise in our irradiated graphene, we can simply use Eq. (8) to substitute \(I_0\) in Eq. (2). However, less understood for further analysis of the graphene noise using the mobility fluctuation model is the quantification of the density of scattering centers that contribute to the mobility fluctuation [i.e., \(N_{\text{tp}}\) in Eq. (2)]. Interestingly, we found that the plot of the noise amplitude data for D1–D6 as a function of \((n_C + n_D)^{1/2}\) as shown in Fig. 4(a), follows a linear trend. This observation suggests that the mobility fluctuation model can explain the noise amplitude of our irradiated graphene and that \(N_{\text{tp}}\) in our irradiated graphene is proportional to the total density of charged impurities and vacancy defects. The apparent linear trend of the noise data in Fig. 4(a) also suggests that although the carrier scattering mechanisms by the charged impurities and the vacancy defects are different from one another, their effects on the mobility fluctuation in the measured frequency band are similar. Although we currently do not understand the underlying physics of the linear trend in our data, our observation may provide a basis for future investigations into the origin of this phenomenon.

Finally, we comment on the contribution of the metal contact resistance to the overall low-frequency noise in our graphene device and show that it is negligible. The normalized noise power density due to the contributions of the graphene channel and the contacts is given by

\[S_f = \frac{S_{\text{RC}} R_{\text{CH}}^2}{R_{\text{CH}}^2 R_{\text{tot}}^2} + \frac{S_{\text{RC}} R_C^2}{R_C^2 R_{\text{tot}}^2}, \]

where \(S_{\text{RC}} R_{\text{CH}}^2\) and \(S_{\text{RC}} R_C^2\) are the noise spectral density of the channel resistance and the contact resistance fluctuations, respectively. Furthermore, \(R_{\text{CH}}\), \(R_C\), and \(R_{\text{tot}}\) denote the resistance of the graphene channel, the contact resistance, and the total resistance (i.e., \(R_{\text{CH}} + R_C\)). In our analysis, we determined these resistances from the four-point measurements. From those measurements, we found that the contribution of \(R_C\) to the total resistance in all cases was less than 15%. Figure 4(b) shows the summary of our analysis for the irradiation condition D5. This condition represents the worst-case scenario since \(R_C R_{\text{tot}} = 0.15\). To fit the experimental data, we found \(S_{\text{RC}}/R_{\text{CH}}^2\) and \(S_{\text{RC}}/R_C^2\) at each back-gate voltage based on a minimum mean-square error estimation. The results in Fig. 4(b) confirm the validity of our earlier assumption, where we ignored the contribution of the contact noise for analyzing the noise amplitude of our irradiated graphene FET.

In conclusion, our study indicates that the mobility fluctuation model of the low-frequency noise can explain the reduction of the noise amplitude in our irradiated graphene. We find that the density of the scattering centers that are responsible for mobility fluctuation appears to be proportional to the total density of charge impurities and vacancy defects. The findings of our study may be used as a basis for developing a predictive noise model that allows the precise engineering of the low-frequency noise of graphene FETs through irradiation.

This work was supported by the NSF (Grant Nos. CMMI-1728051 and MRI-1531664) and the Gordon and Betty Moore Foundation (Grant No. GBMF 4838). This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. We acknowledge the Surface Science Facility of CUNY Advanced Science Research Center.

