

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

Session 2220

Development of a Matlab-Based Graphical User Interface

Environment for PIC Microcontroller Projects

Sang-Hoon Lee, Yan-Fang Li, and Vikram Kapila

Department of Mechanical, Aerospace, and Manufacturing Engineering
Polytechnic University, Brooklyn, NY 11201

Email: [slee05@utopia, yli14@utopia, vkapila@duke].poly.edu

Abstract

Peripheral Interface Controllers (PICs) are inexpensive microcontroller units with built-in
serial communication functionality. Similarly, Matlab, a widely used technical computing
software, allows serial communication with external devices. In addition, Matlab provides
graphical design tools such as Simulink and Dials and Gauges Blockset. This paper exploits the
serial communication capability of PIC microcontrollers and the Matlab software along with
graphical design tools of Matlab to create a Matlab-based graphical user interface (GUI)
environment for PIC microcontroller projects. Three examples are included to illustrate that the
integration of low-cost PIC microcontrollers with the Matlab-based GUI environment allows
data acquisition, data processing, data visualization, and control.

1. Introduction

Peripheral Interface Controllers (PICs), developed and marketed by Microchip
Technology, Inc. [1], are inexpensive microcontroller units that include a central processing unit
and peripherals such as memory, timers, and input/output (I/O) functions on an integrated circuit
(IC). There are more than 100 varieties of PIC microcontrollers available, each providing
functionality for different types of applications [2], making PICs one of the most popular
microcontrollers for educational, hobby, and industrial applications. Similar to other
microcontrollers, PICs are usually not designed to interface with human beings; instead they are
directly embedded into automated products/processes. Thus, graphical user interface (GUI)
capabilities, which have become a mainstay of many personal computer (PC) applications, are
nonexistent for PICs.

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

Endowing PIC-based projects with GUI tools can speed the development process in data
driven applications such as feedback control, smart sensors, etc. Microchip Technology’s
emulator and debugger products (e.g., MPLAB IDE, MPLAB-ICE) are very helpful in
debugging PIC source code and emulating user-written programs. However, these tools do not
provide data co-processing and advanced data visualization capabilities.

Fortunately, PIC microcontrollers include serial communication functionality to facilitate
data communication with external devices such as analog-to-digital converters (ADC), 1-wire
sensors, etc. Similarly, Matlab, a commercially available interactive mathematical programming
software, also provides serial data communication functionality on PCs. In addition, Simulink,
Matlab’s interactive icon-based programming environment, enables users to simulate and
analyze dynamic system models. Finally, the Dials and Gauges Blockset of Simulink allows
users to embed control objects (e.g., sliders, knobs) and display objects (e.g., graphs, gauges) in
Simulink models to develop an interactive GUI environment. In this paper, we exploit the serial
communication functionality of Matlab to enable a PC to communicate with PIC
microcontrollers to transmit control commands and receive sensory data. In addition, we utilize
Matlab, Simulink, and Dials and Gauges Blockset to develop an interactive GUI environment for
PIC projects, allowing enhanced data processing and visualization.

In this paper, we use a PIC16F74, 40-pin, 8-bit CMOS FLASH dual inline package IC.
To facilitate serial communication between PIC and PC, we interface a RS232 driver/receiver
with the PIC16F74. The effectiveness of our Matlab-based GUI environment to interact with PIC
microcontroller projects is demonstrated by using three examples: (1) export user commands
from a Simulink GUI to an actuator interfaced to the PIC, (2) import signals from a sensor
interfaced to the PIC into a Simulink GUI, and (3) use Simulink GUI to export user commands to
the PIC and import sensory data from the PIC to control a device and monitor its status.

2. Hardware Environment

The hardware environment for this paper consists of a PIC microcontroller, a PC, a
RS232 driver/receiver, and a DB-9 serial cable. The PIC microcontroller is interfaced with
external devices such as sensors (e.g., photoresistors) and actuators (e.g., servomotors). In
addition, the PIC microcontroller performs embedded computing. The PC is used to write user
specified embedded programs to be executed by the PIC microcontroller. Furthermore, the PC
hosts an interactive GUI for the user to manipulate control variables and visualize sensory data.
The PIC microcontroller and the PC communicate using a serial interface. A PIC development
board (see section 2.4) and a light refraction experiment test bed (see section 2.5) are used to
illustrate our PIC-based data acquisition and control approach.

2.1. Peripheral Interface Controller

PIC microcontrollers are small, low-cost controllers that include a processor and a variety
of peripherals. PICs are significantly easier to use vis-à-vis embedded microprocessors. As an

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

example, users can assign desired functionality (e.g., ADC, USART1) to I/O pins of PICs. PICs
can be operated at various clock speeds (32 kHz to 20 MHz). PIC’s memory architecture
separates its data memory from its program memory with the program memory available as One-
Time Programmable (OTP), Erasable Programmable Read-Only Memory (EPROM), or FLASH.
PICs are programmed in the PIC assembly language using a 35 single-word instruction set. See
[3] for more details on hardware and software features of PIC microcontrollers.

The user specified embedded PIC program is written on the PC and downloaded from the
PC to the PIC microcontroller using the DB-9 serial cable connection between the PC and a PIC
Development Programmer on which the PIC microcontroller is installed. Commonly available
PIC Development Programmers include PICSTART Plus [4] from Microchip, Inc., and PIC-
PG2B, a handy, low-cost programmer [5] from Olimex Ltd., among others. In this paper, we use
the PICSTART Plus programmer that requires MPLAB Integrated Development Environment, a
free software available on the Microchip website, for programming PICs.

In this paper, we employ a PIC16F74, a 40-pin CMOS FLASH-based, 8-bit, mid-range
(14-bit instruction word length) microcontroller (see Figure 1). PIC16F74 has 4 Kbytes of
FLASH program memory and 192 bytes of data memory. Furthermore, it has 33 digital I/O pins
organized in 5 groups of I/O ports that can be assigned as 8-bit ADC, Capture/Compare/PWM2
(CCP), the 3-wire Serial Peripheral Interface (SPI), the 2-wire Inter-Integrated Circuit (I2C) bus,
USART ports, etc. We use an external 20 MHz high-speed crystal oscillator to supply operating
clock cycles. The PIC16F74 can be powered using a wide range of voltage sources, e.g., 2-volt
direct current (VDC) to 5.5VDC, and each of its I/O pin can sink or source up to 25mA of
current. It is ideal not only for laboratory data acquisition (the application considered in this
paper), but also for automotive, industrial, and consumer applications.

2.2. Personal Computer

In this paper, an IBM-compatible Pentium 3 PC running Microsoft Windows NT 4.0
operating system is used. As previously mentioned, the PC is used to write, debug, and download

1 Universal synchronous/asynchronous receiver and transmitter.
2 Pulse width modulation.

(a)

(b)

Figure 1: (a) PIC16F74 (b) Pin diagram of PIC16F74

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

embedded PIC programs. One of the serial ports on the PC is reserved for serial communication
with the PIC microcontroller. MPLAB, Matlab (version 6.1), Simulink, and Dials and Gauges
Blockset are installed on the PC. Control variables are manipulated via the PC by interacting
with control panels embedded in the Simulink program. In addition, all experimental data is
collected and displayed on the PC in display panels embedded in the Simulink program.

2.3. RS232 Driver/Receiver

MAX232 (see Figure 2) is a 2-channel, RS232 driver and receiver manufactured by
Maxim Integrated Products, Inc. It requires a 5VDC power supply and converts voltage levels
between PC-based logic and PIC microcontroller-based logic. Specifically, whereas the voltage
levels of logic high and logic low for the PC correspond to –12VDC and 12VDC, respectively,
like many other microcontrollers the logic high and low for the PICs correspond to 5VDC and
0VDC, respectively. The MAX232 is used with five 1µF capacitors to adjust the voltage level
differences between the PC-based logic and the PIC-based logic. See [6] for more details of the
MAX232 hardware features.

2.4. PIC Development Board

The PIC development board (see Figure 3) consists of a sensor (photoresistor), a 3-pin
header for a servomotor connection, a 20MHz crystal oscillator, a MAX232 with five 1µF
capacitors, a PIC16F74 microcontroller, a breadboard, and two DB-9 connectors. The
photoresistor sensor provides light intensity measurement and is interfaced to a pin allocated as
an 8-bit ADC in port A of the PIC16F74 microcontroller. The circuit diagram of Figure 3(c)
illustrates how various sensors and actuators of the light refraction experiment test bed (see
section 2.5) are interfaced to the PIC microcontroller. The PIC transmits/receives sensory data
to/from the PC via the MAX232. A red reset button is connected to the Master Clear (MCLR)
pin of the microcontroller.

(a)

(b)

Figure 2: (a) MAX232 (b) Pin diagram of MAX232

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

2.5. Light Refraction Test Bed

The light refraction test bed (see Figure 4) is a mechatronics-aided physics experiment
developed under a National Science Foundation (NSF) sponsored Science and Mechatronics
Aided Research for Teachers (SMART) program [7] at Polytechnic University. This experiment
is designed to demonstrate the law of light refraction. It consists of a light source, a light sensor,
a linear potentiometer, two limit switches, a servomotor, a DC motor, a liquid reservoir, and
necessary circuitry. A liquid reservoir on the top of the test bed can store various liquid media
whose index of refraction needs to be determined. For simplicity, in this paper, we use water
from a water fountain as the test liquid.

(a)

(b)

(c)
Figure 3: (a) PC and PIC development board (b) Larger view of the PIC development board

(c) Circuit diagram of the PIC development board

Pentium class PC

DB-9 serial cable

DB-9 connector to
light refraction test bed

PIC

MAX232

Reset button

Photoresistor

3-pin
servomotor
connector

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

On one side of the tank, as shown in Figure 4(b), a laser pointer, used as the light source,

is mounted on the arm of the servomotor that sets the angular position of the light source to the
incidence angle specified by the user. On the other side of the tank, a general Cadmium Sulfide
(CdS) photoresistor, used as the light sensor, is mounted on the wiper of the linear potentiometer.
It monitors the refracted light coming out from the liquid reservoir (see Figure 5). A DC motor
drives the light sensor along the linear potentiometer by turning a motor shaft connected to a
brass screw rod thereby transforming rotary motion into linear motion. Limit switches at each
end of the linear potentiometer indicate sensor travel limit. The photoresistor and the linear
potentiometer output analog voltage signals between 0VDC and 5VDC.

3. Software Environment

The software environment for this paper consists of the PIC assembly language, Matlab,
Simulink, and Dials and Gauges Blockset. The PIC assembly language is a primitive
programming language consisting of a 35 single-word instruction set. Matlab is an interactive
technical computing software. Simulink is Matlab’s model-based, system-level, visual
programming environment that is widely used to simulate and analyze dynamic system models
using icon-based tools. Finally, the Dials and Gauges Blockset of Simulink provides an ability to

 (a) (b)

Figure 4: (a) Light refraction experiment test bed (b) Light source mounted on the servomotor

Figure 5: Detailed view of the light sensor traveling along the linear potentiometer

Light sensor

Limit switches
Linear

potentiometer

Light source

DC motor

Servomotor
ReservoirH-Bridge

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

embed visual, realistic-looking, virtual instrumentations in Simulink models. In this paper, these
software tools are judiciously synthesized to produce an effective, interactive GUI environment.
In the sequel, we summarize key instructions of the PIC assembly language and Matlab that
enable serial communication between PIC microcontroller and Matlab GUI running on the PC.

3.1. PIC Assembly Program

As indicated above, the PIC assembly language consists of a 35 single-word instruction
set (see datasheets [8] for details). The PIC data memory is partitioned into several banks (e.g., 5
banks for PIC16F74) that contain the general-purpose registers and the special-function registers.
The special-function registers are used to set up special operations (e.g., ADC, USART, and
PWM) and to watch the status of the special operations (e.g., the availability of transmission or
reception of the USART). Below, we review key PIC instructions and special function registers
used for serial communication functionality.

3.1.1. Key PIC instructions

BCF: Bit clear f
Syntax: [label] BCF f, b
BCF literally means that the bth bit in the register ‘f’ is cleared. BCF sets the bth bit in the register
‘f’ to zero, logic low.

BSF: Bit set f
Syntax: [label] BSF f, b
BSF instruction does the opposite of BCF, i.e., it sets the bth bit in the register ‘f’ to one, logic
high.

MOVLW: Move literal to w
Syntax: [label] MOVLW k
The literal ’k’ is loaded into the working register. The literal ‘k’ can be expressed in terms of an
8-bit binary, decimal, or hexadecimal number. For example, b’00101111’ in 8-bit binary is
equivalent to 0x2F in hexadecimal. Note that the prefixes b, 0x, and d declare the data type to be
binary, hexadecimal, and decimal, respectively.

MOVWF: Move w to f
Syntax: [label] MOVWF f
MOVWF transfers data from the working register to the specified register ‘f.’ Since the literal ‘k’
cannot be directly assigned into the specified register ‘f,’ the literal ‘k’ is first assigned to the
working register (e.g., MOVLW k) and then moved into the register ‘f’ (e.g., MOVWF f).

BTFSS: Bit test f, skip if set
Syntax: [label] BTFSS f, b

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

BTFSS checks the bth bit in the specified register ‘f,’ and executes the next instruction if this bit
is zero. Alternatively, if the bit is one, the next instruction is skipped, and the following
instruction is executed.

3.1.2. Special function registers used for serial communication functionality

MOVLW d’value’
MOVWF SPBRG
The special function register ‘SPBRG’ contains the user-specified baud rate for serial
communication. In particular, the command MOVLW d'129' places 129 in the working register.
Next, the command MOVWF SPBRG moves the content of the working register to the special
function register ‘SPBRG.’ The placement of ‘value’ 129 in the ‘SPBRG’ register sets the baud
rate to 9,600.

MOVLW b’clock source select bit, 9-bit transmit enable bit, transmit enable bit, usart mode
select bit, unimplemented, high baud rate select bit, transmit shift register status bit, 9th bit of
transmit data’
MOVWF TXSTA
The special function register ‘TXSTA’ contains information for the data-transmit status and
control in an 8-bit binary expression. In particular, the use of commands MOVLW b'00100100'
and MOVWF TXSTA, sets up the ‘TXSTA’ register to enable 8-bit, high speed asynchronous
serial data transmission.

MOVLW b’serial port enable bit, 9-bit receive enable bit, single receive enable bit, continuous
receive enable bit, unimplemented, framing error bit, overrun error bit, 9th bit of received data’
MOVWF RCSTA
The special function register ‘RCSTA’ contains information for the data-receive status and
control in an 8-bit binary expression. In particular, the use of commands MOVLW b'10010000'
and MOVWF RCSTA, sets up the ‘RCSTA’ register to enable 8-bit, continuous asynchronous
serial data reception.

3.2. Matlab Program

Matlab is a commercially available, widely used, interactive, technical computing
software. Matlab’s versions 6.1 and higher provide serial communication functionality. To
serially communicate with an external device from Matlab, the following steps need to be
performed. First, create a serial port object to identify the specific serial port of the PC connected
to the external device. In addition, specify how this serial port is to be configured (i.e., baud rate,
number of data bits, etc.). Second, connect the serial port object created above to the external
device. Third, send command signals to the external device and receive data from the external
device. Fourth, disconnect serial communication connection from the external device and close
the serial port object. Finally, release control of the serial port. Next, we list the key Matlab
instructions used for serial communication. See [9] for further details.

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

serial (the PC serial port, the baud rate, the number of data bits)
This command is used to create a new serial port object. In addition, it configures the serial port
properties. In this paper, we used the COM2 serial port of the PC with 9,600 baud rate.

fopen (object)
This command opens the serial port object just created and connects the PC to the external
device for actual serial communication.

fread/fwrite (object, size, precision)
The ‘fread’ command enables the PC to read binary data from the external device. Alternatively,
the ‘fwrite’ command enables the PC to send control data in binary format to the external device.

fclose (object)
This command closes the serial port object, thereby disconnecting serial communication between
Matlab and the external device.

freeserial(port)
Once Matlab establishes a data link with the serial port, it assumes complete control of the serial
port. The ‘freeserial’ command is used, after closing the port object using the ‘fclose’ command,
to force Matlab to relinquish control of the serial port. The command takes on one argument, the
port that was used for data communication. This command is executed from the Matlab
command line after the termination of experiment.

3.2.1. Simulink

Simulink is Matlab’s interactive, icon-based programming environment [10]. It enables
users to build block diagrams to simulate and analyze dynamic system models. Designers can
effortlessly transfer paper designs of dynamic systems into Simulink block diagrams. Simulink
block diagrams can be modified as easily as paper models of dynamic systems. In addition,
Simulink allows for detailed monitoring of dynamic system outputs at any point in the block
diagram using various tools (e.g., Scope, Display, etc.). Finally, data processing tasks such as
signal scaling, filtering, etc., can be easily performed in Simulink.

3.2.2. Dials and Gauges Blockset

The Dials and Gauges Blockset [11] provides enriched views of graphical, 3-D
instruments called virtual instruments. It has various templates that can be customized to create
realistic virtual instruments for electrical, aerospace, automotive, medical, and process control
systems. The virtual instruments created using the Dials and Gauges Blockset dynamically
interact with Matlab and Simulink, thus providing an interactive interface for users to enter
command inputs and visualize sensory outputs.

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

4. Examples of Serial Communication between PIC and PC

4.1. Serial Communication from PC to PIC: Servomotor Position Control

This example illustrates one-directional serial communication from the PC to the PIC
microcontroller. In particular, it demonstrates that the user commands from a Simulink block
diagram can be exported to an actuator interfaced to the PIC microcontroller. The example
focuses on servomotor position control.

The Simulink block diagram for this example is shown in Figure 6. It consists of a dial,
from the Dials and Gauges Blockset, denoted as the servo angle knob. The user interacts with the
dial to enter servomotor position control command. The dial has a range from 0 to 90 degrees
with one-degree resolution. The value of the angle commanded by the user is shown in the
middle of the knob. The Matlab m-function block next to the knob contains a Matlab m-file to
perform serial communication from the PC to the PIC. The user specified servomotor position
control command is transmitted to the PIC via a serial cable connection between the PC and the
PIC. When the PIC receives the command angle, it assigns the angle to a variable in the PIC
code. Next, the PIC utilizes the command angle to compute, generate, and apply pulse trains for
servomotor position control. In this example, we used a 6VDC standard servomotor that is
interfaced to the 3-pin servomotor connection header on the PIC development board (see Figure
3). The PIC assembly code corresponding to this example is available in Appendix A.

%Matlab function serial_out.m for serial communication from PC to PIC
function serial_out(angle) %serial_out function defined
ser_obj=serial('COM2','baudrate',9600); %create and configure a serial port object
fopen(ser_obj); %connect the serial port object to the device
ServoCommand=round(angle+107.3); %input for servomotor where 107.3 refers to offset
fwrite(ser_obj,[ServoCommand],'async'); %send user command, i.e., dial input, to the PIC
pause(1);
fclose(ser_obj); %disconnect the serial port object from the device

Figure 6: Simulink block diagram and m-function for PC to PIC serial communication

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

4.2. Serial Communication from PIC to PC: Data Acquisition, Processing, and Plotting

This example illustrates one-directional serial communication from the PIC
microcontroller to the PC. In particular, it demonstrates that a Simulink block diagram can be
designed to acquire measurement from a sensor that is interfaced to the PIC. The example
focuses on acquiring measurements from a photoresistor that senses light intensity.

Referring to Figure 3 (c), a light sensor is constructed by connecting a 10 KΩ resistor and
a photoresistor in a voltage divider circuit. The output of the light sensor varies depending on the
light intensity incident upon the photoresistor; here the light sensor output refers to the voltage at
the junction of the 10 KΩ resistor and photoresistor. This output is connected to I/O pin 2 of the
PIC16F74. The I/O pin 2 is configured as an ADC in the PIC assembly code. Each time, the PIC
assembly code tasks the PIC to measure the light sensor output, the PIC16F74 converts the
analog voltage signal at the voltage divider output into a corresponding 8-bit digital value. Thus,
when the photoresistor is placed in dark condition, the 8-bit ADC returns a value close to 255.
Alternatively, when the photoresistor is exposed to bright light, the ADC returns a value close to
0.

The Simulink block diagram for this example is shown in Figure 7, where a Matlab m-
function is used to acquire the digitized output of the sensor using serial communication. The
Simulink block diagram of Figure 7 also processes and plots the sensory data. In particular, the
top scope in Figure 7 plots the light intensity measurement (in terms of digitized output of the

%Matlab function serial_in.m for serial communication from PIC to PC
function v=serial_in(dmyin) %serial_in function defined
ser_obj=serial('COM2','baudrate',9600); %create and configure a serial port object
ser_obj.ReadAsyncMode = 'manual'; %specify an asynchronous read operation
fopen(ser_obj); %connect the serial port object to the device
LightSensOut=fread(ser_obj,1,'uint8'); %read the light sensor output
fclose(ser_obj); %disconnect the serial port object from the device
v=LightSensOut; %8-bit representation of the light sensor output

Figure 7: Simulink block diagram and m-function for PIC to PC serial communication

Scopes

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

voltage divider circuit) versus time, where the measurements are filtered using a low-pass filter.
The middle scope plots the unfiltered light intensity measurement. Finally, the bottom scope
plots the light intensity measurement in terms of voltages by processing the 8-bit digital value of
the voltage divider circuit through a gain factor.

An experiment was conducted in which the light intensity was abruptly altered at several
time instances. The response plots acquired and processed using the Simulink block diagram of
Figure 7 are shown in Figure 8. The filtered output response in Figure 8(b) is much smoother
than the unfiltered response in Figure 8(a). Thus, Figure 8 demonstrates the efficacy of signal co-
processing using Matlab and Simulink for PIC-based projects. The PIC assembly code
corresponding to this example is available in Appendix B.

4.3. Bi-directional Serial Communication between PIC and PC

In this example, the light refraction test bed is used to demonstrate the advantage of
exploiting bi-directional serial communication between PIC and Matlab-based GUI executing on
the PC. A Simulink-based interactive GUI for the light refraction test bed is shown in Figure 9.
The user interacts with the dial object to command the angle of incidence of light source. The
Matlab m-function block next to the knob contains a Matlab m-file that transmits the user
command input to the PIC serially. The PIC stores the user input in a variable and uses it to
compute, generate, and apply pulse trains to control servomotor position. This positions the light
source, mounted on the servomotor arm, at the commanded angle of incidence. Next, the PIC
turns on the light source and performs the following tasks: drive the light sensor along the linear
potentiometer by turning the DC motor, measure the position of the light sensor along the linear
potentiometer and the corresponding output of the light sensor, and transmit the position and
light sensor measurements to the PC. The Matlab m-function block shown in Figure 9 enables
receipt of the position and light sensor measurements from the PIC serially. Simulink blocks
following the m-file function block are used for various data processing tasks, e.g., conversion of
position measurement to the refraction angle and computation of index of light refraction.

(a)

(b)

Figure 8: (a) Unfiltered plot of ADC and (b) Filtered plot of ADC

Li
gh

t s
en

so
r O

/P
 (8

-b
it)

Li
gh

t s
en

so
r O

/P
 (8

-b
it)

Time (Sec) Time (Sec)

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

Finally, a generic numeric LED display, from the Dials and Gauges Blockset, is used to indicate
the calculated value of index of light refraction for the experimental liquid.

Figure 10 shows the block diagram of index of light refraction subsystem of Figure 9.

The block diagram of Figure 10 is used to generate a plot of angle of refraction versus the light
sensor output. Figure 11 shows the plots of angle of refraction versus the light sensor output for
two commanded values of incidence angle, namely, 40˚ and 20˚. Note that for each incidence
angle, the index of refraction is computed from the angle of refraction corresponding to the
smallest output returned by the light sensor. Thus, the block diagram of Figure 10 is also used to
calculate the index of light refraction. The Matlab m-function in this subsystem monitors and
captures the angle data corresponding to the smallest measurement returned by the light sensor.
Note that the light sensor output is smallest when the intensity of refracted light focused on the
light sensor is highest. Next, the angle data is used to compute the index of light refraction. The
PIC assembly code corresponding to this example is available in Appendix C.

%Matlab function serial_inout.m for bi-directional serial communication between PIC and PC
function V=serial_inout(angle) %serial_inout function defined
ser_obj=serial('COM2','baudrate',9600); %create and configure a serial port object
ser_obj.ReadAsyncMode = 'manual'; %specify an asynchronous read operation
fopen(ser_obj); %connect the serial port object to the device
ServoCommand =round(angle+107.3); %input for the servomotor where 107.3 refers to offset
fwrite(ser_obj,[ServoCommand],'async'); %send user command, i.e., dial input, to the PIC
LightSensOut =fread(ser_obj,1,'uint8'); %read the light sensor output from the PIC
Position=fread(ser_obj,1,'uint8')+9; %read the linear potentiometer output from the PIC
fclose(ser_obj); %disconnect the serial port object from the device
V=[LightSensOut;Position]; %output in matrix form

Figure 9: Simulink block diagram and m-function for bi-directional serial communication
between PIC and PC

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

%Matlab function PickMin.m for capturing the angle of refraction when max. light is on the light sensor
function y=PickMin(minangle,minLSO,LSO,angle) %PickMin function defined
if LSO <= minLSO %condition loop for updating the minangle
 minangle=angle; %update minangle with respect to min. LSO
end
y=minangle; %show the angle at the most light intensity

Figure 10: Simulink block diagram and m-function for calculating the index of light refraction

5. Conclusion

In this paper, we developed and presented Matlab-based GUIs for PIC microcontroller
projects by exploiting Simulink, Dials and Gauges Blockset, and serial communication
capabilities of Matlab and PIC. Three examples were presented to illustrate the productivity
enhancement potential of the Matlab-based GUI environment when developing PIC
microcontroller projects. The GUIs designed using framework of this paper allow the user to:

 (a) (b)

Figure 11: Angle of refraction vs. light sensor output for incidence angle (a) 40˚ and (b) 20˚

XY Graph block

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

vary control commands, acquire sensory data, perform on-line data processing, and visualize
data using realistic looking virtual instruments. Note that the framework of this paper allows the
use of microcontroller as a low-cost, stand-alone Data Acquisition and Control Board (DACB).
Whereas PC-based DACBs typically cost several hundred to over thousand dollars, a PIC
microcontroller costs only a few dollars. Thus, the use of PIC microcontrollers with the proposed
Matlab-based GUI environment provides a low-cost DACB solution that can be particularly
beneficial to educators.

Appendix

Appendix A. PIC Assembly Code for Serial Communication from PC to PIC

;This code is used to control angular position of a servomotor
;1. Receive user command from PC
;2. Generate pulse train to drive servomotor to a desired angle
 LIST p=16f74
 INCLUDE "p16f74.inc"
 __CONFIG _CP_OFF & _WDT_OFF & _HS_OSC &
_PWRTE_ON ;configure PIC16F74
counter EQU 20h ;file address of counter var
iteration EQU 21h ;file address of iteration var
tempval EQU 22h ;file address of tempval var
 ORG 0 ;origin address is 0
 CLRF STATUS ;clear status register
 GOTO BootStart ;go to BootStart
BootStart
 BANKSEL PORTA ;select bank 0
 CLRF PORTB ;clear portB
 CLRF PORTC ;clear portC
 BANKSEL TRISA ;select bank 1
 MOVLW b'00000000'
 MOVWF TRISB ;set PORTB as all outputs
 MOVLW b'10000000'
 MOVWF TRISC ;set RC7 as input
TimerInitialization
 BSF STATUS, RP0 ;select bank 1
 MOVLW b'00000001'
 MOVWF OPTION_REG ;set prescaler of TMR0 to 1:4
 BCF STATUS, RP0 ;select bank 0
 MOVLW b'10000100'
 MOVWF INTCON ;enable all unmasked interrupts

 ;and TMR0 register overflow
 CLRF TMR0 ;clear timer
BaudRateSettingsforUSART
 BSF STATUS, RP0 ;select bank 1
 MOVLW d'129'
 MOVWF SPBRG ;set baudrate 9600 for 20MHz crystal
 MOVLW b'00100100'
 MOVWF TXSTA ;8-bit asyn. high-speed transmission

 BANKSEL RCSTA ;select bank 0
 MOVLW b'10010000'
 MOVWF RCSTA ;8-bit asyn. continuous reception
 MOVF RCREG, W
 MOVF RCREG, W
 MOVF RCREG, W ;flush reception buffer 3 times
MainProgram
 BCF STATUS, RP0 ;select bank 0
Check BTFSS PIR1, RCIF ;check if data is received
 GOTO Check
 MOVF RCREG, W ;move received data to W
 MOVWF tempval ;save data from W into tempval
 MOVLW 0x64
 MOVWF iteration ;save iteration value for pulse train
BeginServo
 MOVF tempval, 0 ;move tempval to W
 MOVWF counter ;save data from W into counter
LoopHigh
 CLRF TMR0 ;clear timer
 BSF PORTB, 1 ;set RB1 to high
 MOVLW 0x05
InnerLoopHigh
 SUBWF TMR0, 0 ;set and countdown timer
 BTFSS STATUS, 2 ;check if timer is zero
 GOTO InnerLoopHigh ;go to InnerLoopHigh again
 BCF STATUS, 2 ;reset zero bit of status
 DECFSZ counter ;countdown counter and check if zero
 GOTO LoopHigh ;go to LoopHigh
 BCF PORTB, 1 ;set RB1 to low
 MOVLW 0xfa
 MOVWF counter ;set the value of counter for low
LoopLow
 CLRF TMR0 ;clear timer
 BCF STATUS, 2 ;reset zero bit of status
 MOVLW 0x15
InnerLoopLow
 SUBWF TMR0, 0 ;set and countdown timer

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

 BTFSS STATUS, 2 ;check if timer is zero
 GOTO InnerLoopLow ;go to InnerLoopLow again
 BCF STATUS, 2 ;reset zero bit of status
 DECFSZ counter ;countdown counter and check if zero
 GOTO LoopLow ;go to LoopLow

 BCF STATUS, 2 ;reset zero bit of status
 DECFSZ iteration ;countdown iteration, check if zero
 GOTO BeginServo ;go to BeginServo
 GOTO MainProgram ;go to MainProgram to repeat
 END ;end line of the code

Appendix B. PIC Assembly Code for Serial Communication from PIC to PC

;This code is used to collect the light sensor output
;1. Measure the voltage output from photoresistor
;2. Send the digitized output to PC using USART
 LIST p=16f74
 INCLUDE "p16f74.inc"
 __CONFIG _CP_OFF & _WDT_OFF & _HS_OSC &
_PWRTE_ON ;configure PIC16F74
 ORG 0 ;origin address is 0
 CLRF STATUS ;clear status register
 GOTO BootStart ;go to BootStart
BootStart
 BANKSEL PORTA ;select bank 0
 CLRF PORTA ;clear portA
 CLRF PORTC ;clear portC
 BANKSEL TRISA ;select bank 1
 MOVLW b'00000001'
 MOVWF TRISA ;set RA0 as input
 MOVLW b'10000000'
 MOVWF TRISC ;set RC7 as input
ADCInitialization
 BCF STATUS, RP0 ;select bank 0
 MOVLW B'10000001'
 MOVWF ADCON0 ;enable ADC and select CH0
 BSF STATUS, RP0 ;select bank 1
 MOVLW b'00000100'
 MOVWF ADCON1 ;set RA0, 1, and 3 to A/D ports
TimerInitialization
 BSF STATUS, RP0 ;select bank 1
 MOVLW b'00000001'
 MOVWF OPTION_REG ;set prescaler of TMR0 to 1:4
 BCF STATUS, RP0 ;select bank 0
 MOVLW b'10000100'

 MOVWF INTCON ;enable all unmasked interrupts
 ;and TMR0 register overflow
 CLRF TMR0 ;clear timer
BaudRateSettingsforUSART
 BSF STATUS, RP0 ;select bank 1
 MOVLW d'129'
 MOVWF SPBRG ;set baudrate 9600 for 20MHz crystal
 MOVLW b'00100100'
 MOVWF TXSTA ;8-bit asyn. high-speed transmission
 BANKSEL RCSTA ;select bank 0
 MOVLW b'10010000'
 MOVWF RCSTA ;8-bit asyn. continuous reception
StartADCandUSART
 CALL ADCLight ;call ADCLight subroutine
 CALL Send ;call Send subroutine
 GOTO StartADCandUSART ;go StartADCandUSART
;SUBROUTINE
ADCLight
 BSF ADCON0,GO ;start A/D conversion
Wait
 BTFSC ADCON0,GO ;check if A/D conversion is done
 GOTO Wait
 MOVF ADRES,W ;move ADC data to W
 RETURN
Send
 BSF STATUS, RP0 ;select bank 1
 BTFSS TXSTA, 1 ;check if transmission is available
 GOTO Send
 BCF STATUS, RP0 ;select bank 0
 MOVWF TXREG ;move data to TXREG register
 RETURN
 END ;end line of the code

Appendix C. PIC Assembly Code for Bi-directional Serial Communication

;This code is used to run the light refraction test bed
;1. Generate pulse train to drive servomotor to a desired angle
;2. Turn on the Laser mounted on the arm of the servomotor
;3. Turn on the DC motor
;4. Measure the light intensity and linear position
;5. Convert sensor data into 8-bit A/D and send them to PC
;6. Stop DC motor if the limit switch at the end is pressed
;7. Relocate light sensor to the initial position

 LIST p=16f74
 INCLUDE "p16f74.inc"
 __CONFIG _CP_OFF & _WDT_OFF & _HS_OSC &
_PWRTE_ON ;configure PIC16F74
counter EQU 20h ;file address of counter var
iteration EQU 21h ;file address of iteration var
tempval EQU 22h ;file address of tempval var

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

iter EQU 23h ;file address of iter var
iter1 EQU 24h ;file address of iter1 var
iter2 EQU 25h ;file address of iter2 var
iter3 EQU 26h ;file address of iter3 var
 ORG 0 ;origin address is 0
 CLRF STATUS ;clear status register
 GOTO BootStart ;go to BootStart
BootStart
 BANKSEL PORTA ;select bank 0
 CLRF PORTA ;clear portA
 CLRF PORTB ;clear portB
 CLRF PORTC ;clear portC
 BANKSEL TRISA ;select bank 1
 MOVLW b'00000111'
 MOVWF TRISA ;set RA0, 1, and 2 as inputs
 MOVLW b'00000000'
 MOVWF TRISB ;set PORTB as all outputs
 MOVLW b'10000000'
 MOVWF TRISC ;set RC7 as input
ADCInitialization
 BCF STATUS, RP0 ;select bank 0
 MOVLW B'10000001'
 MOVWF ADCON0 ;enable ADC and select CH0
 BSF STATUS, RP0 ;select bank 1
 MOVLW b'00000100'
 MOVWF ADCON1 ;set RA0, 1, and 3 to A/D ports
TimerInitialization
 BSF STATUS, RP0 ;select bank 1
 MOVLW b'00000001'
 MOVWF OPTION_REG ;set prescaler of TMR0 to 1:4
 BCF STATUS, RP0 ;select bank 0
 MOVLW b'10000100'
 MOVWF INTCON ;enable all unmasked interrupts
 ;and TMR0 register overflow
 CLRF TMR0 ;clear timer
BaudRateSettingsforUSART
 BSF STATUS, RP0 ;select bank 1
 MOVLW d'129'
 MOVWF SPBRG ;set baudrate 9600 for 20MHz crystal
 MOVLW b'00100100'
 MOVWF TXSTA ;8-bit asyn. high-speed transmission
 BANKSEL RCSTA ;select bank 0
 MOVLW b'10010000'
 MOVWF RCSTA ;8-bit asyn. continuous reception
 MOVF RCREG, W
 MOVF RCREG, W
 MOVF RCREG, W ;flush reception buffer 3 times
MainProgram
 CALL ReceiveAngle ;call ReceiveAngle subroutine
 MOVLW 0x64

 MOVWF iteration ;save iteration value for pulse train
BeginServo
 MOVF tempval, 0 ;move tempval to W
 MOVWF counter ;assign user input into counter
LoopHigh
 CLRF TMR0 ;clear timer
 BSF PORTB, 1 ;set RB1 to high
 MOVLW 0x05
InnerLoopHigh
 SUBWF TMR0, 0 ;set and countdown timer
 BTFSS STATUS, 2 ;check if timer is zero
 GOTO InnerLoopHigh ;go to InnerLoopHigh again
 BCF STATUS, 2 ;reset zero bit of status
 DECFSZ counter ;countdown counter and check if zero
 GOTO LoopHigh ;go to LoopHigh
 BCF PORTB, 1 ;set RB1 to low
 MOVLW 0xfa
 MOVWF counter ;set the value of counter for low
LoopLow
 CLRF TMR0 ;clear timer
 BCF STATUS, 2 ;reset zero bit of status
 MOVLW 0x15
InnerLoopLow
 SUBWF TMR0, 0 ;set and countdown timer
 BTFSS STATUS, 2 ;check if timer is zero
 GOTO InnerLoopLow ;go to InnerLoopLow again
 BCF STATUS, 2 ;reset zero bit of status
 DECFSZ counter ;countdown counter and check if zero
 GOTO LoopLow ;go to LoopLow
 BCF STATUS, 2 ;reset zero bit of status
 DECFSZ iteration ;countdown iteration, check if zero
 GOTO BeginServo ;go to BeginServo
TurnLaser
 BSF PORTB, 5 ;turn on the laser
TurnMotor
 BSF PORTB, 7 ;turn on the DC motor
 CALL DelayDCMotor ;call DelayDCMotor subroutine
StartADCandUSART
 CALL ADCLight ;call ADCLight subroutine
 CALL Send ;call Send subroutine
 CALL DelayUSART ;call DelayUSART subroutine
 CALL ADCPosition ;call ADCPosition subroutine
 CALL Send ;call Send subroutine
 CALL DelayUSART ;call DelayUSART subroutine
 BTFSS PORTA, 2 ;check if the light sensor is at the end
 GOTO StartADCandUSART ;go StartADCandUSART
ReverseDCMotor
 BCF PORTB, 5
 BCF PORTB, 7 ;stop the DC motor
 CALL DelayDCMotor2 ;call DelayDCMotor2 subroutine

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

 BSF PORTB, 6 ;reverse the direction of the DC motor
 CALL DelayDCMotor2 ;call DelayDCMotor2 subroutine
CheckInitialPosition
 BTFSS PORTA, 2 ;check if the sensor back to the origin
 GOTO CheckInitialPosition
Finish
 BCF PORTB, 6 ;turn off the laser
 GOTO Finish ;finish the program
;SUBROUTINE
ReceiveAngle
 BCF STATUS, RP0
 BCF STATUS, RP1 ;select bank 0
 BTFSS PIR1, RCIF ;check if data is received
 GOTO ReceiveAngle
 MOVF RCREG, W ;move received data to W
 MOVWF tempval ;save data from W into tempval
 RETURN
Send
 BSF STATUS, RP0 ;select bank 1
 BTFSS TXSTA, 1 ; check if transmission is available
 GOTO Send
 BCF STATUS, RP0 ;select bank 0
 MOVWF TXREG ; move data to TXREG register
 RETURN
ADCLight
 BCF STATUS, RP0 ;select bank 0
 MOVLW B'10000001'
 MOVWF ADCON0 ;enable ADC and select CH0
 CALL Pause ;call Pause subroutine
 BSF ADCON0, GO ;start A/D conversion
 GOTO Wait ;go to Wait
ADCPosition
 BCF STATUS,RP0 ;select bank 0
 MOVLW B'10001001' ;
 MOVWF ADCON0 ;enable ADC and select CH1
 CALL Pause ;call Pause subroutine
 BSF ADCON0, GO ;start A/D conversion

Wait
 BTFSC ADCON0, GO ;check if A/D conversion is done
 GOTO Wait
 MOVF ADRES, W ;move ADC data to W
 RETURN
Pause ;short delay
 MOVLW 08h
 MOVWF iter
Loop1 DECFSZ iter
 GOTO Loop1
 RETURN
DelayUSART ;delay for USART
 MOVLW 0x0a
 MOVWF iter1
 GOTO Delay
DelayDCMotor ;delay for limit switch in the beginnig
 MOVLW 0x1a
 MOVWF iter1
 GOTO Delay
DelayDCMotor2 ;delay for limit switch at the end
 MOVLW 0x3f
 MOVWF iter1
 GOTO Delay

Delay
Loop2 MOVLW 0xff
 MOVWF iter2
Loop3 MOVLW 0xff
 MOVWF iter3
Loop4 DECFSZ iter3
 GOTO Loop4
 DECFSZ iter2
 GOTO Loop3
 DECFSZ iter1
 GOTO Loop2
 RETURN

 END ;end line of the code

Acknowledgements

This work is supported in part by the National Science Foundation under grants 0227479
and 0337668 and the NASA/NY Space Grant Consortium under grant 39555-6519.

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright  2004, American Society for Engineering Education”

References

[1] Online: http://www.microchip.com/1010/index.htm, website of Microchip Technology, Inc.
[2] Online: http://www.microchip.com/1010/suppdoc/appnote/index.htm, website of Microchip Technology, Inc.,

(access link for application notes, code examples, and templates).
[3] D. W. Smith, PIC in Practice, Newnes, Oxford, U.K., 2003.
[4] Online: http://www.microchip.com/1010/pline/tools/picmicro/program/picstart/index.htm, website of

Microchip Technology, Inc., (access link for PICSTART Plus Development Programmer).
[5] Online: http://www.olimex.com/dev/, website of Olimex Ltd., (access link for PIC-PG2B Development

Programmer).
[6] Online: http://pdfserv.maxim-ic.com/en/ds/MAX220-MAX249.pdf, website of Maxim Integrated Products,

(access link for MAX232 datasheet).
[7] Online: http://mechatronics.poly.edu/smart/, website of Polytechnic’s NSF funded Research Experience for

Teachers project.
[8] Online: http://www.microchip.com/download/lit/pline/picmicro/families/16f7x/30325b.pdf, website of

Microchip Technology, Inc., (access link for PIC16F74 device datasheet).
[9] Online: http://www.mathworks.com/products/matlab/, website of The Math Works, Inc., developer and

distributor of technical computing software Matlab (access link for Matlab product information).
[10] Online: http://www.mathworks.com/products/simulink/, website of The Math Works, Inc., developer and

distributor of Simulink (access link for Simulink product information).
[11] Online: http://www.mathworks.com/products/dialsgauges/, website of The Math Works, Inc., developer and

distributor of Dials and Gauges Blockset (access link for Dials and Gauges Blockset product information).

SANG-HOON LEE was born in Seoul, Korea. He received the B.S. degree in Mechanical Engineering from Sung
Kyun Kwan University, Seoul, Korea, in 1996 and the M.S. degree in Mechanical Engineering from Polytechnic
University, Brooklyn, NY, in 2002. From 1996 to 1997, he worked for Sam Sung Engineering Co., Ltd. in Korea.
He is currently continuing research at Polytechnic University as a doctoral student. His research interests include
linear/nonlinear control, UAV path planning and tracking control, and mechatronics.

YAN-FANG LI received the B.S. degree in materials science from Shanghai Jiao Tong University, China in 2000.
She began pursuing the M.S. degree in the Department of Mechanical Engineering at Polytechnic University,
Brooklyn, NY, in Spring 2002. Since Spring 2003, she has also worked as a teaching and research assistant with
responsibilities in the area of mechatronics. She is expected to receive the M.S. degree in mechanical engineering in
June 2004.

VIKRAM KAPILA is an Associate Professor of Mechanical Engineering at Polytechnic University, Brooklyn, NY,
where he directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF
funded Research Experience for Teachers Site in Mechatronics that has been featured on WABC-TV and NY1
News, and an NSF funded GK-12 Fellows project. He has held visiting positions with the Air Force Research
Laboratories in Dayton, OH. His research interests are in cooperative control; distributed spacecraft formation
control; linear/nonlinear control with applications to robust control, saturation control, and time-delay systems;
closed-loop input shaping; spacecraft attitude control; mechatronics; and DSP/PC/microcontroller-based real-time
control. He received Polytechnic’s 2002 Jacob’s Excellence in Education Award and 2003 Distinguished Teacher
Award. He has mentored 38 high school students, 10 high school teachers, 7 undergraduate summer interns, and 5
undergraduate capstone-design teams and has supervised 2 M.S. projects, 2 M.S. thesis, and 2 Ph.D. dissertations.

