Lecture 9

Pulse Generation

- Pulsout
 - Software version of pulse generation
 - Pulsout pin, Period
 - Pin: specified I/O pin from 0 to 15
 - Period: 2 µsec per each unit
- 555 Timer

Polytechnic

- Hardware version of pulse generation
- BS2 can do other works

SMART

- Microcontroller is not necessary

555 Timer

- Highly stable devices for generating accurate time delay or oscillation
- Not programmable
- Controlled by resistors and capacitors
- Applications
 - Pulse generation
 - PWM
 - Time delay generation

555 Timer Block Diagram

Connection Diagram

555 Timer without BS2

555 Timer with BS2

Astable Operation 1

Calculation of Duty Cycle

SMART

Polytechnic

Calculation of Duty Cycle

Dark Detector

- It will sound an alarm if it gets too dark all over sudden
- The LDR enables the alarm when light falls below a certain level

- This circuit can be used as a audible 'Power-out Alarm'
- When the line voltage fails, the tone will be heard in the speaker

SMART

Polytechnic

 Actually really a alarm circuit, it shows how to use a 555 timer and a small glass-encapsulated mercury switch to indicate 'tilt'.

Metronome

- A Metronome is a device used in the music industry
- It indicates the rhythm by a 'tic-toc' sound which speed can be adjusted with the 250K potentiometer

555 Timer Experiments

Experiments	Chapters
What's micro controller	5
Basic A and D	6
Earth measurements	
Robotics	
StampWorks	17 and 18
Others	

Lecture 10

DS1620

- Digital thermometer
 - Provides 9-bit temperature readings
 - Temperature range from -55°C to 125°C
 - Acts as a thermostat

Detail Description

PIN	SYMBOL	DESCRIPTION	
1	DQ	Data Input/Output pin for 3-wire communication port.	
2	CLK/CONV	Clock input pin for 3-wire communication port. When the DS1620 is used in a	
		stand-alone application with no 3-wire port, this pin can be used as a convert	
		pin. Temperature conversion will begin on the falling edge of CONV.	
3	RST	Reset input pin for 3-wire communication port.	
4	GND	Ground pin.	
5	T _{COM}	High/Low Combination Trigger. Goes high when temperature exceeds TH;	
		will reset to low when temperature falls below TL.	
6	TLOW	Low Temperature Trigger. Goes high when temperature falls below TL.	
7	T _{HIGH}	High Temperature Trigger. Goes high when temperature exceeds TH.	
8	V _{DD}	Supply Voltage. 2.7V – 5.5V input power pin.	

DS1620 with **BS2**

Programming for DS1620 1

Programming for DS1620 2

high 13 ---- Ready to start Shiftout 15,14,Isbfirst,[238] --- Start conversion low 13

```
Temploop:
high 13
shiftout 15,14,Isbfirst,[170] ← - Send "get data" command
shiftin 15,14,Isbpre,[x] ← - - Get the data
low 13
degC=x/2
Goto Temploop
```

AD592

* PIN 2 CAN BE EITHER ATTACHED OR UNCONNECTED BOTTOM VIEW

AD592

- Analog temperature sensor
 - Provides an output current proportional to absolute temperature
 - Temperature range from -25°C to 105°C
 - Acts as a thermostat
 - Extended out away from the recording instruments

Temperature Probe with AD592

 The part needs to be protected before being inserted into liquid

How to Make Temperature Probe 1

- 1. Identify the AD 592's (-), NC, and (+) pins from this picture as viewed from the bottom
- 2. Slip the solder sleeve over the black wire and pin 3 (-)
- 3. Slip another solder sleeve over the red wire and pin 1 (+)
- 4. Heat up the connections until the wires are joined

How to Make Temperature Probe 2

Clamp here

- 5. Slip the heat shrink tubing over the entire package
- Fasten the package with a heat gun, and while it's still hot clamp the top portion to ensure that it stays shut

AD592 with BS2

Caution!!

- Be careful when you put your finger on it
- Specially for a big finger

Temperaure Sensors Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Earth measurements	1, 2, 3*, and 4
Robotics	
StampWorks	28
Others	

*Use 2 wires for Simple Resistance Detector with proper resistor and capacitor

Polytechnic SMART