Lecture 2

Mechatronics 1

- Synergistic integration of
 - Mechanical engineering
 - Control theory
 - Computer science
 - Electronics
- To manage complexity, uncertainty, and communication in engineered systems

Mechatronics 2

- Typical knowledgebase for optimal design and operation of mechatronic systems comprises of
 - Dynamic system modeling and analysis
 - Decision and control theory
 - Sensors and signal conditioning
 - Actuators and power electronics
 - Hardware interfacing
 - Rapid control prototyping
 - Embedded computing

Mechatronic Applications

- Smart consumer products: home security, camera, microwave oven, toaster, dish washer, laundry washer-dryer, climate control units, etc.
- **Medical**: implant-devices, assisted surgery, haptic, etc.
- **Defense**: unmanned air, ground, and underwater vehicles, smart munitions, jet engines, etc.
- **Manufacturing**: robotics, machines, processes, etc.
- **Automotive**: climate control, antilock brake, active suspension, cruise control, air bags, engine management, safety, etc.
- Network-centric, distributed systems: distributed robotics, tele-robotics, intelligent highways, etc.

Polytechnic

SMART

Roborat 1

Roborat 2

Roborat 3

Robocockroach

Mechanical elements

• Electromechanical elements

• Electrical/Electronic elements

 Control interface/computing hardware elements

• Computer elements

Microprocessors

- Perform arithmetic, logic, communication, an control function
- Arithmetic/logic unit(ALU)
- Instruction registers and decoders
- Data registers

SMART

• Control unit

Polytechnic

• Intel 4004 (4bit microprocessor), Intel 8080 (8bit microprocessor)

Mic rocont rollers

- Special purpose miniaturized computers
- Single integrated circuit containing many specialized and sophisticated circuits and functions
- Two primary components
 - RAM
 - CPU with instruction set

Microcontroller Architecture

PIC Microcontrollers

• PIC 16C57 (unit price: \$7.50 in single quantities, \$3.50 in quantities of 1000 or more)

Basic Stamp 2

Simple and easy to use
PIC-based PBASIC
interpreter on ROM
16 digital I/O

http://www.parallax.com/Downloads/Documentation/bs/mod/BASIC_Stamp_2_Schematic_Rev_F.pdf

Stamp Development Board

SMART

Hardware Considerations

- Power requirements
 - BS2 requires regulated 5DCV and draws about 8mA
- Each I/O pin of BS2 can
 - Source up to 20mA
 - Sink up to 25 mA
- When the voltage regulator on BOE is being used, all I/O pin as a group can
 - Source up to 40mA
 - Sink up to **50mA**

BS2 Pin Descriptions

Pin	Name	Description
1	SOUT	Serial out
2	SIN	Serial in
3	ATN	Attention
4	VSS	System ground
5-20	P0-P15	Input/Output pins
21	VDD	5DC V
22	RES	Reset
23	VSS	System ground
24	VIN	Unregulated power in

BS2 Variable Types

Var type	Size	Range of value
bit	1 bit	0, 1
nib	4 bits	0-15
byte	8 bits	0-255
word	16 bits	0-65535

OnOff var bit

InOutPins var nib

ADCin var byte

Count var word

Binary, Decimal, and Hexadecimal Numbers

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	E
0111	7	7	1111	15	F

Variable Command

Result is 119

Assigning Pins for I/O

DIRS: 1 for output, 0 for input

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DIR D DIR C						DI	RΒ		DIR A					
DIR H									DII	R L					

OUTS

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OUT D OUT C						OU	ΤB		OUT A						
OUT H									OU	ΤL					

Same as for INS

How to Protect the I/O Pins

Variables Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Earth measurements	
Robotics	
StampWorks	
Others	On coming slides

myCon CON 10 myVar1 VAR Byte myVar2 VAR Byte myVar3 VAR word myVar4 VAR word myVar1=5 myVar2=25 myVar3=375 myVar4=400

debug "myCon= ", DEC myCon, cr debug "myVar1=", DEC myVar1, cr debug "myVar2= ", DEC myVar2, cr debug "myVar3= ", DEC myVar3, cr debug "myVar4= ", DEC myVar4, cr debug "myVar3 in BIN=", BIN myVar3, cr debug "Low byte of 375=", BIN myVar3.byte0, cr debug "High byte of 375=", BIN myVar3.byte1, cr

b0=10

debug "b0 input in DEC.", cr debug "b0 in DEC= ", DEC b0, cr debug "b0 in BIN= ", BIN b0, cr debug "b0 in HEX= ", HEX b0, cr

b0=%00001010 debug "b0 input in BIN.", cr debug "b0 in DEC= ", DEC b0, cr debug "b0 in BIN= ", BIN b0, cr debug "b0 in HEX= ", HEX b0, cr

b0=\$0A debug "b0 input in HEX.", cr debug "b0 in DEC= ", DEC b0, cr debug "b0 in BIN= ", BIN b0, cr debug "b0 in HEX= ", HEX b0, cr

b0=10

b1=20

b2=b0+b1

b3=375

debug "b0 in DEC= ", DEC b0, cr debug "b1 in DEC= ", DEC b1, cr debug "b2 in DEC= ", DEC b2, cr debug "b3 in DEC= ", DEC b3, cr

debug "b0 in BIN= ", BIN b0, cr debug "b1 in BIN= ", BIN b1, cr debug "b2 in BIN= ", BIN b2, cr debug "b3 in BIN= ", BIN b3, cr

w2=375

debug "w2 in DEC= ", DEC w2, cr debug "w2 in BIN= ", BIN w2, cr debug "b4 in BIN= ", BIN b4, cr debug "b5 in BIN= ", BIN b5, cr

•Please read "BASIC Stamp Frequently Asked Questions "

•Please read and run all programs on "BASIC Stamp User's Manual " from page 1 to page 75

•And DEBUG on page 97

