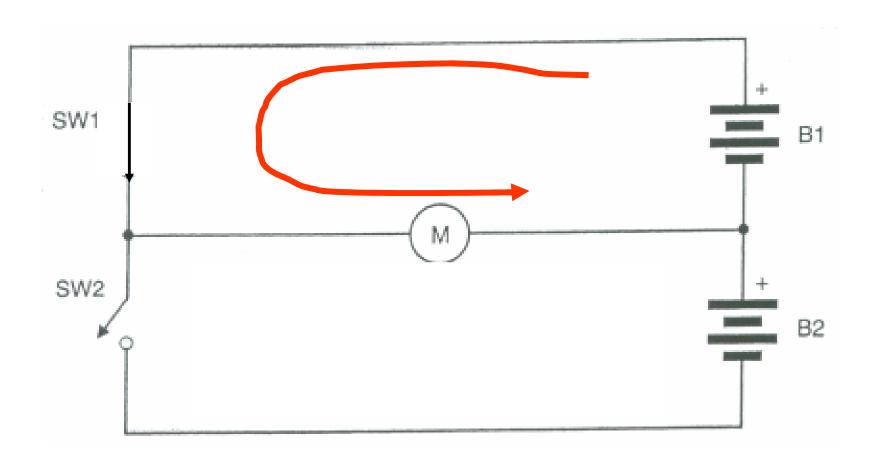
Lecture 16

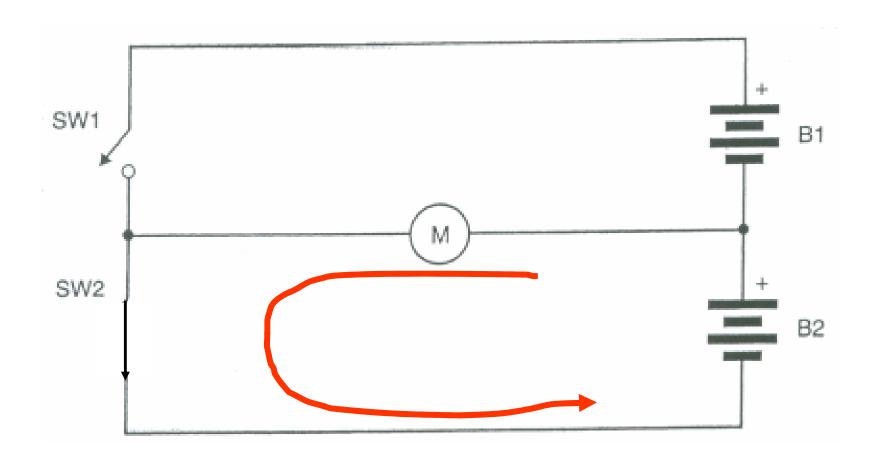
DC Motor Direction Control

- Half Bridge
 - 2 switches and 2 power sources
- H-Bridge
 - 4 switches and 1 power sources

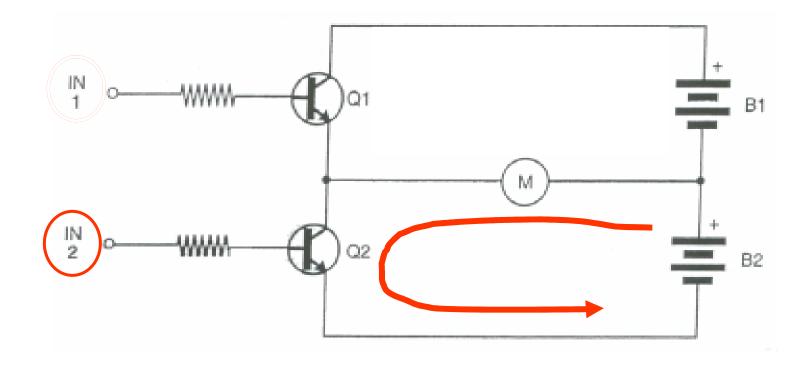
Half Bridge 1



Half Bridge 1

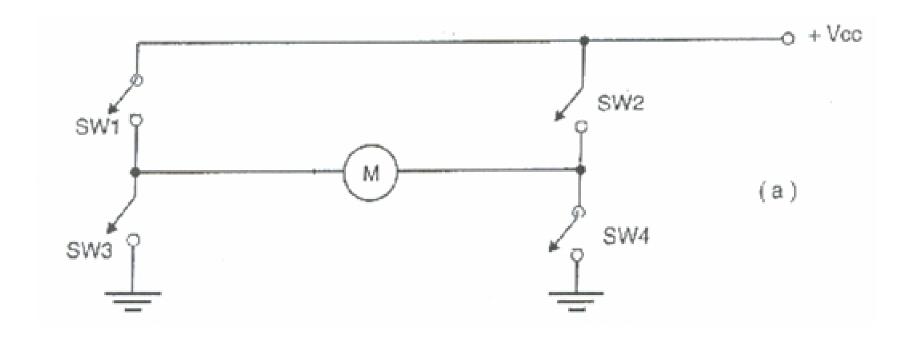


Half Bridge 2

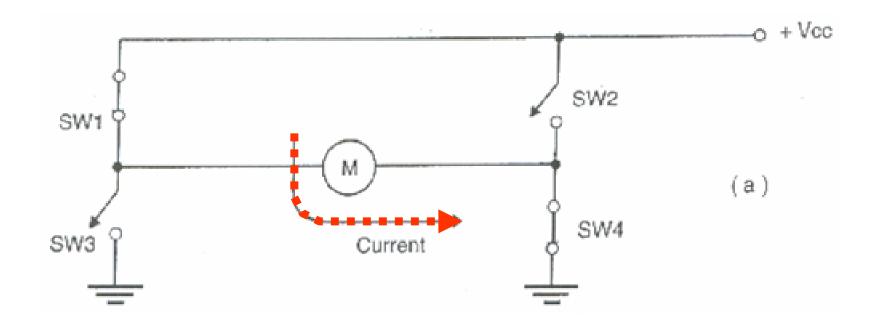


NPN BJT

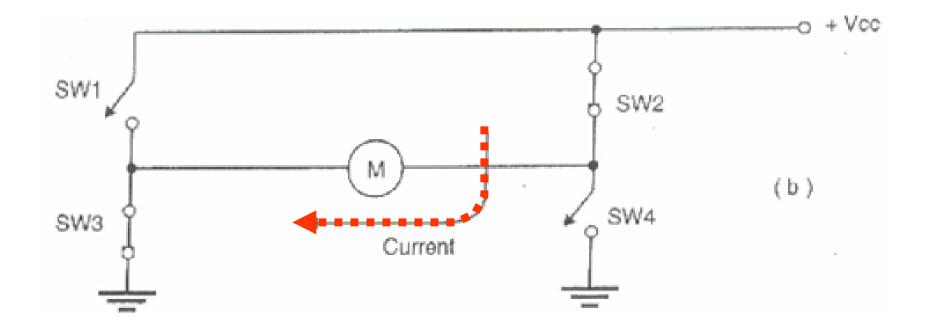
H-Bridge 1



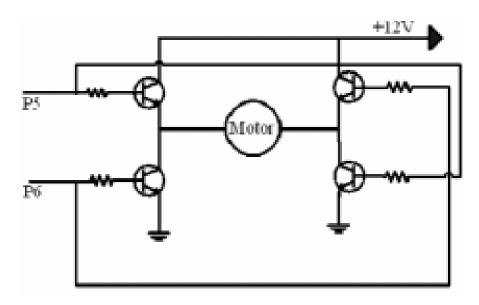
H-Bridge 2



H-Bridge 3

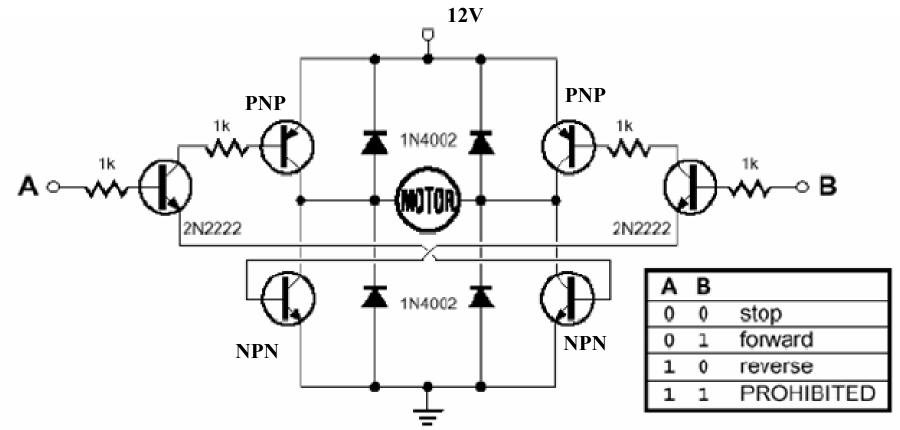


H-Bridges with NPN BJT 1



Pin5	Pin6	Motor Notes
High	Low	forward
Low	High	backward
Low	Low	No motion
High*	High*	* Forbidden

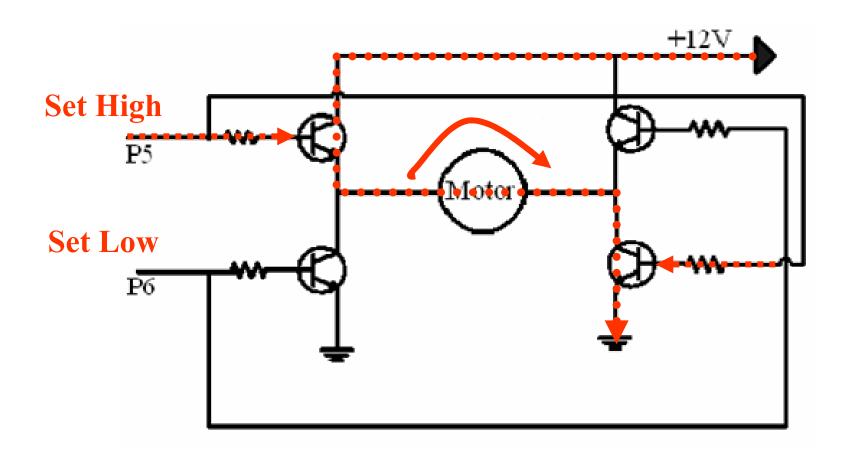
H-Bridges with NPN BJT 2



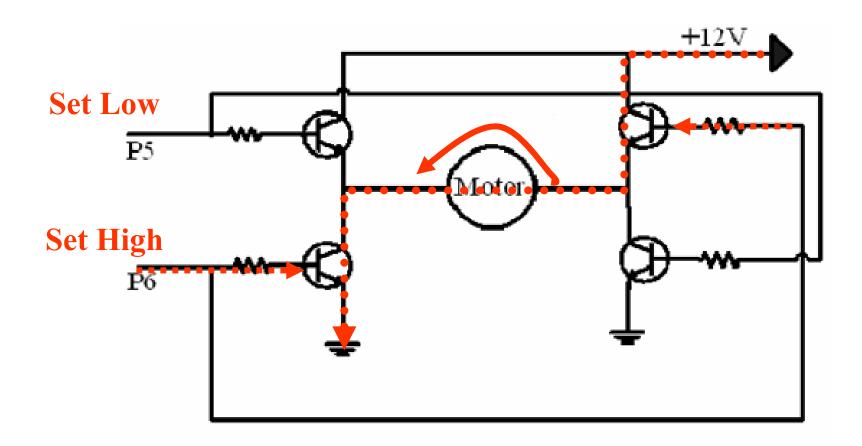
TIP42: PNP

TIP120: NPN

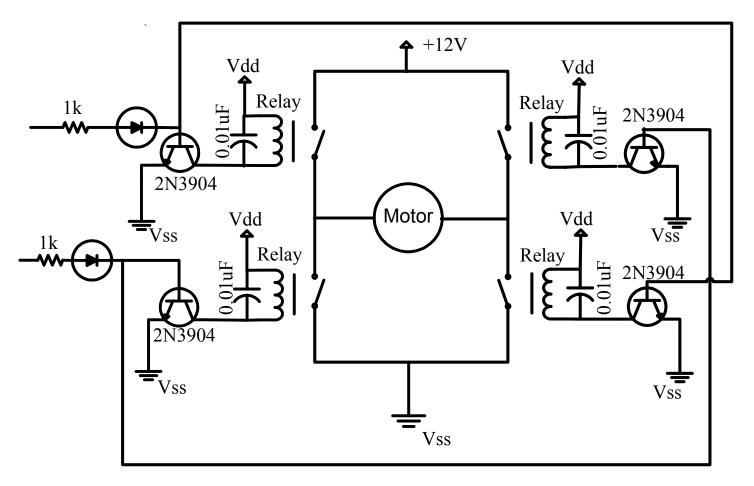
H-Bridge: How It Works



H-Bridge: How It Works



H-Bridges with Relays



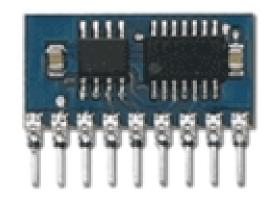
H-Bridge ICs

- LMD 18200
- LMD 18201
- LM 15200

• SN754410NE

Micro Dual Serial Motor Controller

- Using one serial output from the BASIC Stamp module, this motor controller can independently set each motor to go forward or backward at any of 127 speeds.
- To control additional motors, you can connect multiple motor controllers to the same serial line.



H-Bridge Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Earth measurements	
Robotics	
StampWorks	
Others	

Lecture 17

Linear Differential Equation

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_0 y =$$

$$b_{m} \frac{d^{m} u}{dt^{m}} + b_{m-1} \frac{d^{m-1} u}{d^{m-1} t} + \dots + b_{0} u$$

First-Order System

$$n >= m, n = 1$$
 $a_1 \frac{dy}{dt} + a_0 y = u$

Applying Laplace Transform

$$\frac{Y(s)}{U(s)} = \frac{\frac{1}{a_0}}{\tau s + 1} \implies y(t) = (y(0) - y_{\infty})e^{-\frac{t}{\tau}} + y_{\infty}$$

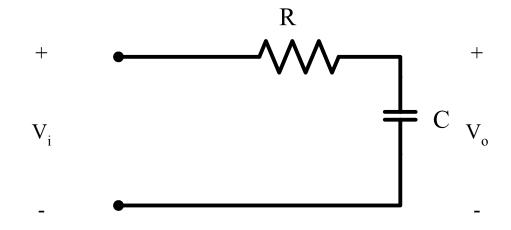
$$\tau = \frac{a_1}{a_0}$$

$$u(t) = A \text{ for } t > = 0$$

$$u(t) = 0 \text{ for } t < 0$$

$$y_{\infty} = \frac{A}{a_0}$$

Passive RC Low-Pass Filter



$$\frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + 1}$$

Bode Plot

- Bode plot is a very useful graphical approach is to analyze and design feedback loops.
- It consists of plotting two curves, the log of gain, and phase, as functions of the log of frequency.

$$G(s) = \frac{V_o(s)}{V_i(s)}$$

$$s = j\omega$$

$$G(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)}$$

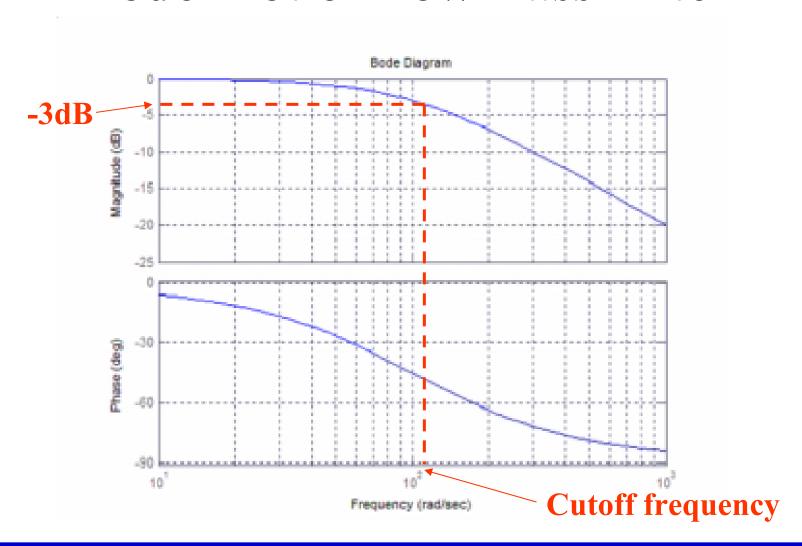
$$G(j\omega) = |G(j\omega)| e^{-j\phi(\omega)}$$

$$L(j\omega) = 20 \log(\frac{V_o}{V_i}) dB$$

$$\phi(j\omega)$$

L(jω) is log of gain, unit is dB φ(jω) is phase

Bode Plot of Low-Pass Filter



• Cut off frequency is the frequency that the power of the output signal is attenuated to half of its input value

$$\frac{Ao}{Ai} = \sqrt{\frac{Po}{Pi}} = \sqrt{\frac{1}{2}} \approx 0.707$$
$$dB = 20\log_{10}\sqrt{\frac{1}{2}} = -3dB$$

Example:

$$G(s) = \frac{V_o(s)}{V_i(s)}$$

$$G(j\omega) = \frac{1}{RCj\omega + 1}$$

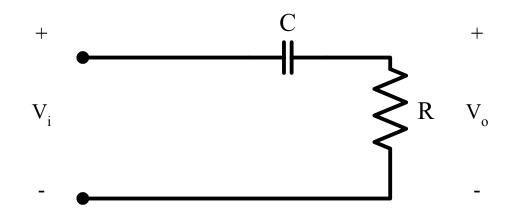
$$|G(j\omega)| = \frac{1}{\sqrt{(RC\omega_c)^2 + 1}} = \sqrt{\frac{1}{2}}$$

$$\frac{P_o}{P_i} = |G(j\omega)|^2 = \frac{1}{2} = \frac{1}{(RC\omega_c)^2 + 1}$$

=> 2 = $(RC\omega_c)^2 + 1$

$$\omega_c = \frac{1}{RC}$$

Passive RC High-Pass Filter



$$\frac{V_o(s)}{V_i(s)} = \frac{RCs}{RCs+1}$$

Bode Plot of High-Pass Filter

