Lecture 14

Relays

Mechanical relay

- Relays are electrically actuated switches
 - Mechanical relays
 - Reed relays
 - Solid-state relays
- A relay consists of an electromagnetic coil and one or more pairs of contacts

Miniature relay

Reed relay

Solid-State relay

Mechanical Relays

Common Symbols for Relays

Notes About Relays

- To make a relay change states, the voltage across of its magnetic coil should be at least within ± 25 percent of the relay's specified control voltage rating (Vc $\pm 0.25 \times Vc$)
- Sudden changes in current will create voltage spike, to avoid this is to use transient suppressors

Electromechanical Relay

Relays with BS2

Using an NPN transistor to drive a relay

Reed Relays

- Designed for moderate currents
 - Typically from 500mA to 1A
- Moderately fast switching
 - 0.2ms to 2ms

Solid State Relays

- Wide range of current ratings
 - from a few µA to 100A
- Extremely fast switching
 - 1 to 100 ns

Solid State Relay with AC

Extremely caution with 120V AC!!

Relay Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Earth measurements	
Robotics	
StampWorks	
Others	

Lecture 15

DC Motor

- DC motors are
 - Simple two-lead
 - Electrically controlled
- The voltage range of the DC motor is
 - $-1.5V\sim48V$

DC Motor: How It Works

Turning a DC Motor On/Off

DC Motor Speed Control 1

- When the voltage applied to a DC motor
 - Lower than nominal voltage → Motor runs slower
 - Higher than nominal voltage → Motor runs faster
- Linear control
 - Connect a potentiometer in series with motor
 - Use a transistor (BJT/FET) as a variable resistor

DC Motor Speed Control 2

Linear control using a potentiometer in series with motor

DC Motor Speed Control 3

Linear control using a bipolar transistor

Pulse Width Modulation 1

- An efficient method to deliver controlled amount of power to loads
- Use square voltage pulses to power a load
- The amount of power deliver to load depends on the duration of each pulse

Basic PWM control

Pulse Width Modulation 2

P1	50k Potentiometer
M1	DC Motor
Q1	PNP Transistor
Q2	PNP Transistor
R1	1 k Ω
R2	15kΩ
R3	120

Pulse-Width-Modulation 3

Controlling on-time duration of a DC motor

Pulse-Width-Modulation 4

