Robotic Buoy

Mentor: Dr. Porfiri
Collaborator: Jeffery Laut
Discipline: Mechatronics
Acknowledgments

This work is supported in part by the National Science Foundation under a Research Experience for Teachers (RET) Site grant EEC-0807286. We thank the Mechatronics Lab and the Dynamical Systems Lab for hosting us during our summer research program.
The Gowanus Canal Time Line

1860’s built
1906
1911 flushing tunnel system
1960s
1987 Red Hook WPCP
1999
2010 Superfund
Combined Sewage Overflow

- Older cities use one pipe for all their sewage and runoff
- When it rains there is an overflow
- There are 14 CSO entry points into the Gowanus Canal
Gowanus Canal Water

- Dissolved Oxygen (DO)
- pH level
- Temperature
Gowanus Canal Sediment

TABLE 1

New York State Guidelines for Effects of Metals on Marine Organisms and the Concentration of Metals in the Sediments of Four Waterways in the Port of New York/New Jersey

<table>
<thead>
<tr>
<th>Metal</th>
<th>Lowest Effect Level</th>
<th>Severe Effect Level</th>
<th>Gowanus Canal</th>
<th>Newark Bay</th>
<th>Arthur Kill</th>
<th>Newtown Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>2.0</td>
<td>25.0</td>
<td><21</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Arsenic</td>
<td>6.0</td>
<td>33.0</td>
<td>10</td>
<td>9-17</td>
<td>17-25</td>
<td>5-33</td>
</tr>
<tr>
<td>Beryllium</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.6</td>
<td>9.0</td>
<td>11</td>
<td>1-2</td>
<td>1.5-3</td>
<td>1-20</td>
</tr>
<tr>
<td>Chromium</td>
<td>26.0</td>
<td>110.0</td>
<td>151</td>
<td>175</td>
<td>161</td>
<td>305</td>
</tr>
<tr>
<td>Copper</td>
<td>16.0</td>
<td>110.0</td>
<td>630</td>
<td>105-131</td>
<td>178-304</td>
<td>61-770</td>
</tr>
<tr>
<td>Lead</td>
<td>31.0</td>
<td>110.0</td>
<td>1343</td>
<td>109-136</td>
<td>111-261</td>
<td>68-554</td>
</tr>
<tr>
<td>Mercury (total)</td>
<td>0.15</td>
<td>1.3</td>
<td>3</td>
<td>2-3</td>
<td>2-4</td>
<td>1-3</td>
</tr>
<tr>
<td>Nickel</td>
<td>16.0</td>
<td>50.0</td>
<td>88</td>
<td>33-40</td>
<td>20-60</td>
<td>12-140</td>
</tr>
<tr>
<td>Selenium</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Silver</td>
<td>1.0</td>
<td>2.2</td>
<td>21</td>
<td>2-4</td>
<td>2-5</td>
<td>2-3</td>
</tr>
<tr>
<td>Thallium</td>
<td>NA</td>
<td>NA</td>
<td><42</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Zinc</td>
<td>120.0</td>
<td>270.0</td>
<td>1130</td>
<td>188-244</td>
<td>230-403</td>
<td>104-1260</td>
</tr>
</tbody>
</table>

Sources:
- Audrey Massa — metal concentrations for Newark Bay, Arthur Kill, and Newtown Creek
- Robert Smith — metal concentrations for the Gowanus Canal
- N.Y.S. Department of Environmental Conservation — effect levels

NA = Not available
The Gowanus Bot

✧ Robotic Buoy
✧ Collect
✧ Send
✧ Graphic User Interface
✧ Public education
Similar Projects

✧ Emily Robot
✧ ARGO
✧ Seaperch
✧ Globe.org
Robot Frame

✧ PVC piping for floatation
✧ 4 inch diameter
✧ ½ inch diameter
✧ Plexiglas mount
Microcontroller

- Arduino UNO
- open source wiring platform
- shield design
- Inexpensive
-(void) moveLeft
{
 NSString * motorMove = [NSString stringWithFormat:@"HELLO#"];
 if (leftYN == YES)
 {
 motorMove = [NSString stringWithFormat:@"2#"];//send move left until send stop command
 }
 else
 {
 motorMove = [NSString stringWithFormat:@"2#"];//send move left while touched
 }
 NSString * address = @"192.168.1.172";
 UInt16 port = 9000;

 NSData * moveData = [motorMove dataUsingEncoding: NSUTF8StringEncoding];
 [socket sendData:moveData toHost:address port:port withTimeout:-1 tag:1];
}
Programming: Arduino

```cpp
SpiSerial.print("set ip gateway 192.168.1.152");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip netmask 255.255.255.0");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip address 192.168.1.152");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip local 9000");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip host 192.168.1.151");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip protocol 1");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set wlan channel 1");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set wlan ssid GowanusBot");
SpiSerial.print(byte(13));
delay(500);
```

```cpp
Serial.println(message);
if (message == "1#") { digitalWrite(8, HIGH); }
else if (message == "2#") { digitalWrite(3, HIGH); }
else if (message == "5#") { digitalWrite(8, LOW); }
else { digitalWrite(3, LOW); }
```
Wireless Communication

- WiFly Shield
- Cellular Shield
- UBD Protocol
- GUI sends commands
- Arduino makes decisions
Motor Design

✧ Device Controller
✧ H-Bridge
✧ SN754410
H Bridge

L293NE or SN754410

Connect to POWER to enable motor
Connect to GROUND to disable motor

Motor Logic Pin 1: 1A, 1Y
Motor Terminal 1: 2A
HEAT SINK AND GROUND
Motor Terminal 2: 3Y, 3A
Motor Logic Pin 2: 4A, 4Y
Motor Power Supply: VCC2

FUNCTION

<table>
<thead>
<tr>
<th>EN</th>
<th>1A</th>
<th>2A</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>Turn right</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>Turn left</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Fast motor stop</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Fast motor stop</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
<td>X</td>
<td>Fast motor stop</td>
</tr>
</tbody>
</table>

L = low, H = high, X = don't care
H Bridge
Graphic User Interface
Sensors

✧ Camera
✧ Temperature Sensor
✧ Dissolved Oxygen
✧ ph sensor
✧ sediment sensor (anchor)
Check List

✧ I-Device App
✧ Robot Frame
✧ Moving Robot
✧ Sensors
✧ Sending Video
Beyond Six Weeks

✧ Education App
✧ kits that students build (seaperch)
✧ database
Lesson

✧ Physics Modeling
✧ NXT Robot
Lesson

✧ Graph
✧ Share
Lesson

✧ Students Program

- velocity vs. time graph with lines labeled A, B, C, D