Heat Treatment on Magnesium Aluminum Zinc Alloy AZ91D

Jason Rann, SMARTER participant

Composite Materials and Mechanics Laboratory,
Polytechnic Institute at New York University
Program Advisor: Dr. Vikram Kapila
Research Mentor: Dr. Nikhil Gupta
In Collaboration with: Vasanth C Shunmugasamy
Overview

• Introduction to Composites and AZ91D
• Practical applications of Magnesium alloys and impetus for further exploration
• Experimental Tools
• Experimental procedure
• Results
• Conclusion
Composite Materials

• A composite material is a material comprised of more than one element, wherein they retain their physical and chemical identity.
 o Ex. Plywood, chocolate chip cookie

• Alloy is the specific term classifying metal composite materials
 o Ex. AZ91D
Composite Materials Lab

- Studying Forged Alloys
- Creating your own composites
Alloy Material Examples

- Steel
- Magnesium Alloy
Why study Magnesium Alloy?

• Magnesium is one of the most abundant elements on Earth.
• Harvested from the crust of the Earth and seawater.
• 20% as dense as steel
• High workability
Automotive application of Magnesium
Military application of Magnesium Alloy

Drive train on Boeing engine for Apache attack helicopter

Gear Box on General Electric F110 engine for F-16 fighter jet.

Bruce Gwynne, Paul Lyon, Magnesium Elektron®
Experimental Tools

- **Optical Microscope**
 - Nikon Epiphot 200

- **Scanning Electron Microscope**
 - Hitatchi S-3400N

- **Vickers Hardness Tester**
 - Future-Tech Microhardness Tester FM
Experimental Procedure

- Metallurgical sample preparation: Embedded all specimens in a polymer to aid handling
 - Steel, Aluminum, AZ91D control, AZ91D T4 treated, AZ91D T6 treated.
1. Polished all specimens with a grit of 6 micron
2. Performed T4 and T6 heat treatment on select specimens of AZ91D
3. Performed Optical microscopy
4. Performed Electron microscopy
5. Calculated Vickers Hardness Value
T4 and T6 treatments

- T4 treatment heats the specimen to a temperature based on the phase diagram for a period of 16-24 hours.
- T6 heats the specimen to an aging temperature for 16 to 24 hours. (Pre-requisite: T4 treatment).
Magnesium-Aluminum Alloy Phase Diagram

Phase diagram for the binary system Mg-Al
Results – Control specimens

Steel
Results - Control Specimens

Aluminum
Results – Control Specimens

AZ91D
Results – Evolution of AZ91D through Optical Microscopy

T4 Treatment

T6 Treatment
Results – Evolution of AZ91D through Electron Microscopy

AZ91D control
Results – Evolution of AZ91D through Electron Microscopy

T4 Treatment
Results – Evolution of AZ91D through Electron Microscopy

- T6 Treatment
Results – Evolution of AZ91D through Electron Microscopy

- T6 Treatment
Vickers Hardness
Vickers Hardness
Vickers Hardness Data

<table>
<thead>
<tr>
<th>SPECIMEN</th>
<th>Test Load</th>
<th>Sample Size Matrix</th>
<th>Hardness Matrix</th>
<th>Standard Matrix</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dwell Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>1961 mN</td>
<td>18</td>
<td>95.7</td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>22</td>
<td>100.7</td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td>Aluminum</td>
<td>4903 mN</td>
<td>30</td>
<td>152.3</td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AZ91 Control</td>
<td>4903 mN</td>
<td>20</td>
<td>62.0</td>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>79.6</td>
<td></td>
<td>8.9</td>
</tr>
<tr>
<td>AZ91 T4 treated</td>
<td>4903 mN</td>
<td>20</td>
<td>61.7</td>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>70.1</td>
<td></td>
<td>7.8</td>
</tr>
<tr>
<td>AZ91 T6 treated</td>
<td>4903 mN</td>
<td>20</td>
<td>62.0</td>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>87.2</td>
<td></td>
<td>12.5</td>
</tr>
</tbody>
</table>
Vickers Hardness Data

<table>
<thead>
<tr>
<th>SPECIMEN</th>
<th>Test Load</th>
<th>Sample Size Matrix</th>
<th>Hardness Matrix</th>
<th>Standard Matrix</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dwell Time</td>
<td>Sample Size Precipitate</td>
<td>Hardness Precipitate</td>
<td>Standard Precipitate</td>
<td>Deviation</td>
</tr>
<tr>
<td>Steel</td>
<td>1961 mN</td>
<td>18</td>
<td>95.7</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>22</td>
<td>100.7</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>4903 mN</td>
<td>30</td>
<td>152.3</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ91 Control</td>
<td>4903 mN</td>
<td>20</td>
<td>62.0</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>79.6</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>AZ91 T4 treated</td>
<td>4903 mN</td>
<td>20</td>
<td>61.7</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>70.1</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>AZ91 T6 treated</td>
<td>4903 mN</td>
<td>20</td>
<td>62.0</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>87.2</td>
<td>12.5</td>
<td></td>
</tr>
</tbody>
</table>
Vickers Hardness Data

<table>
<thead>
<tr>
<th>SPECIMEN</th>
<th>Test Load</th>
<th>Sample Size Matrix</th>
<th>Hardness Matrix</th>
<th>Standard Matrix</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dwell Time</td>
<td>Sample Size Precipitate</td>
<td>Hardness Precipitate</td>
<td>Standard Precipitate</td>
<td>Deviation</td>
</tr>
<tr>
<td>Steel</td>
<td>1961 mN</td>
<td>18</td>
<td>95.7</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>22</td>
<td>100.7</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>4903 mN</td>
<td>30</td>
<td>152.3</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ91 Control</td>
<td>4903 mN</td>
<td>20</td>
<td>62.0</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>79.6</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>AZ91 T4 treated</td>
<td>4903 mN</td>
<td>20</td>
<td>61.7</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>70.1</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>AZ91 T6 treated</td>
<td>4903 mN</td>
<td>20</td>
<td>62.0</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56s</td>
<td>20</td>
<td>87.2</td>
<td>12.5</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• The heat treatment process expedited the natural rate of precipitate reconfiguration. The strength of the material INCREASED after the T4 treatment and DECREASED after the T6 treatment.

• The decrease in precipitates from control to T4 treated AZ91 as well as the decrease in the difference between hardness values indicates the material increase in strength.

• The increase in the difference between hardness values between the T4 specimen and the T6 specimen indicate an decrease in strength.
Conclusion Continued

• As the AZ91 ages (naturally or through an expedited heating process) the specimen will first see an increase in strength until it reaches its maximum point of strength at an undetermined time after creation. From that point, instead of plateauing, the strength will then begin to decrease as the specimen ages.

• Engineers can use this data to tailor a material to best fit a project.
 o Ex. Making a sample weaker to be placed in the crumple zone in an automobile
 o Ex. Making a sample stronger to be used as a load bearing member in a structure.
Potential for Further Investigation

- The relationship between heat treatment aging rate and natural aging rate is still unknown.
- An investigation into the compression strength, elasticity modulus and tensile strength will yield more data on the effect of heat treatments.
- More applications in the production world (commercial, industrial, or militaristic)
Acknowledgements

• This work was supported by the National Science Foundation under grant EEC-1132482, "RET Site: Science and Mechatronics Aided Research for Teachers with an Entrepreneurship experRience (SMARTER)."

• I would like to thank my colleagues in the Composites Materials and Mechanics lab for helping me in accomplishing the research work.