Mechatronics

Lecture

Smart Sensors

Liquid Crystal Display (LCD)

- Display measurement, status information, etc.
- Field-testing without being tethered to a PC/Laptop
- Parallax 2×16 serial LCD (non-backlit)
- 3-pin connection $\left(\mathrm{V}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{dd}}\right.$, and $\left.\mathrm{V}_{\mathrm{sig}}\right)$
- BS2 commands the LCD serially, using SEROUT

Interfacing LCD to BS2

- Connect BS2's $\mathrm{V}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{dd}}$, and one I/O pin (say P14) to LCD's GND, 5V, and RX pins, respectively
- To test LCD module, on its backside, set switches SW1 and SW2 off
- Turn on power to BS2, LCD should display "Parallax, Inc." on top line and "www.parallax.com" on bottom line
- If display appears dim, adjust the contrast potentiometer
- Turn off power to BS2 and set SW2 ON to allow LCD to receive serial communication from BS2 at 9600 baud rate


```
                LCD: PBASIC Sample Code I
{$STAMP BS2}
`{$PBASIC 2.5}
SEROUT 14, 84, [22, 12] 'Initialize LCD
PAUSE 5
SEROUT 14, 84, ["Hello World!", 13, "The LCD Works"]
```

- SEROUT Pin, BaudMode, [Dataltem1, Dataltem2, ...]
- BaudMode argument for 9600 bits per second (bps), 8 data bits, no parity, true signal: 84
- Dataltems: text to be displayed, control codes, formatters $\frac{\mathfrak{7}-}{-}$ like DEC, BIN, HEX, etc.
- LCD must receive control code 22 from BS2 to turn on
- Control code examples-8: cursor left, 9: cursor right, 12: clear display (follow with PAUSE 5 to allow display to clear), 13: carriage return, 21: LCD off,
- 128 to 143 Position cursor on Line 0 , character 0 to 15
- 148 to 163 Position cursor on Line 1 , character 0 to 15
- SEROUT 14, 84, [128, "Hello", 148, "World!"]

LCD: PBASIC Sample Code II

```
' {$STAMP BS2}
'{$PBASIC 2.5}
counter VAR Byte 'FOR...NEXT loop index
SEROUT 14, 84, [22, 12] 'Initialize LCD
PAUSE 5
FOR counter = 0 TO 12 'Count to 12; increment at 1/2 s
SEROUT 14, 84, [DEC counter, " "]
PAUSE 500
NEXT
END
```

- Display numbers 0 to 12 on LCD
- Each number is followed by a space
- When top line of LCD is filled up by 16 characters
- text sent by BS2 wraps to the bottom line
- if the bottom line is filled up by 16
 characters then the text wraps again, to top line

LCD: PBASIC Sample Code III

' Display elapsed time with BS2 and Parallax Serial LCD.
' \{\$STAMP BS2\}
' \{\$PBASIC 2.5\}
hours VAR Byte 'hours
minutes VAR Byte 'minutes
seconds VAR Byte 'seconds
SEROUT 14, 84, [22, 12] 'Initialize LCD
PAUSE 5 ' 5 ms to clear display
SEROUT 14, 84, ["Time Elapsed...", 13] 'Text \& carriage return
SEROUT 14, 84, [" h m s"] 'Text on second line
DO 'Main Routine
'Calculate hours, minutes, seconds
IF seconds $=60$ THEN seconds $=0$: minutes $=$ minutes +1
IF minutes $=60$ THEN minutes $=0$: hours $=$ hours +1
IF hours $=24$ THEN hours $=0$
'Display digits on LCD on Line 1. The values 148, 153, 158
'place the cursor at character 0,5 , and 10 for the time values.
SEROUT 14, 84, [148, DEC2 hours,
153, DEC2 minutes,
158, DEC2 seconds]
PAUSE 991 'Pause + program overhead ~ 1 second
seconds = seconds + 1 'Increment second counter
LOOP 'Repeat Main Routine

Ultrasonic Sensor-PING)))

- Time-of-flight distance measurement
- Sensor emits a 40 KHz tone and measures time till it receives the echo signal

- Round-trip time-of-flight yields distance measurement: $D=0.5 \times C \times T, D=$ distance (m), $C=$ speed of sound in air @ $72^{\circ} \mathrm{F}(344.8 \mathrm{~m} / \mathrm{s}), T=$ round trip time (s)
- Range: 3.3 meters

Interfacing PING))) to BS2

- Connect BS2's $\mathrm{V}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{dd}}$, and one I/O pin (say P15) to PING)))'s GND, 5V, and SIG pins, respectively

PING))): PBASIC Sample Code I

' \{\$STAMP BS2\}
' \{\$PBASIC 2.5\}
rawtime VAR Word
DO
PULSOUT 15, 5
PULSIN 15, 1, rawtime
DEBUG HOME, "rawtime = ", DEC5 rawtime
PAUSE 100
LOOP

- PULSOUT 15, 5: sends a 10μ s pulse to P15
- PULSIN 15, 1, time: monitors for the return echo and stores it in the variable time (unit $2 \mu \mathrm{~s}$)

PING))): PBASIC Sample Code II

$$
D_{\mathrm{cm}}=\left(\frac{1}{2}\right) \times \overbrace{(100 \times 344.8)}^{\mathrm{cm} / \mathrm{s}} \times \overbrace{\left(T_{\mathrm{raw}} \times 2 \times 10^{-6}\right)}^{\text {seconds }}=T_{\mathrm{raw}} \times 0.03448
$$

- Let cmConst= $0.03448 \times 65536=2260$
- Now compute D_{cm} by using $T_{\text {raw }} * * 2260$
' \{\$STAMP BS2\}
' \{\$PBASIC 2.5\}
rawtime VAR Word
cmDist VAR Word
cmConst CON 2260
DO
PULSOUT 15, 5
PULSIN 15, 1, rawtime
cmDist=rawtime ${ }^{* *} \mathrm{cmConst}$
DEBUG HOME, "cmDist = ", DEC cmDist
PAUSE 100
LOOP
- For $D_{\text {inch }}$ let inchConst $=(0.03448 / 2.54) \times 65536=890$
- Now compute $D_{\text {inch }}$ by using $T_{\text {raw }}{ }^{* *} 890$

Accelerometer

- Electromechanical device to measure acceleration forces
- Static forces like gravity pulling at an object lying at a table
- Dynamic forces caused by motion or vibration
- How they work
- Seismic mass accelerometer: a seismic mass is connected to the object undergoing acceleration through a spring and a damper;
- Piezoelectric accelerometers: a microscopic crystal structure is mounted on a mass undergoing acceleration; the piezo crystal is stressed by acceleration forces thus producing a voltage
- Capacitive accelerometer: consists of two microstructures (micromachined features) forming a capacitor; acceleration forces move one of the structure causing a capacitance changes.
- Piezoresistive accelerometer: consists of a beam or micromachined feature whose resistance changes with acceleration
- Thermal accelerometer: tracks location of a heated mass during acceleration by temperature sensing

Accelerometer Applications

- Automotive: monitor vehicle tilt, roll, skid, impact, vibration, etc., to deploy safety devices (stability control, anti-lock breaking system, airbags, etc.) and to ensure comfortable ride (active suspension)
- Aerospace: inertial navigation, smart munitions, unmanned vehicles
- Sports/Gaming: monitor athlete performance and injury, joystick, tilt
- Personal electronics: cell phones, digital devices
- Security: motion and vibration detection
- Industrial: machinery health monitoring
- Robotics: self-balancing

2 axis joystick
WII Nunchuk: 3 axis accelerometer

Memsic 2125 2-axis Accelerometer

- Measure acceleration, tilt angle, rotation angle
- G-force measurements for X and Y axis reported in pulse-duration
- Temperature measurement: analog output ($\mathrm{T}_{\text {out }}$)
- Low current operation: <4mA @ 5VDC
- Measures 0 to $\pm 2 \mathrm{~g}$ on either axis
- Resolution: $<1 \mathrm{mg}$
- Operating temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

MX2125 Chip

MX2125 Accelerometer: How it Works

- A MEMS device consisting of
- a chamber of gas with a heating element in the center
- four temperature sensors around its edge
- Hold accelerometer level \rightarrow hot gas pocket rises to the top-center of the accelerometer's chamber \rightarrow all sensors measure same temperature
- Tilt the accelerometer \rightarrow hot gas pocket collects closer to one or two temperature sensors \rightarrow sensors closer to gas pocket measure higher temperature
- MX2125 electronics compares temperature measurements and outputs pulses (pulse duration encodes sensor $\mathbf{0} / \mathbf{p}$)

Interfacing Accelerometer to BS2

- Connect BS2's $\mathrm{V}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{dd}}$, and two I/O pin (say P6 and P7) to MX2125's pins 3, 6, 5, and 2, respectively

- $X_{\text {out }}$ and $Y_{\text {out }}$ pulse outputs are set to 50% duty cycle at 0 g ; the duty cycle changes in proportion to acceleration
- G Force can be computed from the duty cycle as shown below
- $\mathrm{T}_{\text {out }}$ provides analog output 1.25 volts @ $25.0^{\circ} \mathrm{C}$, output change: $5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

Memsic 2125 Pulse Output

$$
A(g)=((T 1 / T 2)-0.5) / 12.5 \%
$$

T2 duration is calibrated to 10 milliseconds at $25^{\circ} \mathrm{C}$ (room temperature)

Accelerometer Axis Pulse Measurements

'\{\$STAMP BS2\}
'\{\$PBASIC 2.5\}
x VAR Word
y VAR Word
DEBUG CLS Pulsin o/p range: 1875 to 3125
DO
When level: $\mathrm{o} / \mathrm{p}=2500$
PULSIN 6, 1, x
PULSIN 7, 1, y

DEBUG HOME, DEC4 ? x, DEC4 ? y
PAUSE 100
LOOP

Pulse Measurements: Offset and Scaling

- Let $X_{\text {raw }}=$ Pulsin output
- $X_{\text {raw }} \in\{1875,3125\}$ and when level $X_{\text {raw }}=2500$
- We wish $X_{\text {out }}: X_{\text {raw }} \rightarrow X_{\text {out }} \in\{-127,127\}$, and $X_{\text {out }}=0$ when level

'\{\$STAMP BS2\}
'\{\$PBASIC 2.5\}
scalecon CON 13316
xraw VAR Word
yraw VAR Word
Xo VAR Word
Yo VAR Word
DEBUG CLS
DO
PULSIN 6, 1, xraw
PULSIN 7, 1, yraw
Xo=xraw**scalecon-508
Yo=yraw**scalecon-508
DEBUG HOME, SDEC Xo, SDEC Yo
PAUSE 100
LOOP
Clamp input range to $\{1875,3125\}$ using the following:
xout=(xraw Min 1875 Max 3125) **scalecon-508
yout=(yraw Min 1875 Max 3125) **scalecon-508
- Let Scale $=\mathbf{I N T}(\mathbf{(2 5 4 / 1 2 5 0)} \times \mathbf{6 5 5 3 6})=\mathbf{1 3 3 1 6}$
- Now compute $X_{\text {out }}$ by using $X_{\text {raw }}{ }^{* *} \mathbf{1 3 3 1 6 - 5 0 8}$

g-Force Measurements in mili-g-I

- Let $T_{\text {raw }}=$ Pulsin output (2μ s units)
- $\mathrm{T}_{\text {raw }} \in\{1875, \mathbf{3 1 2 5}\}$ and when level $\mathrm{T}_{\text {raw }}=2500$
- $T_{\text {raw }}=1875 \rightarrow-\mathrm{g}(-1000 \mathrm{milli}-\mathrm{g})$ and $\mathrm{T}_{\text {raw }}=\mathbf{3 1 2 5} \rightarrow \mathbf{g}(1000 \mathrm{mili}-\mathrm{g})$
- So, we wish $\mathrm{T}_{\text {out }}: \mathrm{T}_{\text {raw }} \rightarrow \mathrm{T}_{\text {out }} \in\{-1000,1000\}$, and $\mathrm{T}_{\text {out }}=\mathbf{0}$ when level

Memsic 2125 Pulse Output

T_{1} : Pulsin output returns $\mathrm{T}_{\text {raw }}$

- Moreover, recall g force is given by T_{2} : 10milli-seconds @ $25^{\circ} \mathrm{C}$

$$
g_{\text {Force }}=\left(\frac{T_{1}}{T_{2}}-0.5\right) \times\left(\frac{1}{12.5 \%}\right) \quad(\text { units }: \mathrm{g})
$$

g-Force Measurements in mili-g-II

a. $x=1000 / 1000, y=0 / 1000$

d. $x=0 / 1000, y=-1000 / 1000$

b. $x=0 / 1000, y=1000 / 1000$

c. $x=-1000 / 1000, y=0 / 1000$

Sample Readings at Various Orientations (start at top left, rotate clockwise)

g-Force Measurements in mili-g-III

- T_{1} : Pulsin output returns $\mathrm{T}_{\text {raw }}$ in $2 \mu \mathrm{~s}$ units

- T_{2} : 10mili-seconds @ $\mathbf{2 5}^{\circ} \mathrm{C}$
- Thus,

$$
\mathrm{T}_{1}=2 \times 10^{-6} \times \mathrm{T}_{\text {raw }} \text { seconds }=2 \times 10^{-3} \times \mathrm{T}_{\text {raw }} \text { mili-seconds }
$$

$$
\begin{aligned}
g_{\text {Force }} & =\left(\frac{T_{1}}{T_{2}}-0.5\right) \times\left(\frac{1}{12.5 \%}\right),(\text { units }: \mathrm{g}) \\
& =\left(\frac{T_{1}}{T_{2}}-0.5\right) \times\left(\frac{1}{12.5 \%}\right) \times 10^{3},(\text { units : milli-g }) \\
& =\left(\frac{T_{\text {raw }} \times 2 \times 10^{-3}}{10}-0.5\right) \times\left(\frac{100}{12.5}\right) \times 10^{3} \\
& =\left(\frac{T_{\text {raw }} \times 2}{10}-500\right) \times 8
\end{aligned}
$$

MX2125 Angle of Rotation in Vertical Plane-I

- MX2125's angle of rotation in the vertical plane:

$$
\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right), \text { BS2 returns } A_{x}, A_{y} \in\{1875,3125\}
$$

- To compute $\tan ^{-1}(\mathrm{Y} / \mathrm{X})$ use PBASIC ATAN command: X ATN Y ; ATN requires X , $\mathrm{Y} \in\{-127,127\}$ which is accomplished using

$$
\begin{aligned}
X= & \left(A_{x}-2500\right) \times\left(\frac{254}{1250}\right) \\
& =A_{x} \times\left(\frac{254}{1250}\right)-508
\end{aligned} \longleftrightarrow \begin{aligned}
& \bullet \text { Let INT }((254 / 1250) \times 65536)=\mathbf{1 3 3 1 6} \\
& \bullet \text { Now compute } X \text { by using Ax**13316-508 }
\end{aligned}
$$

MX2125 Angle of Rotation in Vertical Plane-II

- ATN returns its output in binary radians (i.e., a circle is split up into 256 segments instead of 360 segments as in degrees)
- Convert ATN output from brad to degrees as follows:

$$
\theta_{\mathrm{Deg}}=\theta_{\mathrm{BRad}} \times\left(\frac{360}{256}\right) \longleftrightarrow \begin{aligned}
& \text { Let } \mathbf{I N T}((\mathbf{3 6 0} / \mathbf{2 5 6}) \times \mathbf{2 5 6})=\mathbf{3 6 0} \\
& \text { Now compute } \theta_{\mathrm{Deg}} \text { by using } \theta_{\mathrm{BRad}} * / \mathbf{3 6 0}
\end{aligned}
$$

Unit circle in degrees and binary radians

MX2125 Angle of Rotation in Vertical Plane: Sample Code

```
'{$STAMP BS2}
'{$PBASIC 2.5}
scale1 CON 13316
scale2 CON 360
Ax VAR Word
Ay VAR Word
angle VAR Word
DEBUG CLS
DO
PULSIN 6, 1, Ax
PULSIN 7, 1, Ay
Ax=(Ax MIN 1875 MAX 3125)**scale1-508
Ay=(Ay MIN 1875 MAX 3125)**scale1-508
angle=Ax ATN Ay
angle=angle*/scale2
DEBUG HOME, " Ax =", SDEC Ax, " Ay=", SDEC Ay, " angle=", SDEC3 angle, 176, " "
PAUSE 300
LOOP
```


HM55B Compass Module

- Dual axis magnetic field sensor
- Sensitive to microtesla $(\mu \mathrm{T})$ variations in magnetic field strength
- Operates on I=30-45 mA @ 5VDC
- Sensitivity: 1 to $1.6 \mu \mathbf{T}$
- Conversion time: 30 to 40 ms between start measurement and data-ready
- Built-in resistor protection for data pins
- Operating Temp.: 0 to $70^{\circ} \mathrm{C}$

Mechanical Compass

Hitachi HM55B

HM55B Compass Module

$$
\begin{aligned}
& \tan \theta=\frac{-N \sin \theta}{N \cos \theta}=\frac{-y}{x} \\
& \tan ^{-1}(\tan \theta)=\tan ^{-1}\left(\frac{-y}{x}\right) \\
& \theta=\tan ^{-1}\left(\frac{-y}{x}\right)
\end{aligned}
$$

HM55B Compass Module with BS2

- Connect BS2's Vss, Vdd, and three I/O pin (say P0, P1 and P2) to HM55B's pins 3, 6, 4,5 , and 2, respectively.
- Din and Dout are shorted to use only one pin for sending and receiving data from HM55B.

HM55B Compass Module with BS2

Compass_Get_Axes:
HIGH En: LOW En
SHIFTOUT DinDout,clk,MSBFIRST,[Resetl4]
HIGH En: LOW En
SHIFTOUT DinDout,clk,MSBFIRST,[Measurel4] status $=0$

DO
HIGH En: LOW En
SHIFTOUT DinDout,clk,MSBFIRST,[Report14]
SHIFTIN DinDout,clk,MSBPOST,[Status\4]
LOOP UNTIL status = Ready
SHIFTIN DinDout,clk,MSBPOST,[x\11,y\11] HIGH En

IF (y.BIT10 = 1) THEN $y=y \mid$ NegMask IF (x.BIT10 = 1) THEN $x=x \mid$ NegMask

RETURN

' To get the agnle
angle $=x$ ATN -y ' Convert x and y to brads angle $=$ angle $* / 361$

Calibration

WHY?

- Software Calibration
- compensate for the effects of magnetic fields
- corrects for the HM55B chip's axis sensitivity, offset and skew errors

HOW?

- Make a printout of the 16 -segment compass shown.
- Align the printout to magnetic north with the aid of the magnetic compass.
- Affix the aligned printout to your work surface.
- Make sure to set the magnetic compass well away from the printout before continuing.
- Align the Compass Module to magnetic north by lining up the edge of your carrier
 board with the dashed line that passes through the 0° mark.

