Lecture 1

Resistor

What is Current?

- A flow of electrically charged particles
- Carried by small negatively-charged particles, called **electrons**
- Represented by the symbol *I*, and is measured in amperes, or 'amps', A
- Most often measured in milliamps, mA
- Like water flow

Water Analogy

More current

Less current

What is Voltage?

- Potential difference
- Represented by the symbol *V*, and is measured in **volts**, **V**
- Like potential energy at water fall

Water Analogy

Series Connection of Cells

- Each cell provides 1.5 V
- Two cells connected one after another, **in series**, provide 3 V, while three cells would provide 4.5 V
- Polarities matter

Parallel Connection of Cells

• If the cells are connected in parallel, the voltage stays at 1.5 V, but now you can draw a larger current

DC and AC

- A cell provides a steady voltage, so that current flow is always in the same direction
 - This is called **direct current**, or **d.c**
- The domestic mains provides a constantly changing voltage which reverses in polarity 60 times every second
 - This gives rise to alternating current, or a.c

Power Supply

Digital

Analog

Water Analogy of Wires

Resistors

- Dissipative elements that convert electrical energy into heat
- Resistors limit current
- Unit is **ohms**, Ω

Resistor Symbols

Water Analogy of Resistor

Resistor Applications

- Resistors are used for
 - Limiting current
 - Lowering voltage (voltage divider)
 - As current divider
 - As a sensor (potentiometers, photoresistors, strain gauge)
 - As pull-up or pull down elements

Resistors of Different Sizes

How to Read Resistor Values 1

- 1. By color code
- 2. By digital multi meter (DMM)

How to Read Resistor Values 2 By color code

Resistor value = $AB \times 10^C \pm tol\%(\Omega)$

Resistance Color Code

Number	Color
0	black
1	brown
2	red
3	orange
4	yellow
5	green
6	blue
7	violet
8	grey
9	white

Tolerance	Color
±1%	brown
±2%	red
±5%	gold
±10%	silver

Example

- The first band is yellow, so the first digit is 4
- The second band is violet, so the second digit is 7
- The third band is red, so the multiplier is 10^2
- Resistor value is $47 \times 10^2 \pm 5\%(\Omega)$

Metric Units and Conversions

<u>Abbreviation</u>	Means	Multiply unit by	<u>Or</u>
p	pico	.0000000001	10 -12
n	nano	.00000001	10 -9
μ	micro	.000001	10 -6
m	milli	.001	10 ⁻³
•	Unit	1	10 ⁰
k	kilo	1,000	10 ³
M	mega	1,000,000	10 ⁶
G	giga	1,000,000,000	10 ⁹

Examples

http://www.electrician.com/resist_calc/resist_calc.htm

Digital Multimeter 1

- DMM is a measuring instrument
- An **ammeter** measures current
- A **voltmeter** measures the potential difference (voltage) between two points
- An **ohmmeter** measures resistance
- A **multimeter** combines these functions, and possibly some additional ones as well, into a single instrument

Digital Multimeter 2

- Voltmeter
 - Parallel connection
- Ammeter
 - Series connection
- Ohmmeter
 - Without any power supplied
- Adjust range (start from highest limit if you don't know)

Digital Multimeter 3

Auto Ranging DMM

Ammeter Connection

- Break the circuit so that the ammeter can be connected in series
- All the current flowing in the circuit must pass through the ammeter
- An ammeter must have a very LOW input impedance

Voltmeter Connection

- The voltmeter is connected in parallel between two points of circuit
- A voltmeter should have a very HIGH input impedance

Ohmmeter Connection

- An ohmmeter does not function with a circuit connected to a power supply
- Must take it out of the circuit altogether and test it separately

Resistors in Series

Resistors in Parallel

Exercise 1

Exercise 2

Potentiometer 1

- Has an adjustable resistance
- Rotary potentiometer
- Linear potentiometer
- Use as a position sensor

Potentiometer 2

Rotary Potentiometers

Linear Potentiometer

Breadboard 1

Prototype board is used for building temporary circuits, without soldering. Component leads are pushed into the holes in the board to make connections.

Breadboard 2

How to Insert a Component into a Breadboard

Resistor Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Process Control	
Smart Sensors	
Boe Bot Robotics	
Others	On coming slides

- 1. Read resistors' nominal values using color code
- 2. Determine resistors' values using an Ohmmeter
- 3. Determine resistors' values using DMM (Voltmeter and Ammeter) and compare with results from 1 and 2
- 4. Make serial connection with two resistors
 - 1) Repeat 1, 2, and 3
- 5. Make parallel connection with two resistors
 - 1) Repeat 1, 2, and 3
- 6. Make combination of serial and parallel connection with three resistors
 - 1) Repeat 1, 2, and 3

• Adjust and Determine the potentiometer value such that

$$Vout = \frac{5}{6}Vin$$

Lecture 2

Mechatronics

Mechatronics 1

- Synergistic integration of
 - Mechanical engineering
 - Control theory
 - Computer science
 - Electronics
- To manage complexity, uncertainty, and communication in engineered systems

Mechatronics 2

- Typical knowledgebase for optimal design and operation of mechatronic systems comprises of
 - Dynamic system modeling and analysis
 - Decision and control theory
 - Sensors and signal conditioning
 - Actuators and power electronics
 - Hardware interfacing
 - Rapid control prototyping
 - Embedded computing

Mechatronic Applications

- Smart consumer products: home security, camera, microwave oven, toaster, dish washer, laundry washer-dryer, climate control units, etc.
- Medical: implant-devices, assisted surgery, haptic, etc.
- **Defense**: unmanned air, ground, and underwater vehicles, smart munitions, jet engines, etc.
- Manufacturing: robotics, machines, processes, etc.
- Automotive: climate control, antilock brake, active suspension, cruise control, air bags, engine management, safety, etc.
- Network-centric, distributed systems: distributed robotics, tele-robotics, intelligent highways, etc.

Roborat 1

Roborat 2

Roborat 3

Robocockroach

Mechanical elements

Electromechanical elements

Electrical/Electronic elements

 Control interface/computing hardware elements

Computer elements

Microprocessors

- Perform arithmetic, logic, communication, an control function
- Arithmetic/logic unit(ALU)
- Instruction registers and decoders
- Data registers
- Control unit
- Intel 4004 (4bit microprocessor), Intel 8080 (8bit microprocessor)

Microcontrollers

- Special purpose miniaturized computers
- Single integrated circuit containing many specialized and sophisticated circuits and functions
- Two primary components
 - -RAM
 - CPU with instruction set

Microcontroller Architecture

PIC Microcontrollers

• PIC 16C57 (unit price: \$7.50 in single quantities, \$3.50 in quantities of 1000 or more)

Basic Stamp 2

- -Simple and easy to use
- –PIC-based PBASIC interpreter on ROM
- −16 digital I/O

http://www.parallax.com/Downloads/Documentation/bs/mod/BASIC Stamp 2 Schematic Rev F.pdf

Stamp Development Board

Hardware Considerations

- Power requirements
 - BS2 requires regulated 5DCV and draws about 8mA
- Each I/O pin of BS2 can
 - Source up to 20mA
 - Sink up to 25 mA
- When the voltage regulator on BOE is being used, all I/O pin as a group can
 - Source up to 40mA
 - Sink up to 50mA

BS2 Pin Descriptions

Pin	Name	Description
1	SOUT	Serial out
2	SIN	Serial in
3	ATN	Attention
4	VSS	System ground
5-20	P0-P15	Input/Output pins
21	VDD	5DC V
22	RES	Reset
23	VSS	System ground
24	VIN	Unregulated power in

BS2 Variable Types

Var type	Size	Range of value
bit	1 bit	0, 1
nib	4 bits	0-15
byte	8 bits	0-255
word	16 bits	0-65535

OnOff var bit

InOutPins var nib

ADCin var byte

Count var word

Binary, Decimal, and Hexadecimal Numbers

Binary	Decimal	Hexadecimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Binary	Decimal	Hexadecimal
1000	8	8
1001	9	9
1010	10	A
1011	11	В
1100	12	С
1101	13	D
1110	14	Е
1111	15	F

Variable Command

b0=10

b0= %00001010

b0=\$0A

 $(375)_2$ is 00000001 01110111

b3 var byte

 $01110111 = 2^{7}(0) + 2^{6}(1) + 2^{5}(1) + 2^{4}(1)$

b3=375

 $+2^{3}(0)+2^{2}(1)+2^{1}(1)+2^{0}(1)$

Debug DEC b3

= 119

Result is 119

Assigning Pins for I/O

DIRS: 1 for output, 0 for input

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DII	R D			DII	R C			DII	R B			DII	R A	
	DIR H									DII	R L				

OUTS

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OU	TD			OU'	T C			OU	ТВ			OU	ΤA	
	OUT H								OU	TL					

Same as for INS

How to Protect the I/O Pins

$$I = \frac{5}{270} \approx 19mA$$

Variables Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Process Control	
Smart Sensors	
Boe Bot Robotics	
Others	On coming slides

myCon CON 10

myVar1 VAR Byte

myVar2 VAR Byte

myVar3 VAR word

myVar4 VAR word

myVar1=5

myVar2=25

myVar3=375

myVar4=400

debug "myCon= ", DEC myCon, cr debug "myVar1= ", DEC myVar1, cr debug "myVar2= ", DEC myVar2, cr debug "myVar3= ", DEC myVar3, cr debug "myVar4= ", DEC myVar4, cr debug "myVar3 in BIN=", BIN myVar3, cr debug "Low byte of 375=", BIN myVar3.byte0, cr debug "High byte of 375=", BIN myVar3.byte1, cr


```
b0=10
debug "b0 input in DEC.", cr
debug "b0 in DEC= ", DEC b0, cr
debug "b0 in BIN= ", BIN b0, cr
debug "b0 in HEX= ", HEX b0, cr
```


b0=%00001010

debug "b0 input in BIN.", cr

debug "b0 in DEC= ", DEC b0, cr

debug "b0 in BIN= ", BIN b0, cr

debug "b0 in HEX= ", HEX b0, cr

b0=\$0A

debug "b0 input in HEX.", cr

debug "b0 in DEC= ", DEC b0, cr

debug "b0 in BIN= ", BIN b0, cr

debug "b0 in HEX= ", HEX b0, cr

b0=10

b1=20

b2=b0+b1

b3=375

debug "b0 in DEC= ", DEC b0, cr debug "b1 in DEC= ", DEC b1, cr debug "b2 in DEC= ", DEC b2, cr debug "b3 in DEC= ", DEC b3, cr

debug "b0 in BIN= ", BIN b0, cr debug "b1 in BIN= ", BIN b1, cr debug "b2 in BIN= ", BIN b2, cr debug "b3 in BIN= ", BIN b3, cr

w2 = 375

debug "w2 in DEC= ", DEC w2, cr debug "w2 in BIN= ", BIN w2, cr debug "b4 in BIN= ", BIN b4, cr debug "b5 in BIN= ", BIN b5, cr

- Please read "BASIC Stamp Frequently Asked Questions"
- •Please read and run all programs on "BASIC Stamp Syntax and Reference Manual" from page 1 to page 75
- And DEBUG on page 159

