Art as an integrator for Research, Education and Outreach

Donna Gobin
August 2010
Main Objectives

• Integrating art and science into an educational program focusing on materiality

• Implementing the educational program in NYC Public Schools
Specific Goals

- Establish an interdisciplinary collaborative team
- Spread scientific and artistic literacy
- Infuse and stimulate knowledge, skills, creativity, versatility and a sense of wonder amongst youngsters
- Integrating scientific activities into artistic creations and vice versa
- Broaden the ties of NYC-Poly with local community
Collaborative team

Art

Scientific Community

General Public

NYC Public Schools

Materials Art Community

SMART
Science and Mechatronics Aided Research for Teachers
A Research Experience for Teachers (RET) Site
Materials in artistic work provide:

- ways into technical discourse
- interdisciplinary discussion and materials science and mechanical engineering
- interface to discuss ethical and cultural impact of conventional/new materials
Art is a vehicle that offers

- an informal approach
- introduce fundamental concepts in materials science
- changes the appreciation of both artistic and scientific content
Scientific and Artistic Creations

Demaines at MIT

- computational origami
- math and art are complementary endeavors
- use complex mathematics to make beautiful art
- construct sculptures to help solve intractable math problems
Materials in Art and Technology

- Rohit Trivedi, senior scientist at Ames Laboratory
- evolution of materials-processing dates back to discovery of fire
- artists, scientists and manufacturers use same methods
- craftsmen were first to manipulate properties of metals and ceramics
Program Goals

With the implementation of this program, students will attain:

• Art History and Art Literacy
• Science Knowledge
• Math Knowledge
• Appreciation of the intermingling of topics
Artistic Knowledge

Students will have attained the knowledge needed to:

- Classify art pieces into periods, such as cubism
- Recognize famous artists and artwork
- Consider limitations and advantages of certain materials used in artwork
- Exposure to multiple museums and galleries
Students will be exposed to:

- Introduction to notions of Material Science
- Basic material properties (metal, ceramic, wood)
- Conduct several laboratory experiments
- Learn scientific concepts through ideas and creative artwork, not formulas
- Exposure to art in materials (microstructures for example)
Mathematical Knowledge

Students will learn:

- Basic geometric properties of 2D and 3D figures
- How to represent patterns and simple geometrical relationships
- Identify the results of transformations on plane figures
- Develop flexibility in solving problems
Evaluation and assessment

Students will be evaluated through:

- Informal assessments by way of conversations at several points in lesson
- Formal written assessments
- Physical presentation of art pieces
- Oral presentation on techniques used to produce artwork
Conclusions

- Implement Art as an Integrator program in Fall semester at two NYC Public Schools
- Host a gallery exhibit featuring student art work
- Assess success of program based on previous data and exam results for the class concerned.
Acknowledgments

- The National Science Foundation
- SMART Program
- Research Experience for Teachers (RET)
- NYU-Poly Mechatronics Lab
- Prof. Vikram Kapila, Project Director
- Prof. Remi Dingreville, Research Advisor
- Mechatronics Lab Coordinator: Jared Frank

This material is based upon work supported by the National Science Foundation under an RET Site Project with Grant #: EEC-0807286