The SMART Weather Balloon

A Mechantronics
Demonstration Project

Lennox Henry
Washington Irving High School
New York, NY 10003
Ronald Occhiogrosso
HAFTR High and Middle Schools
Cedarhurst, NY 11516

Outline

- Driving Force -grab students' attention
- Mechatronics-blend of mechanics, control theory, computer science, and sensor/actuator technology to design products
- Objective- Weather Station, Flight, T, P, RH
- Theory
- Isolines, T, RH, P; Sling Psychrometer
- Lift-Force
- Homework Board Circuitry w/ SMART Weather Balloon
- Results \& Conclusions
- Future Work
- References

Driving Force: Motivational Moment

Objective

- To engage students and capture their interests. How? By using the Mechatronics concepts learned in this RET program, in the creation of a device that will:
- Fly \& Take Real Weather data
- Have students plot their results

Theory - Earth Science

- Isolines: Temperature, $\mathrm{RH}, \mathrm{P}_{\text {bar }}$

- $\boldsymbol{F}_{\text {lift }}=\left(\boldsymbol{D}_{\text {air }}-\boldsymbol{D}_{\boldsymbol{H e}}\right) \boldsymbol{V} \boldsymbol{g}$

- $z=(R T / g M) \ln \left(p_{\mathrm{o}} / p\right)$

HWB Circuitry \& the Balloon: the Brains of the Show

Data Retrieval for Students: StampDAQ Excel

FOR counter $=2$ TO DATACOUNT STEP 2

- READ counterT, result.LOWBYTE
- counterT = counterT + 1
- READ counterT, result.HIGHBYTE
- counter $\mathrm{T}=$ counter $\mathrm{T}+1$
-
- 'DEBUG "Temp = ", DEC (result / 10), ".", DEC1 result , DegSym, " ", CR SEROUT 16,84,["DATA,TIME,", DEC height, ",", DEC (result / 10), ",", DEC1 result, ","]
- height $=$ height +1
- READ CounterRH, result.LOWBYTE
- CounterRH = CounterRH + 1
-
- counterRH = counterRH + 1
-
- 'DEBUG "Humidity =", DEC (result / 10), ".", DEC1 result, "\% " , CR, CR

SEROUT 16,84,[DEC (result / 10), ",", DEC1 result, CR]

- NEXT

Trial\#1 Data

- Table 1. Trial 1 data taken on August 4, 4:30 PM at Atrium to Metrotech 5
- Altitude Temp RH (\%) P (atm) Comments
- $025.2 \quad 45.8 \quad 1.000 \quad$ This data point was taken in the elevator on the first floor

-	0	24.5	64.2

$\begin{array}{llll}\text { - } & 1 & 25 & 69.3\end{array} 0.989$

- $2025.1 \quad 69.5 \quad 0.977$
$\begin{array}{llll}\text { - } & 3 & 25.2 & 68.2\end{array} 0.966$
$\begin{array}{llll}\text { - } & 4 & 25.2 & 68.3\end{array} 0.955$
$\begin{array}{llll}\text { - } & 5 & 25.4 & 67.3\end{array} 0.944$
$\begin{array}{llll}- & 6 & 25.5 & 66.5\end{array} 0.934$

-	7	25.7	65.8

- $8 \quad 26.1 \quad 64.4 \quad 0.913$
$\begin{array}{llll}\text { - } & 9 & 26.2 & 64.1\end{array}$
At this point the SMART Weather Balloon was very close to the ceiling, just about $1 / 2 \mathrm{~m}$ from it

Results and Conclusions

- The SMART Weather Balloon successfully captures T, RH, altitude, $\mathrm{P}_{\text {bar }}$ data from 0 to 9 m high.
- Variations in T, RH, and $\mathrm{P}_{\text {bar }}$ are obvious. $\mathrm{T} \& \mathrm{RH}$ data vary randomly - as expected
- Extend data collection to other spots at: 1 m , $2 \mathrm{~m}, 3 \mathrm{~m}$, etc from original position.

Future Work

- Replace the meteorological balloon with a blimp that can hold a sufficient volume of helium to sustain the 235 g payload.
- Add on an additional gondola with three thruster-engine fans to allow for added up/down \& lateral RC movement
- Addition of transceiver chip to gondola and creation of another BS2 ground setup with a transceiver or receiver to capture real time data.
- Use SMART Weather Balloon in the chemistry curriculum for gas laws, and in Physics for Force Balances (Static Equilibrium).
- Contact Realtors: would aerial photos of homes be worth \$\$\$

References

- 1. Online: http://www.weather.com/glossary/w.html, Weather Glossary
- 2. Online: http://www.scientificsales.com, Weather equipment information and sales
- 3. Online: http://www.howstuffworks.com/led.htm, Weather \& Hot Air Balloons
- 4. Online: http//mechatronics.poly.edu/Description/description.htm
- 5. Online: http//www.memagazine.org/backissues/may97/features/mechatron/mechatron.html
- 6. Kortum, W., Goodall, R.M., J.K. Hedrick, (1998), "Mechatronics in Ground Transportation -
- Current Trends and Future Possibilities, Annual Reviews in Control, 22, pp.133-144.
- 7. Callister, J.C., Brief Review in Earth Science, The Physical Setting, Prentice Hall, Needham, MA, 2003
- 8. Earth Science two texts, McDougal Littel
- 9. Earth Science two texts, Prentice Hall
- 10. Online: http://ww2010.atmos.uiuc.edu/(Gh)/guides/maps/sfcobs/entr/thrm.rxm1, Isothermal
- plot of upper midwest U.S. in summer
- 11. Online: http://www.biber.fsnet.co.ulk/altim.html, Jackson, G., C. Crocker, "The Use of
- Altimeters in Height Measurements"
- 12. Online: http://www.omega.com/Temperature/pdf/RHSP.pdf
- 13. "Psychrometer" Lab Experiment for High School students, Hubbard Scientific, P/N 3106
- 14. Parallax Sensirion SHT11 Sensor Module (\#28018), Precision Temperature and Humidity
- Measurement Instruction Pamphlet, July 2003
- 15. Online: http://www.wordiq.com/, Definitions

Acknowledgments

We would like to thank,

 Project Director Professor Vikram KapilaProject Instructor Sang-Hoon Lee
A special thank you to Anshuman Panda and Hong Wong for assisting us with Pbasic Code \& StampDAQ Excel. And Thank You to Alessandro Betti for giving us 'free reighn' to his machine Shop.
Thank You Parallax, Inc. for your kinds donations
\& of course the RET program of the National Science Foundation for making this program possible

